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ON VANISHING AT SPACE INFINITY FOR A SEMILINEAR
HEAT EQUATION WITH ABSORPTION

NORIAKI UMEDA

Abstract. We consider a Cauchy problem for a semilinear heat equation with
absorption. The initial datum of the problem is bounded and its infimum is

positive. We study solutions which do not vanish in the total space at the

vanishing time; they vanish only at space infinity.

1. Introduction

We consider the semilinear heat equation (with absorption)

ut = ∆u− u−p, x ∈ Rd, t > 0 (1.1)

supplemented by initial data

u(x, 0) = u0(x) > 0, x ∈ Rd, (1.2)

with d ≥ 1 and p > −1. The function u0 is assumed to satisfy

u0 is bounded and continuous in Rd, (1.3)

m := inf
x∈Rd

u0(x) > 0. (1.4)

In Theorem 5.5 we prove that the Cauchy problem (1.1)-(1.2) has a unique
positive classical solution under the hypotheses (1.3)-(1.4). However, this solution
need not exist globally in time. For a given initial datum u0 we define

T (u0) = sup
{
t > 0; inf

x∈Rd
u(x, t) > 0

}
<∞

and call it the maximal existence time of the positive solution or the vanishing time
for (1.1)-(1.2). It is clear that

lim
t→T (u0)

inf
x∈Rd

u(x, t) = 0. (1.5)

If this happens, we say that the solution vanishes at t = T (u0). Usually, quenching
happens in the case p > 0 (see [18, 10, 11, 12]), while dead-core occurs when
−1 < p < 0 (see [15, 16, 14, 13, 27]). Here we study vanishing in the case p > −1.

Let v be a space independent solution of (1.1) with an initial datum m =
infx∈Rd u0(x). It is easily seen that the solution of the problem

v′ = −v−p, for t > 0, v(0) = m (1.6)
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is expressed by

v(t) = {(p+ 1)(T (m)− t)}1/(p+1) with T (m) =
mp+1

p+ 1
(1.7)

and
v(t) = {mp+1 − (p+ 1)t}1/(p+1). (1.8)

It is immediate that T (u0) ≥ T (m) by the comparison principle (see Theorem 5.3).
Next we study the case T (u0) = T (m) in the following theorem (see [3, 4, 6, 7, 9,
26, 27, 28].

Theorem 1.1. Assume (1.3)-(1.4). If there exists a sequence {ak}∞k=1 ⊂ Rd such
that

u0(x+ ak)→ m a.e. in Rd as k →∞, (1.9)
then T (u0) = T (m). Moreover, if u0 6≡ m, then the solution of (1.1)-(1.2) does not
vanish in Rd at t = T (m). (It vanishes only at space infinity.)

Remark 1.2. If u0 6≡ m, then |ak| → ∞ as k →∞.

The next theorem describes the behavior of the limit of the solution of (1.1)-(1.2)
as t→ T (m). We prove that u(x, T (m)) = limt→ T (m) u(x, t) for every x ∈ Rd (see
Lemma 3.1).

Theorem 1.3. Under the hypotheses as Theorem 1.1,

lim
k→∞

u(ak, T (m)) = 0.

Finally, we consider the relation between the form of initial data and the profile
of a vanishing solution at time T (m) (see [5]). In [20, §2b], for the equation

ut = ∆u+ f(u),

a subsolution and a supersolution of the form ϕ(T (m)−t+h(x, t)) were constructed.
Here we construct a subsolution and a supersolution of the form ϕ(T (m)−t+g(x, t))
where g(x, t) decays to zero at space infinity and

ϕ(s) = v(T (m)− s) = {(p+ 1)s}1/(p+1), (1.10)

to estimate the profile at the vanishing time for (1.1)-(1.2). It is clear that

ϕ′ = ϕ−p, ϕ(T (m)) = m, lim
s→0

ϕ(s) = 0. (1.11)

Let ψ be a positive function satisfying the following conditions:

ψ(x) is bounded and continuous in Rd, (1.12)

ψ(x) > 0 for x ∈ Rd, (1.13)

there exists a constant C1 > 0 such that

sup
x∈Rd

[
inf

y∈B(0,1)

{
sup

z∈B(y,1)

ψ(x)
ψ(x+ z)

}]
≤ C1, (1.14)

and there exist constants a ∈ (0, 1/(4T (m))) and C2 > 0 such that

sup
(x,y)∈Rd×Rd

ψ(x− y)
ψ(x)ea|y|2

≤ C2. (1.15)

Here B(x, r) denotes the open ball of radius r centered at x.
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Theorem 1.4. Let the hypotheses in Theorem 1.1 hold. If ψ satisfies (1.12)-(1.15),
and

CIψ(x) ≤ up+1
0 (x)−mp+1 ≤ CIIψ(x) (1.16)

for some constants CI > 0 and CII , then there exist constants

C = C(C1, C2, a, T (m), CI) > 0 and C ′ = C ′(C1, C2, a, T (m), CII) > 0 (1.17)

such that the solution to (1.1)-(1.2) satisfies

Cψ1/(p+1)(x) ≤ u(x, T (m)) ≤ C ′ψ1/(p+1)(x).

Remark 1.5. Theorem 1.4, we may be restated as follows. If

up+1
0 (x)−mp+1 ≥ CIψ(x) (or ≤ CIIψ(x)),

for some constant CI > 0 (or CII > 0), then there exists a constant C > 0 (or
C ′ > 0) such that the solution of (1.1)-(1.2) satisfies

u(x, T (m)) ≥ C{ψ(x)}1/(p+1) (or ≤ C ′{ψ(x)}1/(p+1)).

If ψ is a positive constant, then it satisfies (1.12)-(1.15), and the initial datum
with this ψ satisfies (1.16). However, it does not satisfy the hypothesis of Theorem
1.1. In fact, the solution of (1.1)-(1.2) with such an initial datum does not vanish
at t = T (m). We shall show examples of ψ satisfying these hypothesis.

