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RELAXATION IN CONTROL SYSTEMS OF FRACTIONAL
SEMILINEAR EVOLUTION EQUATIONS

XIAOYOU LIU, XI FU

Abstract. We consider a control system described by fractional semilinear

evolution equations with a mixed multivalued control constraint whose values
are nonconvex closed sets. Along with the original system, we consider the

system in which the constraint on the control is the closed convex hull of the

original constraint. We obtain existence results for the control systems and
study relations between the solution sets of the two systems. An example is

given to illustrate the abstract results.

1. Introduction

Let J = [0, b] and 0 < α < 1. In this paper, we consider a control system
described by fractional semilinear evolution equations of the form

CDα
t x(t) = Ax(t) + h(t, x(t)) + g(t)u(t), t ∈ J,

x(0) = x0,
(1.1)

with the mixed nonconvex constraint on the control

u(t) ∈ U(t, x(t)) a.e. on J, (1.2)

where CDα
t is the Caputo fractional derivative of order α, A is the infinitesimal

generator of a strongly continuous semigroup {T (t), t ≥ 0} in a separable reflexive
Banach space X, g : J → L(Y,X) (L(Y,X) is the space of continuous linear
operators from Y into X), h : J ×X → X is a nonlinear function and U : J ×X →
2Y \{∅} is a multivalued map with closed values (not necessarily convex). The space
Y is a separable, reflexive Banach space modeling the control space.

Along with the constraint (1.2) on the control, we also consider the constraint

u(t) ∈ coU(t, x(t)) a.e. on J (1.3)

on the control. Here co stands for the closed convex hull of a set.
The solutions to the control systems considered in this paper are in the mild

sense and the precise definition will be given in Definition 2.5 below.
We denote by RU , T rU (RcoU , T rcoU ) the sets of all solutions, all admissible

trajectories of the control system (1.1), (1.2) (with the control system (1.1), (1.3),
respectively).
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The main results obtained in this paper are that: T rcoU is a compact set in
C(J,X) and the relaxation property

T rcoU = T rU (1.4)

holds, where the bar stands for the closure in C(J,X).
Recently, fractional calculus and differential equations have been proved to be

valuable tools in the modeling of many phenomena in various fields of science and
engineering. We can find its numerous applications in viscoelasticity, electrochem-
istry, control, porous media, electromagnetic, etc., see [7, 8, 10] for example. There
has been a great deal of interest in the existence of solutions of fractional differential
equations. One can see the monographs of Kilbas et al [12], Miller et al [18], the
survey of Agarwal et al [1, 2], Liu et al [14, 15] and the references therein.

Abstract fractional semilinear differential equations represent a class of fractional
partial differential equations. For the study of their existence results, we can refer to
Zhou and Jiao [31, 32], Wang and Zhou [29] and the references therein. For control
systems governed by fractional semilinear differential equations, many literatures
were devoted to give sufficient conditions for their (approximate) controllability and
optimal control theory. For instance, Kumar and Sukavanam [13], Sakthivel et al
[19, 20, 21, 22], Ganesh et al [6] (approximate controllability). Wang and Zhou [30]
(optimal control theory).

Relaxation property, such as (1.4), if true, has important ramifications in control
theory, since it implies that every trajectory of the convexified (full) system can be
approximated in C(J,X) norm, with arbitrary degree of accuracy, by trajectories
of the original system. There are many papers dealing with the verification of the
relaxation property for various classes of control systems, for instance, Tolstonogov
[23] of control systems of subdifferential type, Migórski [16, 17], Tolstonogov[24],
Tolstonogov et al [26], Denkowski et al [4] (c.f. Section 7.4) of nonlinear evolution
inclusions or equations.

In this paper, we study the relaxation property for control systems described by
a class of fractional semilinear evolution equations. Please note that the control
systems studied here are closed-loop systems (feedback control systems) while the
ones considered in papers related to this work cited above were concerned with
open-loop systems.

The rest of the paper is organized as follows: In section 2, we introduce some
useful preliminaries and give the assumptions on the data of our problems. Some
auxiliary results needed in the proof of the main results are given in section 3.
Section 4 deals with the existence of solutions for the control systems. The main
results are presented in section 5. An example and some concluding remarks are
given in sections 6.

