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SOLVABILITY OF PERIODIC BOUNDARY-VALUE PROBLEMS
FOR SECOND-ORDER NONLINEAR DIFFERENTIAL

EQUATION INVOLVING FRACTIONAL DERIVATIVES

TAIYONG CHEN, WENBIN LIU

Abstract. This article concerns the existence of solutions to periodic boundary-

value problems for second-order nonlinear differential equation involving frac-

tional derivatives. Under certain linear growth condition of the nonlinearity,
we obtain solutions, by using coincidence degree theory. An example illustrates

our results.

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration
on an arbitrary order that can be noninteger. This subject, as old as the problem
of ordinary differential calculus, can go back to the times when Leibniz and New-
ton invented differential calculus. As is known to all, the problem for fractional
derivative was originally raised by Leibniz in a letter, dated September 30, 1695.

A fractional derivative arises from many physical processes, such as a non-
Markovian diffusion process with memory [22], charge transport in amorphous semi-
conductors [26], propagations of mechanical waves in viscoelastic media [19], etc.
Moreover, phenomena in electromagnetics, acoustics, viscoelasticity, electrochem-
istry and material science are also described by differential equations of fractional
order [9, 11, 12, 20, 23]. For instance, to describe the horizontal vibration of the
rigid thin plate with massless spring immersing vertically in ideal fluid, Torvik and
Bagley [28] introduced the well known fractional differential equation

Ax′′(t) +BD
3/2
t x(t) + Cx(t) = f(t).

Recently, fractional differential equations have been of great interest due to the
intensive development of the theory of fractional calculus itself and its applications.
For example, for fractional initial value problems, the existence and multiplicity of
solutions (or positive solutions) were discussed in [2, 8, 16, 17]. On the other
hand, for fractional boundary value problems, Agarwal et al. [1] considered a two-
point boundary value problem at nonresonance, and Bai [3] considered a m-point
boundary value problem at resonance. Moreover, for fractional periodic boundary
value problems, Belmekki et al [5] discussed the existence of periodic solutions, and
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Kaslik et al [14] discussed the no-existence of periodic solutions. For more articles
on fractional boundary value problems, see [4, 6, 7, 10, 13, 18, 27] and the references
therein.

In the present article, motivated by the works mentioned previously, we investi-
gate the existence of solutions for the periodic boundary-value problem (PBVP for
short)

x′′(t) = f(t, x(t), Dα
0+x(t)), t ∈ [0, 1],

x(0) = x(1), Dα
0+x(0) = Dα

0+x(1),
(1.1)

where 0 < α < 2 is a real number, Dα
0+ is a Caputo fractional derivative, and

f : [0, 1]× R2 → R is continuous.
The rest of this article is organized as follows. Section 2 contains some necessary

notation, definitions and lemmas. In Section 3, basing on the coincidence degree
theory of Mawhin [21], we establish a theorem on existence of solutions for PBVP
(1.1) under linear growth restriction of f . Finally, in Section 4, an example is given
to illustrate the main result.

2. Preliminaries

For the convenience of the reader, we present here some necessary basic knowl-
edge and definitions about fractional calculus theory, which can be found, for in-
stance, in [24, 25].

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0
of a function u : (0,+∞)→ R is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds,

provided that the right side integral is pointwise defined on (0,+∞).

Definition 2.2. The Caputo fractional derivative of order α > 0 of a continuous
function u : (0,+∞)→ R is given by

Dα
0+u(t) = In−α0+

dnu(t)
dtn

=
1

Γ(n− α)

∫ t

0

(t− s)n−α−1u(n)(s) ds,

where n is the smallest integer greater than or equal to α, provided that the right
side integral is pointwise defined on (0,+∞).

Lemma 2.3 ([15]). Let α > 0. Assume that u,Dα
0+u ∈ L(0, 1). Then the following

equality holds

Iα0+Dα
0+u(t) = u(t) + c0 + c1t+ · · ·+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, . . . , n−1, here n is the smallest integer greater than or equal
to α.