Example 1.6. Let f satisfy

f(r) = (r2 + 1)−b/2, f(r) = e−br or f(r) = {log(r + e)}−b for r ≥ 0 and b > 0.
(1.18)

Assume that ψ(x) satisfies one of the following three conditions:
(1) ψ(x) = f(|x|).
(2) ψ(x) = Θ(x/|x|) + {1−Θ((x/|x|)}f̃(|x|), where Θ(θ) ∈ C∞(Sd−1) satisfies

Θ(θ)


= 0, θ ∈ Sd−1 ∩B(θ0, r1),
∈ (0, 1), θ ∈ Sd−1 ∩B(θ0, r2)\B(θ0, r1),
= 1, θ ∈ Sd−1\B(θ0, r2)

with some direction θ0 ∈ Sd−1, some constants r1, r2 satisfying 0 < r1 < r2

and

f̃(r) =

{
1, r ∈ [0, 1),
f(r − 1), r ≥ 1.

(3) ψ(x) = infi∈N f(max{0, |ri| − |x − ai|}) with the sequence {ai}∞i=1 ⊂ Rd
and {rn}∞i=1 ∈ R+ satisfying limi→∞ |ai| =∞, r1 < r2 < . . .→∞.

Then ψ(x) satisfies (1.12)–(1.15). Moreover the solution of (1.1)-(1.2) with the u0

satisfying (1.16) vanishes only at space infinity at t = T (u0). Here Sd−1 denotes
the (d− 1)-dimensional unit sphere and B does the closure of B.

This article is organized as follows. In Section 2 we prove Theorem 1.1. Section
3 is devoted to the proof of Theorem 1.3. The proof of Theorem 1.4 will be given in
Section 4. In Section 5 (Appendix A) we show the existence and the uniqueness for
the classical solution (1.1)-(1.2) with the initial data satisfying (1.3)-(1.4) (Theorem
5.5), and we also prove the comparison principle of the problem (Theorem 5.3). In
the last section (Appendix B), we will show Lemma 3.1 about the existence and
the regularity for the solution at t = T (m).
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2. Vanishing only at space infinity

In this section we prove Theorem 1.1. First, we show that T (u0) = T (m) (see
also [30, Theorem 1]).

Lemma 2.1. Assume (1.3)-(1.4). Let p > −1 and d ≥ 1. If there exist sequences
{ak}∞k=1 ⊂ Rd and {rk}∞k=1 satisfying 0 < r1 < r2 < . . .→∞ such that

lim
k→∞

‖u0 −m‖L∞(B(ak,rk)) = 0, (2.1)

then the solutions u and v of (1.1)-(1.2) with initial data u0 and m satisfy

lim
k→∞

‖u(·, t)− v(t)‖L∞(B(ak,rk/2)) = 0

for any t ∈ (0, T (m)). Moreover T (u0) = T (m).

Proof. Put ũ = u − v and ũ0 = u0 − m. By Theorem 5.3, ũ ≥ 0 for (x, t) ∈
Rd × (0, T (m)). It is clear that ũ satisfies

ũt = ∆ũ− (u−p − v−p), x ∈ Rd, 0 < t < T (m),

ũ(x, 0) = ũ0(x), x ∈ Rd.
(2.2)

From (2.1) for any ε > 0 there exists k0 > 0 such that for any k ≥ k0,

‖ũ0‖L∞(B(ak,rk)) < ε2. (2.3)

Take t0 ∈ (0, T (m)). By the mean value theorem we have

−(u−p − v−p) =
∫ 1

0

p{θu+ (1− θ)v}−p−1ũdθ ≤ max{0, p}{v(t0)}−p−1ũ

for t ∈ (0, t0). Put K = K(t0) = max{0, p}(v(t0))−p−1. Thus

ũt ≤ ∆ũ+Kũ, x ∈ Rd, 0 < t < t0,

ũ(x, 0) = ũ0(x), x ∈ Rd.
The solution of

ūt = ∆ū+Kū, x ∈ Rd, 0 < t < t0,

ū(x, 0) = ũ0(x), x ∈ Rd

is a supersolution of (2.2). The solution ū is

ū(x, t) = eKt
∫

Rd
G(x− y, t)ũ0(y)dy

= eKt
(∫

Rd\B(x,rk/2)

+
∫
B(x,rk/2)

)
G(x− y, t)ũ0(y)dy

= I + II,

where G(x, t) is the Green kernel of the heat equation given by

G(x, t) =
1

(4πt)d/2
e−|x|

2/4t. (2.4)

From the definition of G we see that

I ≤ eKt0
∫

Rd\B(x,rk/2)

G(x− y, t)ũ0(y)dy

≤ eKt0‖ũ0‖L∞(Rd)

∫
Rd\B(0,rk/2)

G(y, t)dy <
ε

2

(2.5)
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for any k large enough, where B(x, r) denotes the open ball of radius r centered at
x. Note that y ∈ B(ak, rk) whenever x ∈ B(ak, rk/2) and y ∈ B(x, rk/2). Thus by
(2.3) we obtain

II ≤ eKt0
∫
B(x,rk/2)

G(x− y, t)ũ0(y)dy

≤ eKt0‖ũ0‖L∞(B(x,rk/2))

∫
B(x,rk/2)

G(x− y, t)dy

≤ eKt0‖ũ0‖L∞(B(ak,rk))

∫
Rd
G(x− y, t)dy < ε

2

(2.6)

for any x ∈ B(ak, rk/2) and any ε ∈ (0, e−Kt0/2) with k large enough. We thus
have

lim
k→∞

‖ū(·, t)‖L∞(B(ak,rk/2)) = 0, for t ∈ (0, t0).

Hence, by Theorem 5.3,

lim
k→∞

‖ũ(·, t)‖L∞(B(ak,rk/2)) = 0, for t ∈ (0, t0).

Since t0 ∈ (0, T (m)) is arbitrary,

lim
k→∞

‖ũ(·, t)‖L∞(B(ak,rk/2)) = 0, for t ∈ (0, T (m)). (2.7)

Next we show that T (u0) = T (m). Let us assume, to the contrary, that there
exists a constant L > 0 such that

inf
t∈(0,T (m))

[
inf
k∈N

{
ess supx∈B(ak,rk/2) u(x, t)

}]
≥ L. (2.8)

Since vt ≤ 0 and limt→T (m) v(t) = 0, there exists T0 ∈ [0, T (m)) such that

v(T0) ≤ L

3
.