2. Preliminaries and assumptions

Let J = [0, b] be the closed interval of the real line with the Lebesgue measure
µ and the σ-algebra Σ of µ measurable sets. The norm of the space X (or Y ) will
be denoted by ‖ · ‖X (or ‖ · ‖Y ). We denote by C(J,X) the space of all continuous
functions from J into X with the supnorm given by ‖x‖C = supt∈J ‖x(t)‖X for
x ∈ C(J,X). For any Banach space V , the symbol ω-V stands for V equipped
with the weak σ(V, V ∗) topology. The same notation will be used for subsets of V .
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In all other cases, we assume that V and its subsets are equipped with the strong
(normed) topology.

We first recall the following known definitions from the theory of fractional cal-
culus. For more details, please see [12, 18].

Definition 2.1. The fractional integral of order α with the lower limit zero for a
function f is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)
(t− s)1−α ds, t > 0, α > 0,

provided the right hand side is point-wise defined on [0,∞), where Γ(·) is the gamma
function.

Definition 2.2. The Riemann-Liouville derivative of order α with the lower limit
zero for a function f is defined as

LDαf(t) =
1

Γ(n− α)
dn

dtn

∫ t

0

f(s)
(t− s)α+1−n ds, t > 0, n− 1 < α < n.

Definition 2.3. The Caputo derivative of order α with the lower limit zero for a
function f is defined as

CDαf(t) = LDα
(
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n− 1 < α < n.

If f is an abstract function with values in X, then integrals which appear in
Definitions 2.1 and 2.2 are taken in Bochner’s sense.

We now proceed to some basic definitions and results from multivalued analysis.
For more details on multivalued analysis, see the books [3, 11].

We use the following symbols: Pf (Y ) is the set of all nonempty closed subsets
of Y , Pbf (Y ) is the set of all nonempty, closed and bounded subsets of Y .

On Pbf (Y ), we have a metric known as the “Hausdorff metric” and defined by

h(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
,

where d(x,C) is the distance from a point x to a set C. We say a multivalued map
is h-continuous if it is continuous in the Hausdorff metric h(·, ·).

We say that a multivalued map F : J → Pf (Y ) is measurable if F−1(E) = {t ∈
J : F (t)∩E 6= ∅} ∈ Σ for every closed set E ⊆ Y . If F : J ×X → Pf (Y ), then the
measurability of F means that F−1(E) ∈ Σ⊗ BX , where Σ⊗ BX is the σ-algebra
of subsets in J ×X generated by the sets A × B, A ∈ Σ, B ∈ BX , and BX is the
σ-algebra of the Borel sets in X.

Suppose V , Z are two Hausdorff topological spaces and F : V → 2Z\{∅}. We
say that F is lower semicontinuous in the sense of Vietoris (l.s.c. for short) at a
point x0 ∈ V , if for any open set W ⊆ Z, F (x0) ∩W 6= ∅, there is a neighborhood
O(x0) of x0 such that F (x) ∩ W 6= ∅ for all x ∈ O(x0). F is said to be upper
semicontinuous in the sense of Vietoris (u.s.c. for short) at a point x0 ∈ V , if for
any open set W ⊆ Z, F (x0) ⊆ W , there is a neighborhood O(x0) of x0 such that
F (x) ⊆ W for all x ∈ O(x0). For the properties of l.s.c and u.s.c, please refer to
the book [11].
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Besides the standard norm on Lq(J, Y ) (here Y is a separable, reflexive Banach
space ), 1 < q <∞, we also consider the so called weak norm

‖u(·)‖ω = sup
0≤t1≤t2≤b

∥∥∫ t2

t1

u(s)ds
∥∥
Y
, for u ∈ Lq(J, Y ). (2.1)

The space Lq(J, Y ) furnished with this norm will be denoted by Lqω(J, Y ). The
following result establishes a relation between convergence in ω-Lq(J, Y ) and con-
vergence in Lqω(J, Y ).