Now, we briefly recall some notation and an abstract existence result, which can
be found in [21].

Let X,Y be real Banach spaces, L : domL ⊂ X → Y be a Fredholm operator
with index zero, and P : X → X, Q : Y → Y be projectors such that

ImP = kerL, kerQ = ImL, X = kerL⊕ kerP, Y = ImL⊕ ImQ.

It follows that
L|domL∩kerP : domL ∩ kerP → ImL
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is invertible. We denote the inverse by KP .
If Ω is an open bounded subset of X such that domL ∩ Ω 6= ∅, then the map

N : X → Y will be called L-compact on Ω if QN(Ω) is bounded and KP (I−Q)N :
Ω→ X is compact.

Lemma 2.4 ([21]). Let L : domL ⊂ X → Y be a Fredholm operator of index zero
and N : X → Y be L-compact on Ω. Assume that the following conditions are
satisfied

(1) Lx 6= λNx for every (x, λ) ∈ [(domL \ kerL) ∩ ∂Ω]× (0, 1);
(2) Nx /∈ ImL for every x ∈ kerL ∩ ∂Ω;
(3) deg(QN |kerL,Ω ∩ kerL, 0) 6= 0, where Q : Y → Y is a projection such that

ImL = kerQ.

Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

In this article, we take Y = C[0, 1] with the norm ‖y‖∞ = maxt∈[0,1] |y(t)|, and
X = {x : x,Dα

0+x ∈ Y } with the norm ‖x‖X = max{‖x‖∞, ‖Dα
0+x‖∞}. By means

of the linear functional analysis theory, we can prove that X is a Banach space.
Define the operator L : domL ⊂ X → Y by

Lx = x′′, (2.1)

where

domL = {x ∈ X : x′′ ∈ Y, x(0) = x(1), Dα
0+x(0) = Dα

0+x(1)}.

Let N : X → Y be the Nemytskii operator

Nx(t) = f(t, x(t), Dα
0+x(t)), ∀t ∈ [0, 1]. (2.2)

Then PBVP (1.1) is equivalent to the operator equation

Lx = Nx, x ∈ domL.

From the definition of L, we can obtain that

kerL = {x ∈ X : x(t) = c, ∀t ∈ [0, 1], c ∈ R}, (2.3)

ImL =
{
y ∈ Y :

∫ 1

0

(1− s)1−αy(s) ds = 0
}
. (2.4)

Let us define the linear continuous projector operators P : X → X and Q : Y → Y
by

Px(t) = x(0), ∀t ∈ [0, 1],

Qy(t) = (2− α)
∫ 1

0

(1− s)1−αy(s) ds, ∀t ∈ [0, 1].

Obviously

ImP = kerL, kerQ = ImL, X = kerL⊕ kerP,

and the operator KP : ImL→ domL ∩ kerP can be written as

KP y(t) =
∫ t

0

(t− s)y(s) ds−
∫ 1

0

(1− s)y(s) ds · t, ∀t ∈ [0, 1].
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3. Existence result

In this section, a theorem on existence of solutions for PBVP (1.1) is given.

Theorem 3.1. Let f : [0, 1]× R2 → R be continuous. Assume that
(H1) there exist nonnegative functions a, b, c ∈ Y such that

|f(t, u, v)| ≤ a(t) + b(t)|u|+ c(t)|v|, ∀t ∈ [0, 1], (u, v) ∈ R2;

(H2) there exists a constant B > 0 such that either

uf(t, u, v) > 0, ∀t ∈ [0, 1], v ∈ R, |u| > B

or
uf(t, u, v) < 0, ∀t ∈ [0, 1], v ∈ R, |u| > B.

Then PBVP (1.1) has at least one solution, provided that

1
Γ(3− α)

( 2‖b‖∞
Γ(α+ 1)

+ ‖c‖∞
)
< 1. (3.1)

Next, we introduce some lemmas that are useful in what follows.