From (2.7) there exists a constant k0 ≥ 0 such that

sup
k≥k0

‖u(·, T0)− v(T0)‖L∞(B(ak,rk/2)) ≤
L

3
.

From (2.8), we see that

sup
k≥k0
{‖u(·, T0)− v(T0)‖L∞(B(ak,rk/2))}

= sup
k≥k0

{
ess supx∈B(ak,rk/2) u(x, T0)− v(T0)

}
≥ L− L

3
=

2L
3
>
L

3
.

This is a contradiction. We thus conclude that

inf
t∈[0,T (m))

[
inf
k∈N

{
ess supx∈B(ak,rk/2) u(x, t)

}]
= 0 (2.9)

and T (u0) ≤ T (m). By Theorem 5.3, we see that T (u0) ≥ T (m). We thus obtain
T (u0) = T (m). �

The next lemma shows that the solution of (1.1)-(1.2) does not vanish in Rd
even at the vanishing time. The lemma is shown by using the argument in [22,
Lemma 2.3] (see also [30]).
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Lemma 2.2. Let u(x, t) be a solution of (1.1)-(1.2) in Rd × [0, T (m)) with m
defined in (1.4). Suppose that there exist t0 ∈ (0, T (m)), a ∈ Rd, r0 > 0 and θ > 1
such that

u(x, t) ≥ θϕ(T (m)− t) in |x− a| < r0, t0 ≤ t < T,

where ϕ is defined in (1.10). Then u does not vanish at t = T (m) in a neighborhood
of a.

Proof. For convenience we let T = T (m). We shall construct a suitable supersolu-
tion. Put ε > 0 and θ̃ = θ̃(ε) ∈ (1, θ) satisfy

θ̃ϕ(T − t0 + ε/2) ≤ θϕ(T − t0). (2.10)

Define
ω(x, t) = θ̃ϕ(T − t+ h(r)),

where r = |x− a| and

h(r) = ε
(1 + cos πrr0

2

)
= ε
{

cos
( πr

2r0

)}2

.

Thus, from (1.10) and (1.11) we have

ωt −∆ω + ω−p = −θ̃ϕ′ − θ̃ϕ′∆h− θ̃ϕ′′|∇h|2 + (θ̃ϕ)−p

= θ̃(−ϕ−p)
{

1 + ∆h+
ϕ′′

ϕ′
|∇h|2 − θ̃−p−1

}
,

where

∇h = hr∇r = hr
x− a
r

,

∆h = div(∇h) = hrr +
d− 1
r

hr.

Since ϕ′′ = −pϕ−p−1ϕ′, there exists t0 ∈ (0, T ) such that for t ∈ (t0, T )

1 + ∆h+
ϕ′′

ϕ′
|∇h|2 − θ̃−p−1 = 1 + ∆h− pϕ−p−1|∇h|2 − θ̃−p−1

≥ (1− θ̃−p−1) + ∆h− p|∇h|2

(p+ 1)(T − t+ h)

≥ (1− θ̃−p−1) +
(
hrr +

d− 1
r

hr

)
− p|∇h|2

(p+ 1)h
.

(2.11)
We thus conclude that

ωt ≤ ∆ω − ω−p, |x− a| < r0, t0 ≤ t < T,

ω(x, t0) ≤ u(x, t0), |x− a| < r0,

ω(x, t) ≤ u(x, t), |x− a| = r0, t0 ≤ t < T

(2.12)

for any ε > 0 sufficient small.
By Theorem 5.3, for x ∈ B(a, r0) and t ∈ [t0, T ) we have u(x, t) ≥ ω(x, t). Since

ϕ is an increasing function, we obtain

u(x, t) ≥ θ̃ϕ
(
T − t+ h

(r0

2
))

= θ̃ϕ
(
T − t+

ε

2
)

for (x, t) ∈ B(a, r0/2)× [t0, T ).

From (2.10), we see that

θ̃ϕ(T − t+ ε/2) ≤ θϕ(T − t) for t ∈ (t0, T ).



EJDE-2014/29 ON VANISHING AT SPACE INFINITY 7

Since
u(x, t) ≥ θϕ(T − t) for (x, t) ∈ B(a, r0/2)× [t0, T ),

we have
u(x, t) ≥ θ̃ϕ(T − t+

ε

2
) for (x, t) ∈ B(a, r0/2)× [t0, T )

and u does not vanish at t = T in B(a, r0/2). �

Next we show that the condition on u0 in Theorem 1.1 is equivalent to the one
in Lemma 2.1.

Lemma 2.3. Assume (1.3)-(1.4). Condition (1.9) is equivalent to condition (2.1)
for sequences {ak}∞k=1 ⊂ Rd and {rk}∞k=1 satisfying 0 < r1 < r2 < . . .→∞.

Proof. If (1.9) is assumed, since B(0, rk) ⊂ Rd for any k ∈ N, we see that

lim
k →∞

‖u0(x+ ak)−m‖L∞(B(0,rk)) = 0,

which gives (2.1).
Assuming that (2.1) holds, for x0 ∈ Rd we let k0 = k0(x0) > 0 be such that

B(x0, 1) ⊂ B(0, rk) for k ≥ k0. Since

lim
k→∞

‖u0 −m‖L∞(B(ak,rk)) = 0,

we have
u0(x+ ak)→ m a.e. in B(x0, 1) as k →∞.

Since x0 ∈ Rd is arbitrary, we obtain (1.9). �

Finally, we shall prove that the vanishing occurs only at space infinity by using
Lemma 2.2.

Proof of Theorem 1.1. Lemmas 2.1 and 2.3 yield T (u0) = T (m). Let T = T (u0) =
T (m). We need to show that for any a ∈ Rd there exist t0 ∈ (0, T ), r0 > 0 and
θ > 1 such that for x ∈ B(a, r0) and t ∈ [t0, T )

u(x, t) ≥ θϕ(T − t).
From the strong maximum principle (or Theorem 5.4), we obtain

u(x, t) > v(t) for (x, t) ∈ D × (0, T )

for any compact set D ⊂ Rd. We thus may let u0(x) > m for x ∈ B(a, r0) without
loss of generality. Let w(x, t) be a solution of

wt = ∆w, x ∈ B(a, r0), t > 0,

w(x, t) = 1, x ∈ ∂B(a, r0), t ≥ 0,

1 ≤ w(x, 0) ≤ u0(x)/m, x ∈ B(a, r0),

w(x, 0) 6≡ 1, x ∈ B(a, r0).