Lemma 2.4 ([24]). If a sequence {un}n≥1 ⊆ Lq(J, Y ) is bounded and converges to
u in Lqω(J, Y ), then it converges to u in ω-Lq(J, Y ).

We assume the following assumptions on the data of our problems in the whole
paper.

(H1) : The operator A generates a strongly continuous semigroup T (t), t ≥ 0 in
X, and there exists a constant MA ≥ 1 such that supt∈[0,∞) ‖T (t)‖ ≤MA.
For any t > 0, T (t) is compact.

(H2) The operator g : J → L(Y,X) is such that:
(1) the map t→ g(t)u is measurable for any u ∈ Y ;
(2) for a.e. t ∈ J ,

‖g(t)‖L(Y,X) ≤ d, with d > 0. (2.2)

(H3) The function h : J ×X → X satisfies the following:
(1) t→ h(t, x) is measurable for all x ∈ X;
(2) there exists a function l ∈ L∞(J,R+) such that for a.e. t ∈ J and all

x, y ∈ X,

‖h(t, x)− h(t, y)‖X ≤ l(t)‖x− y‖X ; (2.3)

(3) there exists a constant 0 < β < α such that for a.e. t ∈ J , and all
x ∈ X, ‖h(t, x)‖X ≤ a1(t) + c1‖x‖X , where a1 ∈ L1/β(J,R+) and
c1 > 0.

(H4) The multivalued map U : J ×X → Pf (Y ) is such that:
(1) for all x ∈ X, t→ U(t, x) is measurable;
(2) h(U(t, x), U(t, y)) ≤ k1(t)‖x− y‖X a.e. on J , with k1 ∈ L∞(J,R+);
(3) for a.e. t ∈ J , and all x ∈ X, ‖U(t, x)‖Y = sup{‖v‖Y : v ∈ U(t, x)} ≤

a2(t) + c2‖x‖X , where a2 ∈ L1/β(J,R+) and c2 > 0.

Definition 2.5 ([31, 32]). A pair of functions (x, u) is a solution (mild solution)
of the control system (1.1), (1.2), if x(0) = x0, x ∈ C(J,X) and there exists
u ∈ L1(J, Y ) such that u(t) ∈ U(t, x(t)) a.e. t ∈ J and

x(t) = Pα(t)x0 +
∫ t

0

(t− s)α−1Qα(t− s)
(
g(s)u(s) + h(s, x(s))

)
ds. (2.4)

A similar definition can be introduced for the system (1.1), (1.3). Here

Pα(t) =
∫ ∞

0

ξα(θ)T (tαθ)dθ, Qα(t) = α

∫ ∞
0

θξα(θ)T (tαθ)dθ,

ξα(θ) =
1
α
θ−1− 1

α$α

(
θ−

1
α

)
≥ 0,

$α(θ) =
1
π

∞∑
n=1

(−1)n−1θ−nα−1 Γ(nα+ 1)
n!

sin(nπα), θ ∈ (0,∞),
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and ξα is a probability density function defined on (0,∞); that is,

ξα(θ) ≥ 0, θ ∈ (0,∞),
∫ ∞

0

ξα(θ)dθ = 1.

It is not difficult to verify that∫ ∞
0

θξα(θ)dθ =
1

Γ(1 + α)
. (2.5)

Lemma 2.6 ([31, 32]). Let (H1) hold. Then the operators Pα and Qα have the
following properties:

(1) For any fixed t ≥ 0, Pα(t) and Qα(t) are linear and bounded operators, i.e.,
for any x ∈ X,

‖Pα(t)x‖X ≤MA‖x‖X , ‖Qα(t)x‖X ≤
αMA

Γ(1 + α)
‖x‖X ;

(2) {Pα(t), t ≥ 0} and {Qα(t), t ≥ 0} are strongly continuous;
(3) For every t > 0, Pα(t) and Qα(t) are compact operators.

The proof of the above lemma can be found in [31].

3. Auxiliary results

In this section, we shall give some auxiliary results needed in the proof of the
main results. We begin with the a prior estimation of the trajectory of the control
systems.