Lemma 3.2. Let L be defined by (2.1), then L is a Fredholm operator of index
zero.

Proof. For any y ∈ Y , we have

Q2y(t) = Qy(t)(2− α)
∫ 1

0

(1− s)1−α ds = Qy(t). (3.2)

Let y1 = y −Qy, then from (3.2) we obtain∫ 1

0

(1− s)1−αy1(s) ds =
∫ 1

0

(1− s)1−αy(s) ds−
∫ 1

0

(1− s)1−αQy(s) ds

=
1

2− α
Qy(t)− 1

2− α
Q2y(t) = 0,

which implies y1 ∈ ImL. Hence Y = ImL + ImQ. Since ImL ∩ ImQ = {0}, we
have

Y = ImL⊕ ImQ.

Thus,
dim kerL = dim ImQ = codim ImL = 1.

This means that L is a Fredholm operator of index zero. The proof is complete. �

Lemma 3.3. Let L be defined by (2.1) and N be defined by (2.2). Assume Ω ⊂ X
is an open bounded subset such that domL ∩ Ω 6= ∅, then N is L-compact on Ω.

Proof. By the continuity of f , we can show that QN(Ω) and KP (I −Q)N(Ω) are
bounded. Moreover, there exists a constant T > 0 such that |(I −Q)Nx| ≤ T for
all x ∈ Ω, t ∈ [0, 1]. Thus, in view of the Arzelà-Ascoli theorem, we need only prove
that KP (I −Q)N(Ω) ⊂ X is equicontinuous.

For 0 ≤ t1 < t2 ≤ 1, x ∈ Ω, we have

|KP (I −Q)Nx(t2)−KP (I −Q)Nx(t1)|

=
∣∣∣ ∫ t2

0

(t2 − s)(I −Q)Nx(s) ds−
∫ t1

0

(t1 − s)(I −Q)Nx(s) ds
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−
∫ 1

0

(1− s)(I −Q)Nx(s) ds · (t2 − t1)
∣∣∣

≤ T
[ ∫ t1

0

(t2 − t1) ds+
∫ t2

t1

(t2 − s) ds+
∫ 1

0

(1− s) ds · (t2 − t1)
]

=
T

2
(t22 − t21 + t2 − t1).

On the other hand, from the definition of Dα
0+ , one has

Dα
0+KP y(t) = I2−α

0+

d2

dt2
KP y(t) =

1
Γ(2− α)

∫ t

0

(t− s)1−αy(s) ds.

Thus, when 0 < α ≤ 1, we have

|Dα
0+KP (I −Q)Nx(t2)−Dα

0+KP (I −Q)Nx(t1)|

=
1

Γ(2− α)

∣∣∣ ∫ t2

0

(t2 − s)1−α(I −Q)Nx(s) ds

−
∫ t1

0

(t1 − s)1−α(I −Q)Nx(s) ds
∣∣∣

≤ T

Γ(2− α)

{∫ t1

0

[(t2 − s)1−α − (t1 − s)1−α] ds+
∫ t2

t1

(t2 − s)1−α ds
}

=
T

Γ(3− α)
(t2−α2 − t2−α1 ).

When 1 ≤ α < 2, we have

|Dα
0+KP (I −Q)Nx(t2)−Dα

0+KP (I −Q)Nx(t1)|

≤ T

Γ(2− α)

{∫ t1

0

[(t1 − s)1−α − (t2 − s)1−α] ds+
∫ t2

t1

(t2 − s)1−α ds
}

=
T

Γ(3− α)
[t2−α1 − t2−α2 + 2(t2 − t1)2−α]

≤ T

Γ(3− α)
[t2−α2 − t2−α1 + 2(t2 − t1)2−α].