(2.13)

It is clear that vw ≤ u on ∂B(a, r0) × (0, T ) and B(a, r0) × {0}. From (2.13) we
obtain

(vw)t = −v−pw + v∆w ≤ −(vw)−p + ∆(vw).
Then for any a ∈ Rd and any r0 > 0, vw is a subsolution of (1.1)-(1.2) in B(a, r0).
Thus, by the strong maximum principle, for any (x, t) ∈ B(a, r0) × (0, T ), we see
that w(x, t) > 1. In particular, for any r̃0 ∈ (0, r0) there exist θ > 1 and t0 ∈ (0, T )
such that

w(x, t) ≥ θ, |x− a| < r̃0, t0 ≤ t < T.
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This implies
u(x, t) ≥ θϕ(T − t), |x− a| < r̃0, t0 ≤ t < T

by the comparison principle. By Lemma 2.2, u does not vanish in a neighborhood
of a. Since a ∈ Rd is arbitrary, it does not do in Rd. �

3. Behavior at vanishing time

In this section we prove Theorem 1.3. The proof for the theorem uses the argu-
ment of the proof in [30, Theorem 3]. First we introduce a lemma on the existence
for the solution to (1.1)-(1.2) at t = T (m).

Lemma 3.1. Assume the same hypotheses as in Theorem 1.1. Then u(x, T ) =
limt→T u(x, t) exists for any x ∈ Rd with T = T (m). Moreover u(x, T ) ∈ C∞(Rd).

The proof of this lemma shall be shown in Appendix B. Now we proceed with
the proof of Theorem 1.3.

Proof of Theorem 2.2. It is clear in the case u0 ≡ m. We should only consider the
case u0 6≡ m. Let {rk}∞k=1 be as defined in Lemma 2.1. Let ε > 0 be sufficiently
small so that ε < b−m, where b = supx∈Rd u0(x). Let

uk,ε0 (x) =


m+ ε, |x− ak| < rk − 1,
(b−m− ε)(|x− ak| − rk) + b, rk − 1 ≤ |x− ak| < rk,

b, |x− ak| ≥ rk,
(3.1)

and uk,ε, vε be solutions of (1.1)-(1.2) with initial data uk,ε0 and m + ε. We write
T ε = T (m+ ε) for simplicity.

From Lemma 2.1 for any ε > 0 there exists a natural number k0 ∈ N such that
for any k > k0, if x ∈ B(ak, rk/2), t ∈ (0, T ε), then

vε(t) + ε ≥ uk,ε(x, t). (3.2)

By the comparison principle (see Theorem 5.3) for any x ∈ Rd and any t ∈ (0, T ε),

uk,ε(x, t) ≥ u(x, t). (3.3)

Since T (m) < T ε, by Lemma 3.1, (3.2) and (3.3), for any ε > 0 there exists
k0 = k0(ε) ∈ N such that for any k > k0

vε(T (m)) + ε ≥ u(ak, T (m)). (3.4)

Since ε > 0 can be chosen arbitrarily small and limε→0 v
ε(T (m)) = 0, (3.4) implies

lim
k→∞

u(ak, T (m)) = 0.

�

4. Profile at vanishing

To prove Theorem 1.4, we construct a subsolution and a supersolution of the
form ϕ(T − t + g(x, t)) with T = T (m), as we have explained before. This is a
modification of the method employed in [20] and [29] to study blow-up profile for
a semilinear heat equation. Let

gγα,β(x, t) = gγ,ψα,β (x, t) =
∫

Rd
Gγα,β(x− y, t)ψ(y)dy, (4.1)
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where

Gγα,β(x, t) =
|x|β

(t+ γ)α−d/2
G(x, t+ γ) =

|x|β

(t+ γ)α
exp

(
− |x|2

4(t+ γ)

)
with α ∈ R, β ≥ 0, γ > 0 are constants (see [5]). Note that gγα,β also may be
expressed as

gγα,β(x, t) =
∫

Rd
Gγα,β(y, t)ψ(x− y)dy.

It is easily seen that:

|∇gγα,0| ≤
√
dgγα+1,1

2
, (4.2)

∆gγα,0 =
gγα+2,2

4
−
dgγα+1,0

2
, (4.3)

∂tg
γ
α,0 =

gγα+2,2

4
− αgγα+1,0, (4.4)

gγα,β(x, t) =
gγ0,β

(t+ γ)α
. (4.5)

Before proving Theorem 1.4 we prove the next two propositions.

Proposition 4.1. Assume that p > −1. Let ψ be a positive bounded continuous
function satisfying (1.12)-(1.15) and

γ ∈
(

0,
1
4a
− T

)
. (4.6)

Then for any C > 0 the function

W (x, t) = ϕ(T − t+ Cgγ−α,0(x, t)) (4.7)

is a supersolution of (1.1) in Rd× (0, T ) for α satisfies α ≥ α1 with some constant
α1 = α1(p, d, C1, C2, a, T, γ) > 0, where ϕ is defined in (1.10).

Proposition 4.2. Assume the same hypotheses as in Proposition 4.1. Then, for
each constant C > 0, the function

w(x, t) = ϕ(T − t+ Cgγα,0(x, t)) (4.8)

is a subsolution of (1.1) in Rd × (0, T ) provided that α satisfies α ≥ α2 with some
constant α2 = α2(p, d, C1, C2, a, T, γ) > 0.

Before proving Propositions 4.1 and 4.2, we need one lemma on estimates for
gγ0,β .

Lemma 4.3. Assume the same hypotheses as in Propositions 4.1 and 4.2. Then for
β = 0, 1, 2, there exist constants C3 = C3(C1, γ) > 0 and C4 = C4(C2, a, T, γ) > 0
such that

C3ψ(x) ≤ gγ0,β(x, t) ≤ C4ψ(x) in Rd × [0, T ],

where C1 and C2 are in (1.14) and (1.15), respectively.