Lemma 3.1. For any admissible trajectory x of the control system (1.1), (1.3);
i.e., x ∈ T rcoU , there is a constant L such that

‖x‖C ≤ L. (3.1)

Proof. Let any x ∈ T rcoU . From Definition 2.5, we have that there exists a u(t) ∈
coU(t, x(t)) a.e. t ∈ J and

x(t) = Pα(t)x0 +
∫ t

0

(t− s)α−1Qα(t− s)
(
g(s)u(s) + h(s, x(s))

)
ds.

Then by Lemma 2.6, we obtain

‖x(t)‖X ≤MA‖x0‖X +
αMA

Γ(1 + α)

∫ t

0

(t− s)α−1‖h(s, x(s))‖Xds

+
αMA

Γ(1 + α)

∫ t

0

(t− s)α−1‖g(s)u(s)‖Xds.
(3.2)

From (H3)(2), (H3)(3) and the Hölder inequality, we have∫ t

0

(t− s)α−1‖h(s, x(s))‖Xds

≤
∫ t

0

(t− s)α−1‖h(s, x(s))− h(s, 0)‖Xds+
∫ t

0

(t− s)α−1‖h(s, 0)‖Xds

≤
∫ t

0

(t− s)α−1l(s)‖x(s)‖Xds+
∫ t

0

(t− s)α−1a1(s)ds

≤
[ 1− β
α− β

b
α−β
1−β

]1−β
‖a1‖L1/β(J) + ‖l‖L∞(J)

∫ t

0

(t− s)α−1‖x(s)‖Xds.

(3.3)
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Similarly, by (H2)(2) and (H4)(3), we obtain∫ t

0

(t− s)α−1‖g(s)u(s)‖Xds

≤ d
∫ t

0

(t− s)α−1
(
a2(s) + c2‖x(s)‖X

)
ds

≤ d
[ 1− β
α− β

b
α−β
1−β

]1−β
‖a2‖L1/β(J) + dc2

∫ t

0

(t− s)α−1‖x(s)‖Xds.

(3.4)

Combining (3.3), (3.4) with (3.2), we obtain

‖x(t)‖X ≤MA‖x0‖X +
αMA

Γ(1 + α)
(
dc2 + ‖l‖L∞(J)

) ∫ t

0

(t− s)α−1‖x(s)‖Xds

+
αMA

Γ(1 + α)

[ 1− β
α− β

b
α−β
1−β

]1−β(
‖a1‖L1/β(J) + d‖a2‖L1/β(J)

)
.

From the above inequality, using the well-known singular-version Gronwall inequal-
ity (see [5, Theorem 3.1]), we can deduce that there exists a constant L > 0 such
that ‖x‖C ≤ L. �

Let prL : X → X be the L-radial retraction; i.e.,

prL(x) =

{
x, ‖x‖X ≤ L,
Lx
‖x‖X , ‖x‖X > L.

This map is Lipschitz continuous. We define U1(t, x) = U(t,prL x). Evidently, U1

satisfies (H4)(1) and (H4)(2). Moreover, by the properties of prL, we have, for a.e.
t ∈ J , all x ∈ X and all u ∈ U1(t, x) such that

‖u‖Y ≤ a2(t) + c2L and ‖u‖Y ≤ a2(t) + c2‖x‖X .
Hence, Lemma 3.1 is still valid with U(t, x) substituted by U1(t, x). Consequently,
henceforth we assume without any loss of generality that, for a.e. t ∈ J and all
x ∈ X,

sup{‖v‖Y : v ∈ U(t, x)} ≤ ϕ(t) = a2(t) + c2L, with ϕ ∈ L1/β(J,R+). (3.5)

Let ϕ be defined by (3.5), we put

Yϕ = {u ∈ L1/β(J, Y ) : ‖u(t)‖Y ≤ ϕ(t) a.e. t ∈ J}, (3.6)

Xϕ = {f ∈ L1/β(J,X) : ‖f(t)‖X ≤ dϕ(t) + a1(t) + c1L a.e. t ∈ J}. (3.7)

In accordance with (H2) and (H3), for any x ∈ C(J,X) and u ∈ L1/β(J, Y ), the
function t→ g(t)u(t) + h(t, x(t)) is an element of the space L1/β(J,X). Hence, we
can consider an operator A : C(J,X)× L1/β(J, Y )→ L1/β(J,X) defined by

A(x, u)(t) = g(t)u(t) + h(t, x(t)). (3.8)

Lemma 3.2. The map (x, u)→ A(x, u) is sequentially continuous from C(J,X)×
ω-L1/β(J, Y ) into ω-L1/β(J,X).