Since t2 and t2−α are uniformly continuous on [0, 1], we obtain that KP (I −
Q)N(Ω) ⊂ Y and Dα

0+KP (I − Q)N(Ω) ⊂ Y are equicontinuous. Hence, KP (I −
Q)N : Ω→ X is compact. The proof is complete. �

Lemma 3.4. Suppose (H1), (H2) hold, then the set

Ω1 = {x ∈ domL \ kerL : Lx = λNx, λ ∈ (0, 1)}
is bounded.

Proof. Take x ∈ Ω1, then Lx = λNx and Nx ∈ ImL. By (2.4), we have∫ 1

0

(1− s)1−αf(s, x(s), Dα
0+x(s)) ds = 0.

Then, by the mean value theorem for integrals, there exists a constant ξ ∈ (0, 1)
such that f(ξ, x(ξ), Dα

0+x(ξ)) = 0. So, from (H2), we get |x(ξ)| ≤ B. By Lemma
2.3, one has

x(t) = x(ξ)− Iα0+Dα
0+x(t)|t=ξ + Iα0+Dα

0+x(t)
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= x(ξ)− 1
Γ(α)

∫ ξ

0

(ξ − s)α−1Dα
0+x(s) ds

+
1

Γ(α)

∫ t

0

(t− s)α−1Dα
0+x(s) ds.

Thus, we have

|x(t)| ≤ |x(ξ)|+ 2
Γ(α)

∫ 1

0

(1− s)α−1|Dα
0+x(s)| ds

≤ B +
2

Γ(α)
‖Dα

0+x‖∞
1
α

= B +
2

Γ(α+ 1)
‖Dα

0+x‖∞, ∀t ∈ [0, 1].

That is,

‖x‖∞ ≤ B +
2

Γ(α+ 1)
‖Dα

0+x‖∞. (3.3)

By Lx = λNx, we obtain

Dα
0+x(t) = I2−α

0+

d2x(t)
dt2

= λI2−α
0+ Nx(t)

=
λ

Γ(2− α)

∫ t

0

(t− s)1−αf(s, x(s), Dα
0+x(s)) ds.

So, from (H1), we have

|Dα
0+x(t)|

≤ 1
Γ(2− α)

∫ t

0

(t− s)1−α|f(s, x(s), Dα
0+x(s))| ds

≤ 1
Γ(2− α)

∫ t

0

(t− s)1−α(a(s) + b(s)|x(s)|+ c(s)|Dα
0+x(s)|) ds

≤ 1
Γ(2− α)

(‖a‖∞ + ‖b‖∞‖x‖∞ + ‖c‖∞‖Dα
0+x‖∞)

1
2− α

t2−α

≤ 1
Γ(3− α)

(‖a‖∞ + ‖b‖∞‖x‖∞ + ‖c‖∞‖Dα
0+x‖∞), ∀t ∈ [0, 1],

which, together with (3.3), yields

‖Dα
0+x‖∞ ≤

1
Γ(3− α)

[
‖a‖∞ +B‖b‖∞ +

( 2‖b‖∞
Γ(α+ 1)

+ ‖c‖∞
)
‖Dα

0+x‖∞
]
. (3.4)

In view of (3.1), from (3.4), we can see that there exists a constant M1 > 0 such
that

‖Dα
0+x‖∞ ≤M1. (3.5)

Thus, from (3.3), we get

‖x‖∞ ≤ B +
2M1

Γ(α+ 1)
:= M2. (3.6)

Combining (3.5) with (3.6), we have

‖x‖X = max{‖x‖∞, ‖Dα
0+x‖∞} ≤ max{M1,M2} := M.

Therefore, Ω1 is bounded. The proof is complete. �
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Lemma 3.5. Suppose (H2) holds, then the set Ω2 = {x ∈ kerL : Nx ∈ ImL} is
bounded.

Proof. For x ∈ Ω2, we have x(t) = c, c ∈ R and Nx ∈ ImL. Then∫ 1

0

(1− s)1−αf(s, c, 0) ds = 0,

which together with (H2) implies |c| ≤ B. Thus, we have

‖x‖X ≤ max{B, 0} = B.