Proof. First we show gγ0,β(x, t) ≥ C3ψ(x) with some C3 > 0. From (1.14) we see
that there exists a vector q ∈ B(0,min{1, 2/

√
d}) such that

ψ(x) ≤ 2C1 inf
z∈B(q+x,1)

ψ(z) (4.9)
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for each x ∈ Rd. If (4.9) holds, then we see that

gγ0,β(x, t) ≥ inf
z∈B(q+x,1)

ψ(z)×
∫
B(q,1)

|y|β exp
(
− |y|

2

4γ

)
dy

≥ ψ(x)
1

2C1

∫
B(q,1)

|y|β exp
(
− |y|

2

4γ

)
dy.

Since |y|β exp(−|y|2/4γ) is radially symmetric and |q| < 2/
√
d, we have∫

B(q,1)

|y|β exp
(
− |y|

2

4γ

)
dy =

∫
B(q̃,1)

|y|β exp
(
− |y|

2

4γ

)
dy

≥
∫
B(0,1)∩[0,1]d

|y|β exp
(
− |y|

2

4γ

)
dy,

where q̃ =
( |q|√

d
, |q|√

d
, . . . , |q|√

d

)
. We thus obtain

gγ0,β(x, t) ≥ ψ(x)
1

2C1

∫
B(0,1)∩[0,1]d

|y|β exp
(
− |y|

2

4γ

)
dy

≥ ψ(x)
1

2d+1C1

∫
B(0,1)

|y|β exp
(
− |y|

2

4γ

)
dy.

Let

C3 = min
β=0,1,2

2−1−d

C1

∫
B(0,1)

|y|β exp
(
− |y|

2

4γ

)
dy

=
2−1−d

C1

∫
B(0,1)

|y|2 exp
(
− |y|

2

4γ

)
dy.

(4.10)

Then we have
gγ0,β(x, t) ≥ C3ψ(x)

for any x ∈ Rd.
We next prove gγ0,β(x, t) ≤ C4ψ(x) with some C4 > 0. In addition to satisfying

(4.6) we may assume that
1

4(T + γ)
− a > 0.

We thus see that from (1.15),

gγ0,β(x, t) ≤ C2ψ(x)
∫

Rd
|y|β exp

{
−
( 1

4(T + γ)
− a
)
|y|2
}
dy

for t ∈ [0, T ]. By putting

C4 = max
β=0,1,2

C2

∫
Rd
|y|β exp

{
−
( 1

4(T + γ)
− a
)
|y|2
}
dy,

we obtain gγ0,β(x, t) ≤ C4ψ(x) for t ∈ [0, T ]. �

Proof of Proposition 4.1. By a direct calculation we have

Wt −∆W +W−p = −ϕ′ + Cϕ′∂tg
γ
−α,0

− Cϕ′∆gγ−α,0 − |C∇g
γ
−α,0|2ϕ′′ + ϕ−p.

(4.11)

From (4.3)-(4.4) we have

(∂t −∆)gγ−α,0 =
(
α+

d

2

)
gγ−α+1,0. (4.12)
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Since

ϕ′ = ϕ−p, (4.13)

ϕ′′ = −pϕ−2p−1 (4.14)

and
ϕp+1 = (p+ 1)(T − t+ Cgγ−α,0) ≥ (p+ 1)(Cgγ−α,0),

we obtain

|C∇gγ−α,0|2ϕ′′ ≤
C|p||∇gγ−α,0|2

(p+ 1)gγ−α,0
ϕ′. (4.15)

Lemma 4.3, (4.2) and (4.5) yield

|C∇gγ−α,0|2ϕ′′ ≤
C|p|d(gγ−α+1,1)2

4(p+ 1)gγ−α,0
ϕ′ ≤ C|p|dC2

4 (t+ γ)α−2ψ

4C3(p+ 1)
ϕ′. (4.16)

From (4.13), (4.12), (4.16) and Lemma 4.3, we have

Wt −∆W +W−p ≥
{
C3(t+ γ)α−1

(
α+

d

2

)
− C|p|dC2

4 (t+ γ)α−2

4C3(p+ 1)

}
ϕ′

≥
{
C3γ

(
α+

d

2

)
− C|p|dC2

4

4C3(p+ 1)

}
(t+ γ)α−2ϕ′.

If α satisfies

α ≥ α1 ≡ max
{ CC2

4 |p|d
4C2

3γ(p+ 1)
− d

2
,

1
2

}
> 0, (4.17)

then W is a supersolution of (1.1) in Rd × (0, T ). �

Proof of Proposition 4.2. As before, for ϕ = ϕ(T − t+ Cgγα,0(x, t)) we have

wt −∆w + w−p = −ϕ′ + Cϕ′∂tgα,0 − Cϕ′∆gγα,0 − |C∇g
γ
α,0|2ϕ′′ + ϕ−p

≤
C∂tg

γ
α,0

ϕp
+
C|∆gγα,0|

ϕp
+
|Cp∇gγα,0|2

ϕ2p+1

(4.18)

by (4.13)-(4.14). It is easily seen that

ϕp+1 = (p+ 1)(T − t+ Cgγα,0) ≥ (p+ 1)(Cgγα,0). (4.19)

From Lemma 4.3, (4.2), (4.5) and (4.19), it follows that∣∣∇gγα,0
ϕp+1

∣∣ ≤ √
dgγ0,1

2(p+ 1)(t+ γ)gγ0,0
≤ C4

√
d

2γ(p+ 1)CC3
. (4.20)

Substituting (4.20) for (4.18), and using (4.3)-(4.5), we have

wt −∆w + w−p

≤ C(p+ 1)
(t+ γ)α+2ϕ

[
gγ0,2 + (t+ γ)

{
− 2αgγ0,0 + gγ0,0 +

C4

√
d|p|gγ0,1

4C3(p+ 1)

}]
≤ C(p+ 1)ψ

(t+ γ)α+2ϕ

[
− 2αγC3 + C4

{
1 + (T + γ)