Proof. Suppose that xn → x in C(J,X) and un → u in ω-L1/β(J, Y ). Let any
h ∈ L1/(1−β)(J,X∗) be fixed. Now we may assume that ‖xn‖C ≤ M for some
constant M > 0 and n ≥ 1. Then from (H2) and (H3), we can have the following
facts

h(t, xn(t))→ h(t, x(t)) in X a.e. t ∈ J, (3.9)
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‖h(t, xn(t))‖X ≤ a1(t) + c1M, (3.10)∫
J

〈g∗(t)h(t), un(t)〉dt→
∫
J

〈g∗(t)h(t), u(t)〉dt, (3.11)

where g∗(t) is the operator adjoint to g(t). From (3.9) and (3.10), using Lebesgue’s
dominated convergence theorem, we obtain

h(t, xn(t))→ h(t, x(t)) in L1/β(J,X). (3.12)

Since 〈h(t), g(t)u(t)〉 = 〈g∗(t)h(t), u(t)〉 and h ∈ L1/(1−β)(J,X∗) is arbitrary, by
(3.11), we deduce that

g(t)un(t)→ g(t)u(t) in ω-L1/β(J,X).

This together and (3.12) imply

A(xn, un)→ A(x, u) in ω-L1/β(J,X).

The lemma is proved. �

Now we consider the auxiliary problem:
CDα

t x(t) = Ax(t) + f(t), t ∈ J = [0, b],

x(0) = x0.
(3.13)

It is clear that, for every f ∈ L1/β(J,X), equation (3.13) has a unique mild solution
S(f) ∈ C(J,X) which is given by

S(f)(t) = Pα(t)x0 +
∫ t

0

(t− s)α−1Qα(t− s)f(s)ds.

The following lemma concerns with the property of the solution map S which is
crucial in our investigation.

Lemma 3.3. The solution map S : Xϕ → C(J,X) is continuous from ω-Xϕ into
C(J,X).

Proof. Consider the operator H : L1/β(J,X)→ C(J,X) defined by

H(f)(t) =
∫ t

0

(t− s)α−1Qα(t− s)f(s)ds.

We know H is linear. From simple calculation, one has

‖H(f)‖C ≤
αMA

Γ(1 + α)

[ 1− β
α− β

b
α−β
1−β

]1−β
‖f‖L1/β(J,X); (3.14)

i.e., the operator H is continuous from L1/β(J,X) to C(J,X), hence H is also
continuous from ω-L1/β(J,X) to ω-C(J,X).

Let C ∈ Pb(L1/β(J,X)) and suppose that for any f ∈ C, ‖f‖L1/β(J,X) ≤ K

(K > 0 is a constant). Next we will show that H is completely continuous.
(a) From (3.14), we know that ‖H(f)(t)‖X is uniformly bounded for any t ∈ J

and f ∈ C.
(b) H is equicontinuous on C. Let 0 ≤ t1 < t2 ≤ b. For any f ∈ C, we obtain

‖H(f)(t2)−H(f)(t1)‖X

=
∥∥∫ t2

0

(t2 − s)α−1Qα(t2 − s)f(s)ds−
∫ t1

0

(t1 − s)α−1Qα(t1 − s)f(s)ds
∥∥
X
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≤
∥∥∫ t2

t1

(t2 − s)α−1Qα(t2 − s)f(s)ds
∥∥
X

+
∥∥ ∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
Qα(t2 − s)f(s)ds

∥∥
X

+
∥∥ ∫ t1

0

(t1 − s)α−1
(
Qα(t2 − s)−Qα(t1 − s)

)
f(s)ds

∥∥
X

=: I1 + I2 + I3.