Hence, Ω2 is bounded. The proof is complete. �

Lemma 3.6. Suppose the first part of (H2) holds, then the set

Ω3 = {x ∈ kerL : λx+ (1− λ)QNx = 0, λ ∈ [0, 1]}
is bounded.

Proof. For x ∈ Ω3, we have x(t) = c, c ∈ R and

λc+ (1− λ)(2− α)
∫ 1

0

(1− s)1−αf(s, c, 0) ds = 0. (3.7)

If λ = 0, then |c| ≤ B because of the first part of (H2). If λ ∈ (0, 1], we can also
obtain |c| ≤ B. Otherwise, if |c| > B, in view of the first part of (H2), one has

λc2 + (1− λ)(2− α)
∫ 1

0

(1− s)1−αcf(s, c, 0) ds > 0,

which contradicts (3.7). Therefore, Ω3 is bounded. The proof is complete. �

Remark 3.7. If the second part of (H2) holds, then the set

Ω′3 = {x ∈ kerL : −λx+ (1− λ)QNx = 0, λ ∈ [0, 1]}
is bounded.

Proof of Theorem 3.1. Set

Ω = {x ∈ X : ‖x‖X < max{M,B}+ 1}.
Obviously, Ω1∪Ω2∪Ω3 ⊂ Ω (or Ω1∪Ω2∪Ω′3 ⊂ Ω). It follows from Lemma 3.2 and
Lemma 3.3 that L (defined by (2.1)) is a Fredholm operator of index zero and N
(defined by (2.2)) is L-compact on Ω. By Lemma 3.4 and Lemma 3.5, the following
two conditions are satisfied

(1) Lx 6= λNx for every (x, λ) ∈ [(domL \ kerL) ∩ ∂Ω]× (0, 1);
(2) Nx /∈ ImL for every x ∈ kerL ∩ ∂Ω.

It remains verifying condition (3) of Lemma 2.4. To do that, let

H(x, λ) = ±λx+ (1− λ)QNx.

Based on Lemma 3.6 (or Remark 3.7), we have

H(x, λ) 6= 0, ∀x ∈ ∂Ω ∩ kerL.

Thus, by the homotopy property of degree, we have

deg(QN |kerL,Ω ∩ kerL, 0) = deg(H(·, 0),Ω ∩ kerL, 0)

= deg(H(·, 1),Ω ∩ kerL, 0)

= deg(±I,Ω ∩ kerL, 0) 6= 0.
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So that condition (3) of Lemma 2.4 is satisfied.
Consequently, by using Lemma 2.4, the operator equation Lx = Nx has at least

one solution in domL ∩ Ω. Namely, PBVP (1.1) has at least one solution in X.
The proof is complete. �

4. An example

To illustrate our main result, we consider the periodic boundary-value problem

x′′(t) = −2 +
1
2
x(t) + te−(D

3/2
0+

x(t))2 , t ∈ [0, 1],

x(0) = x(1), D
3/2
0+ x(0) = D

3/2
0+ x(1).

(4.1)

Corresponding to PBVP (1.1), we have α = 3/2 and

f(t, u, v) = −2 +
1
2
u+ te−v

2
.

Choose a(t) = 3, b(t) = 1/2, c(t) = 0, B = 4. By a simple calculation, we obtain
that ‖b‖∞ = 1/2, ‖c‖∞ = 0 and

uf(t, u, v) = u
[1
2

(u− 4) + te−v
2]
> 0, ∀t ∈ [0, 1], v ∈ R, |u| > 4,

1
Γ(3− 3

2 )

( 2× 1
2

Γ( 3
2 + 1)

+ 0
)
< 1.

Obviously, (4.1) satisfies all the assumptions of Theorem 3.1. Hence, it has at least
one solution.
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