(
1 +

C4d|p|
4C3(p+ 1)

)}]
in Rd × [0, T ]. If α satisfies

α ≥ α2 ≡
C4

2γC3

{
1 + (T + γ)

(
1 +

C4d|p|
4C3(p+ 1)

)}
, (4.21)

then w is a subsolution of (1.1) in Rd × (0, T ). �
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Proof of Theorem 1.4. Let c1 = c1(C2, a, γ, α) and c2 = c2(C1, γ, α) be positive
constants such that

gγα,0(x, 0) ≤ c1ψ(x), gγ−α,0(x, 0) ≥ c2ψ(x)

with α > 0 as in Lemma 4.3 and (4.5). Hence

mp+1 + Clg
γ
α,0(x, 0) ≤ up+1

0 (x) ≤ mp+1 + Chg
γ
−α,0(x, 0)

with Cl = CI/c1 and Ch = CII/c2.
Since mp+1 = (p+ 1)T by (1.7), we have

w(x, 0) = {(p+ 1)T + Clg
γ
α,0(x, 0)}1/(p+1) ≤ u0(x)

≤ {(p+ 1)T + Chg
γ
−α,0(x, 0)}1/(p+1) = W (x, 0),

where W and w are defined in (4.7) with C = Ch/(p + 1) and (4.8) with C =
Cl/(p + 1). Propositions 4.1, 4.2 and the comparison principle (see Theorem 5.3)
yield

w(x, t) ≤ u(x, t) ≤W (x, t) in Rd × [0, T ).

We thereby get

{Clgγα,0(x, T )}1/(p+1) ≤ u(x, T ) ≤ {Chgγ−α,0(x, T )}1/(p+1).

Taking C = (ClC3)1/(p+1) and C ′ = (ChC4)1/(p+1), by Lemma 4.3

Cψ1/(p+1)(x) ≤ u(x, T ) ≤ C ′ψ1/(p+1)(x).

Choosing

γ =
1
8a
− T

2
, α = max{α1, α2}

with α1 in (4.17) and α2 as in (4.21), we see that C depends only on C1, C2, a, T ,
CI , and C ′ does only on C1, C2, a, T , CII . �

5. Appendix A: Existence and uniqueness of the classical solution
and comparison principle

In this section we prove that Cauchy problem (1.1)-(1.2) with conditions (1.3)-
(1.4) has a unique positive classical solution, as well as a comparison principle.

First, we consider the local existence and uniqueness of the classical solution for
the problem in time. We know that the solution of (1.1)-(1.2) satisfies the integral
equation:

u(x, t) = et∆u0(x)−
∫ t

0

e(t−s)∆u−p(x, s)ds, (5.1)

where

et∆ξ(x) =
∫

Rd
G(x− y, t)ξ(y)dy (5.2)

with G(x, t) defined in (2.4) and a measurable function ξ. The function Ξ(x, t) =
et∆ξ(x) is the unique solution to

Ξt = ∆Ξ, x ∈ Rd, t > 0,

Ξ(x, 0) = ξ(x), x ∈ Rd.

Now we consider the existence in time of a local solutions to (5.1).
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Lemma 5.1. Assume that u is the solution of (5.1), where p > −1, p 6= 0, u0 is
bounded continuous, infx∈Rd u0(x) = m > 0 and supx∈Rd u0(x) = M < ∞. Then
the solution satisfying u ≥ m/q exists in Rd × (0, T ) with

T < Tm,M (q) ≡

{
min{q − 1, 1

p}(
m
q )p+1, p > 0,

min{(q − 1)Mp, 1
|p| (

m
q )p}mq , −1 < p < 0,

(5.3)

where q = q̄ = q̄(m,M) is a positive solution of

q − 1 =
1
p
, p > 0,

(q − 1)Mp =
1
|p|

(
m

q
)p, −1 < q < 0.

(5.4)

Moreover, the solution is a unique classical solution of (1.1)-(1.2).

Proof. First we show the existence and the uniqueness of the local solution of (5.1)
by a fixed-point theorem. Define

Ψ(u) = et∆u0(x)−
∫ t

0

e(t−s)∆u−p(x, s)ds. (5.5)

Set
ET = {u : [0, T ]→ L∞(Rd); ‖u‖ET <∞}

with the norm
‖u‖ET = sup

t∈[0,T ]

‖u(·, t)‖L∞(Rd).

Define
BMm/q =

{
u ∈ ET ; inf

(x,t)∈Rd×[0,T ]
u(x, t) ≥ m/q, ‖u‖ET ≤M

}
.

with some q > 1. Let u ∈ BMm/q. Then, for p > 0,

Ψ(u) = et∆u0(x)−
∫ t

0

e(t−s)∆u−p(x, s)ds

≥ m−
∫ T

0

( q
m

)p
ds = m−

( q
m

)p
T,

and for −1 < p < 0,

Ψ(u) ≥ m−
∫ T

0

M−pds = m−M−pT.

If T satisfies (5.3), then Ψ(u) > m/q and Ψ is a mapping from BMm/q to itself.
Rest of the proof we should show that

‖Ψ(u1)−Ψ(u2)‖ET ≤ C‖u1 − u2‖ET
with some C ∈ (0, 1). For u1, u2 ∈ BMm/q,

|Ψ(u1)−Ψ(u2)| ≤
∫ t

0

e(t−s)∆|(u1)−p(x, s)− (u2)−p(x, s)|ds.

By the mean value theorem

u−p1 − u−p2 = −
∫ 1

0

p{θu1 + (1− θ)u2}−p−1dθ(u1 − u2).
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Since u1, u2 ≥ m/q, we obtain

‖Ψ(u1)−Ψ(u2)‖ET ≤ T |p|
( q
m

)p+1‖u1 − u2‖ET < C‖u1 − u2‖ET

with C ∈ (0, 1) for

T <
mp+1

|p|qp+1
. (5.6)

We thus see that if T satisfies (5.3) and (5.6), then Ψ is a contraction map in BMm/q
and have one fixed point in BMm/q for (x, t) ∈ Rd × (0, T ). Thus (5.1) has a unique
solution in Rd × (0, T ). Since q > 1 is arbitrary, we may let q = q̄.