By using analogous arguments as in Lemma 3.1, we have

I1 ≤
αMA

Γ(1 + α)

[ 1− β
α− β

]1−β
K(t2 − t1)α−β ,

I2 ≤
αMA

Γ(1 + α)

(∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1

)1/(1−β)
ds
)1−β

K

≤ αMA

Γ(1 + α)

(∫ t1

0

(
(t1 − s)

α−1
1−β − (t2 − s)

α−1
1−β
)
ds
)1−β

K

=
αMA

Γ(1 + α)

[ 1− β
α− β

]1−β(
t
α−β
1−β
1 − t

α−β
1−β
2 + (t2 − t1)

α−β
1−β

)1−β
K

≤ 2αMA

Γ(1 + α)

[ 1− β
α− β

]1−β(
t2 − t1

)α−β
K.

For t1 = 0, 0 < t2 ≤ b, it is easy to see that I3 = 0. For t1 > 0 and ε > 0 be small
enough, we have

I3 ≤
∥∥∫ t1−ε

0

(t1 − s)α−1
(
Qα(t2 − s)−Qα(t1 − s)

)
f(s)ds

∥∥
X

+
∥∥∫ t1

t1−ε
(t1 − s)α−1

(
Qα(t2 − s)−Qα(t1 − s)

)
f(s)ds

∥∥
X

≤ sup
s∈[0,t1−ε]

‖Qα(t2 − s)−Qα(t1 − s)‖
[ 1− β
α− β

]1−β(
t
α−β
1−β
1 − ε

α−β
1−β
)1−β

K

+
2αMA

Γ(1 + α)

[ 1− β
α− β

]1−β
εα−βK.

Combining the estimations for I1, I2, I3, and letting t2 → t1 and ε → 0 in I3, we
know that H is equicontinuous. For more details, please see [32].

(c) The set Π(t) = {H(f)(t) : f ∈ C} is relatively compact in X. Clearly,
Π(0) = {0} is compact, and hence, it is only necessary to consider t > 0. For each
h ∈ (0, t), t ∈ (0, b], f ∈ C, and δ > 0 being arbitrary, we define

Πh,δ(t) = {Hh,δ(f)(t) : f ∈ C},

where

Hh,δ(f)(t) = α

∫ t−h

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f(s)dθds

= α

∫ t−h

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)T (hαδ)T
(
(t− s)αθ − hαδ

)
f(s)dθds

= αT (hαδ)
∫ t−h

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)T
(
(t− s)αθ − hαδ

)
f(s)dθds.
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From the compactness of T (hαδ) (hαδ > 0), we obtain that the set Πh,δ(t) is
relatively compact in X for any h ∈ (0, t) and δ > 0. Moreover, we have

‖H(f)(t)−Hh,δ(f)(t)‖X

= α
∥∥∥ ∫ t

0

∫ δ

0

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f(s)dθds

+
∫ t

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f(s)dθds

−
∫ t−h

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f(s)dθds
∥∥∥
X

≤ α
∥∥∥∫ t

0

∫ δ

0

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f(s)dθds
∥∥∥
X

+ α
∥∥∥∫ t

t−h

∫ ∞
δ

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f(s)dθds
∥∥∥
X

≤MAα
(∫ t

0

(t− s)
α−1
1−β ds

)1−β
‖f‖L1/β(J,X)

∫ δ

0

θξα(θ)dθ

+MAα
(∫ t

t−h
(t− s)

α−1
1−β ds

)1−β
‖f‖L1/β(J,X)

∫ ∞
δ

θξα(θ)dθ

≤MAKα
[ 1− β
α− β

]1−β(
bα−β

∫ δ

0

θξα(θ)dθ +
1

Γ(1 + α)
hα−β

)
.

By (2.5), the last term of the preceding inequality tends to zero as h → 0 and
δ → 0. Therefore, there are relatively compact sets arbitrarily close to the set Π(t),
t > 0. Hence the set Π(t), t > 0 is also relatively compact in X.

Since Xϕ is a convex compact metrizable subset of ω-L1/β(J,X), it suffices to
prove the sequential continuity of the map S. Now let {fn}n≥1 ⊆ Xϕ such that

fn → f in ω-L1/β(J,X), f ∈ Xϕ. (3.15)

By the property of the operator H, we have H(fn) → H(f) in ω-C(J,X). Since
{fn}n≥1 is bounded, there is a subsequence {fnk}k≥1 of the sequence {fn}n≥1 such
that H(fnk)→ z in C(J,X) for some z ∈ C(J,X). From the facts that

H(fn)→ H(f) in ω-C(J,X), and H(fnk)→ z in C(J,X),

we obtain that z = H(f) and H(fn)→ H(f) in C(J,X).
By the definitions of the operators S and H, we have that S(f)(t) = Pα(t)x0 +

H(f)(t). Then due to the arguments above, we have S(fn) → S(f) in C(J,X).
This completes the proof of the lemma. �

4. Existence results for control systems

In this section, we shall prove the existence of solutions for the control systems
(1.1), (1.2) and (1.1), (1.3).

Let Λ = S(Xϕ). From Lemma 3.3, we have Λ is a compact subset of C(J,X). It
follows from (3.5) and (3.7) that T rU ⊆ T rcoU ⊆ Λ. Let U : C(J,X)→ 2L

1/β(J,Y )

be defined by

U(x) = {h : J → Y measurable : h(t) ∈ U(t, x(t)) a.e.}, x ∈ C(J,X). (4.1)
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Theorem 4.1. The set RU is nonempty and the set RcoU is a compact subset of
the space C(J,X)× ω-L1/β(J, Y ).

Proof. By the hypotheses (H4)(1) and (H4)(2), we have that for any measurable
function x : J → X, the map t→ U(t, x(t)) is measurable and has closed values [11,
Proposition 2.7.9]. Therefore it has measurable selectors [9]. So the operator U is
well defined and its values are closed decomposable subsets of L1/β(J, Y ). We claim
that x → U(x) is l.s.c. Let x∗ ∈ C(J,X), h∗ ∈ U(x∗) and let {xn}n≥1 ⊆ C(J,X)
be a sequence converging to x∗. It follows from [33, Lemma 3.2] that there is a
sequence hn ∈ U(xn) such that

‖h∗(t)− hn(t)‖Y ≤ dY (h∗(t), U(t, xn(t))) +
1
n
, a.e. t ∈ J. (4.2)

Since the map y → U(t, y) is h-continuous a.e. t ∈ J ((H4)(2)), then for a.e. t ∈ J ,
the map y → U(t, y) is l.s.c. [11, Proposition 1.2.66]. Hence by Proposition 1.2.26
in [11], the function y → dY (h∗(t), U(t, y)) is u.s.c. for a.e. t ∈ J . It follows from
(4.2) that, for a.e. t ∈ J ,

lim
n→∞

‖h∗(t)− hn(t)‖Y ≤ lim sup
n→∞

dY (h∗(t), U(t, xn(t)))

≤ dY (h∗(t), U(t, x∗(t))) = 0.

This together with (3.5) implies that hn → h∗ in L1/β(J, Y ). Therefore the map
x → U(x) is l.s.c. By [27, Proposition 2.2] (also see [11, Theorem 2.8.7]), there
exists a continuous function m : Λ→ L1/β(J, Y ) such that

m(x) ∈ U(x), for all x ∈ Λ. (4.3)

Consider the map P : L1/β(J,X) → L1/β(J, Y ) defined by P(f) = m(S(f)).
Thanks to Lemma 3.3 and the continuity of m, the map P is continuous from ω-Xϕ

into L1/β(J, Y ). Then by Lemma 3.2, we deduce that the map f → A(S(f),P(f))
is continuous from ω-Xϕ into ω-L1/β(J,X). It follows from (3.5), (3.7) and (3.8)
that A(S(f),P(f)) ∈ Xϕ for every f ∈ Xϕ. Therefore, the map f → A(S(f),P(f))
is continuous from ω-Xϕ into ω-Xϕ. Since ω-Xϕ is a convex metrizable compact
set in ω-L1/β(J,X), Schauder’s fixed point theorem implies that this map has a
fixed point f∗ ∈ Xϕ; i.e., f∗ = A(S(f∗),P(f∗)). Let u∗ = P(f∗) and x∗ = S(f∗),
then we have u∗ = m(x∗) and f∗ = A(x∗, u∗). That is to say we have

x∗(t) = S(f∗)(t) = Pα(t)x0 +
∫ t

0

(t− s)α−1Qα(t− s)
(
g(s)u∗(s) + h(s, x∗(s))