To complete the proof of Lemma 5.1, let u(x, t) be the nonnegative and bounded
solution of (5.1) that has been obtained in Rd × [0, T ) for some T > 0. By (5.1),
u(x, t) is continuous in Rd×[0, T ). Moreover, by considering the difference quotients
{u(x1, x2, . . . , xj−1, xj + h, xj+1, . . . , xd, t)− u(x, t)}/h with h→ 0, one easily sees
that ∂u(x, t)/∂xj is locally bounded in Rd × [τ, T ) for j = 1, 2, . . . , d and any
τ such that 0 < τ < T . Then, since u ≥ m/q > 0, u−p are locally Hölder
continuous functions in space uniformly with respect to time. It then follows from
the representation formula (5.1) that u is a classical solution of (1.1)-(1.2) in Rd ×
(0, T ) with (1.3)-(1.4) (see [1, Chapter 1, Theorem 10]). �

Remark 5.2. Note that Tm,M (q) defined in (5.3) has a maximum number at
q = q̄. For p > 0 it is clear that q̄ = (p+ 1)/p. On the other hand, for −1 < p < 0,
q̄ = limn→∞ qn (<∞) with the sequence {qn}∞n=1 satisfying

q1 = 1, qn+1 = 1 +
1
|p|
(M
m

)−p
q−pn for n ∈ N.

Next, we recall a comparison result for the solution existing locally in time.

Theorem 5.3. Let D ⊂ Rd. Assume u3(x, t), u4(x, t) ∈ C2,1(D × (0, T )) satisfy
the partial differential inequalities

(u3)t ≥ ∆u3 − u−p3 , (5.7)

(u4)t ≤ ∆u4 − u−p4 (5.8)

with u3(x, 0) = u3,0(x) and u4(x, 0) = u4,0(x), where u3,0 and u4,0 are continuous
in D. Assume that u4 is bounded in D× [0, T ′) for any T ′ < T . Assume that u3 is
bounded from below in D × [0, T ′)} for any T ′ < T . For D 6= Rd, if u3,0 ≥ u4,0 in
D and u3 ≥ u4 on ∂D, then u3 ≥ u4 in D×(0, T ). On the other hand, for D = Rd,
if u3,0 ≥ u4,0 in Rd, then u3 ≥ u4 in Rd × (0, T ).

Proof. The proof is based on an maximum principle for a parabolic equation (see
[23]) and is standard (see [17], [2], [25] and [8]). �

Next we introduce more strong result for the comparison principle.

Theorem 5.4. Assume the same hypotheses as in Theorem 5.3 with D = Rd. If
u3,0 6≡ u4,0 in Rd, then u3 > u4 in Rd × (0, T ).

Proof. Let w̃ = u3−u4. From Theorem 5.3, we see that w̃ ≥ 0. For t ∈ [0, T ′) with
T ′ < T ,

w̃t = ∆w̃ − u−p3 − u−p4 = ∆w̃ + b(x, t)w̃
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with b defined by

b(x, t) =
∫ 1

0

p{u3(x, t) + θ(u4(x, t)− u3(x, t))}−p−1dθ. (5.9)

Note that b(x, t) is bounded in Rd × (0, T ′). Put b̃(t) = infx∈Rd b(x, t) and

W̃ (x, t) = exp
{
−
∫ t

0

b̃(s)ds
}
w̃(x, s).

Since b(x, t) ≥ b̃(t) and W̃ ≥ 0, we see that

W̃t = ∆W̃ + (b(x, t)− b̃(t))W̃ ≥ ∆W̃

and
W̃ (x, 0) = u0(x)−m (≥ 0, 6≡ 0). (5.10)

By the basic comparison principle and (5.10), we get

W̃ (x, t) ≥ et∆(u0(x)−m) > 0 in Rd × (0, T ′),

where et∆ is defined in (5.2). Since T ′ < T is arbitrary, we obtain

W̃ (x, t) > 0 in Rd × (0, T ).

We thus see that

w̃(x, t) > 0 in Rd × (0, T ),

u3(x, t) > u4(x, t) in Rd × (0, T ).

�

Finally, we show the existence of solutions for problem (1.1)-(1.2) in Rd ×
(0, T (m)).

Theorem 5.5. Problem (1.1)-(1.2) with initial data satisfying (1.3)–(1.4) has a
unique classical solution in Rd × (0, T (m)).

Proof. It is clear for the case p = 0 and the case u0 is a constant (in the case
m = M). We consider the other case such as

p > −1, p 6= 0, (5.11)

m < M, (5.12)

where m = infx∈Rd u0(x) and M = supx∈Rd u0(x).
From Lemma 5.1, (5.3), (5.4) and Remark 5.2, the problem has a unique classical

solution in Rd × (0, T1], where

T1 =

{
(1− ε)(q̃ − 1)

(
m
q̃

)p+1
, p > 0,

q̃−1
q̃ Mpm, −1 < p < 0,

(5.13)

with
q̃ = 1 +

1
|p|

(5.14)

and some ε ∈ (0, 1). Note that the fact q̃ ≤ q̄ means T1 < Tm,M (q̃), where Tm,M
and q̄ are defined in (5.3) and (5.4).

Let vm(t) and vM (t) be solutions of (1.6) with initial data vm(0) = m and
vM (0) = M . Theorem 5.3 yields

vm(t) ≤ u(x, t) ≤ vM (t) in Rd × (0, T1]. (5.15)
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Let {mn}∞n=0 and {Mn}∞n=0 be such that m0 = m, M0 = M ,

mn+1 =

{
mn

{
1− pp(1−ε)

(p+1)p

}1/(p+1)
, p > 0,

mn

{
1−

(
mn
Mn

)−p 1+p
1−p
}1/(p+1)

, −1 < p < 0
(5.16)

and

Mn+1 =

{
Mn

{
1− pp(1−ε)

(p+1)p

(
mn
Mn

)p+1}1/(p+1)
, p > 0,

Mn

{
1− mn

Mn

1+p
1−p
}1/(p+1)

, −1 < p < 0.
(5.17)

Then, (1.8), (5.13) and (5.14) yield vm(T1) = m1 and vM (T1) = M1. Moreover,
from (5.15) we obtain m1 ≤ u(x, T1) ≤M1.

Next, we consider

(u1)t = ∆u1 − u−p1 , x ∈ Rd, t > 0,

u1(x, 0) = u(x, T1), x ∈ Rd.

By the same argument as above, we see that the problem has a unique classical
solution in Rd × (0, T2], where the sequence {Tn}∞n=1 is defined by

Tn =

{
(1− ε)(q̃ − 1)

(mn−1
q̃

)p+1
, p > 0,

q̃−1
q̃ Mp

n−1mn−1, −1 < p < 0
(5.18)

with q̃ defined in (5.14).
It is known that u1(x, t) = u(x, T1 + t). We thus see that (1.1)-(1.2) has a unique

classical solution in Rd × (0, T̃2] with

T̃n =
n∑
k=1

Tk for k ∈ N.

Moreover we have vm(T̃2) = m2, vM (T̃2) = M2 and m2 ≤ u(x, T̃2) ≤M2.
For n ∈ N, by using same argument as above n− 2 more times, we see that

(1.1)-(1.2) has a unique classical solution in Rd × (0, T̃n]. (5.19)

Moreover we have vm(T̃n) = mn, vM (T̃n) = Mn and mn ≤ u(x, T̃n) ≤ Mn. Note
that n ∈ N is arbitrary for these results.

Finally we should show that

lim
n→∞

T̃n = T (m). (5.20)

Since vm(t) is decay function with respect to t and vm(T̃n) = mn > 0 for any
n ∈ N, we only should prove

lim
n→∞

vm(T̃n) = lim
n→∞

mn = 0. (5.21)

Put µn = mn/Mn. From (5.12) we get

sup
n∈N

µn = sup
n∈N

vm(T̃n)
vM (T̃n)

≤ sup
t∈[0,T (m))

vm(t)
vM (t)

< 1. (5.22)

From (5.16) and (5.17) we see that

µn+1 =


µn

{
1− p

p(1−ε)
(p+1)p

1− p
p(1−ε)
(p+1)p µ

p+1
n

}1/(p+1)

, p > 0,

µn

{
1−µ−pn

1+p
1−p

1−µn 1+p
1−p

}1/(p+1)

, −1 < p < 0.
(5.23)
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Since {µn}∞n=0 is a decrasing sequence with respect to n, by the monotone con-
vergence theorem and (5.22) we have limn→∞ µn = b with some b ∈ [0, 1). We
cleam that limn→∞ µn = 0. By contraries, assume that limn→∞ µn = b > 0. Then
from (5.11) we obtain that b = 1 and a contradiction occurs. We thus obtain
limn→∞ µn = 0. This means (5.21) and (5.20). Since (5.19) holds for any n ∈ N,
(1.1)-(1.2) has a unique classical solution in Rd × (0, T (m)). �

6. Appendix B: Existence and regularity of the solution at t = T (m)

In this section we prove Lemma 3.1. Let T = T (m).

Proof of Lemma 3.1. From Theorem 1.1, for any a ∈ Rd and any R ∈ (0,
√
T ),

there exist constants C1 = C1(a,R) > 0 and C2 = C2(a,R) > C1 such that

C1 < u(x, t) < C2 for (x, t) ∈ Q(R), (6.1)

where Q(r) = Q(r, a) = B(a, r) × (T − r2, T ). Then there exists constant C3 =
C3(a,R, p) such that

‖u‖Lq(Q(R)) ≤ C3, ‖u−p‖Lq(Q(R)) ≤ C3.

From [19, Theorem 6.4.2], we have

‖u‖W 2,1
q (Q(r1)) ≤ C4

(
‖u−p‖Lq(Q(R)) + ‖u‖Lq(Q(R))

)
≤ C5

with constants q > (d + 2)/2, C4 = C4(d, q) < ∞, C5 = C5(a,R, p, d, q) < ∞, and
r1 = R/2. From [21, II, Lemma 3.3] we obtain

‖u‖Cα(Q(r1)) ≤ C6(‖u‖W 2,1
q (Q(r1)) + ‖u‖Lq(Q(r))) ≤ C7

with α ∈ (0, 1), C6 = C6(d, q, α) < ∞ and C7 = C7(a,R, p, d, q, α) < ∞. From
(6.1) we see that

‖u−p‖Cα(Q(r1)) ≤ C8

with C8 = C8(a,R, p, d, q, α) <∞. From [1, Chapter 3, Theorem 5] we get

‖u‖C2+α(Q(r2)) ≤ C9(‖u‖Cα(Q(r1)) + ‖u−p‖Cα(Q(r1))) ≤ C10 (6.2)

with r2 = r1/2 = R/4, C9 = C9(a,R, d, α) and C10 = C10(a,R, p, d, q, α).
Next put u1 = ∆u. Then we see that

(u1)t = ∆u1 + pu−p−1u1 − p(p+ 1)u−p−2|∇u|2.

From (6.1) and (6.2) we have

‖u1‖Cα(Q(r2)) ≤ C10,

‖pu−p−1u1 − p(p+ 1)u−p−2|∇u|2‖Cα(Q(r2)) ≤ C11

with C11 = C11(a,R, p, d, q, α). From [1] again,

‖u1‖C2+α(Q(r3)) = ‖u‖C4+α(Q(r3)) ≤ C12

with r3 = r2/2 = R/8 and C12 = C12(a,R, p, d, q, α).
Iterating this argument n− 1 times, we have

‖u‖C2n+2+α(Q(rn)) ≤ C13

with rn = R/2n and C13 = C13(a,R, p, d, q, α, n). We thus see that

∆nut(x, t) ≤ C14 for (x, t) ∈ Q(rn)
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with C14 = C14(a,R, p, d, q, n). By integrating ∆nut(a, t) from T − rn/2 to T with
respect to t and subtracting ∆nut(a, T − rn/2), we obtain ∆nu(a, T ). Thus we see
that ∆nu(a, T ) exists.

Since a ∈ Rd and n ∈ N are arbitrary, we obtain u(·, T ) ∈ C∞(Rd). �
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