)
ds,

u∗(t) ∈ U(t, x∗(t)) a.e. t ∈ J.
These imply that (x∗(·), u∗(·)) is a solution of the control system (1.1), (1.2). Hence
RU is nonempty.

It is easy to see that RcoU ⊆ Λ × Yϕ. Since Λ is compact in C(J,X) and
Yϕ is metrizable convex compact in ω-L1/β(J, Y ), we have that RcoU is relatively
compact in C(J,X)× ω-L1/β(J, Y ). Hence to complete the proof of this theorem,
it is sufficient to prove that RcoU is sequentially closed in C(J,X)× ω-L1/β(J, Y ).

Let {(xn(·), un(·))}n≥1 ⊆ RcoU be a sequence converging to (x(·), u(·)) in the
space C(J,X)× ω-L1/β(J, Y ). Denote

fn(t) = g(t)un(t) + h(t, xn(t)),

f(t) = g(t)u(t) + h(t, x(t)).
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According to Lemma 3.2, fn → f in ω-L1/β(J,X). Since fn ∈ Xϕ and xn = S(fn),
n ≥ 1, Lemma 3.3 implies that

x = S(f).
Hence, to prove that (x(·), u(·)) ∈ RcoU , we only need to verify that u(t) ∈
coU(t, x(t)) a.e. t ∈ J .

Since un → u in ω-L1/β(J, Y ), by Mazur’s theorem, we have

u(t) ∈ ∩∞n=1 co
(
∪∞k=n uk(t)

)
, for a.e. t ∈ J. (4.4)

By (H4)(2) and the fact that h(coA, coB) ≤ h(A,B) for sets A,B, the map x →
coU(t, x) is h-continuous. Then from Proposition 1.2.86 in [11], the map x →
coU(t, x) has property Q. Therefore we have

∩∞n=1 co
(
∪∞k=n coU(t, xk(t))

)
⊆ coU(t, x(t)), for a.e. t ∈ J. (4.5)

By (4.4) and (4.5), we obtain that u(t) ∈ coU(t, x(t)) a.e. t ∈ J . This means that
RcoU is compact in C(J,X)× ω-L1/β(J, Y ). The proof is complete. �

5. Main results

Now we are in a position to obtain our main results.

Theorem 5.1. For any (x∗(·), u∗(·)) ∈ RcoU , we have that there exists a sequence
(xn(·), un(·)) ∈ RU , n ≥ 1, such that

xn → x∗ in C(J,X), (5.1)

un → u∗ in L1/β
ω (J, Y ) and ω-L1/β(J, Y ). (5.2)

Moreover, we have
T rU = T rcoU , (5.3)

where the bar stands for the closure in the space C(J,X).

Proof. Let any (x∗(·), u∗(·)) ∈ RcoU , then we have u∗(t) ∈ coU(t, x∗(t)) a.e. t ∈
J . It follows from (H4)(1), (H4)(2) and (3.5) that the map t → U(t, x∗(t)) is
measurable and integrally bounded. Hence by using [28, Theorem 2.2], we have
that, for any n ≥ 1, there exists a measurable selection vn(t) of the multivalued
map t→ U(t, x∗(t)) such that

sup
0≤t1≤t2≤b

∥∥∫ t2

t1

(u∗(s)− vn(s))ds
∥∥
Y
≤ 1
n
. (5.4)

For each fixed n ≥ 1, by (H4)(2), we have that, for any x ∈ X and a.e. t ∈ J , there
exists a v ∈ U(t, x) such that

‖vn(t)− v‖Y < k1(t)‖x∗(t)− x‖X +
1
n
. (5.5)

Let a map Hn : J ×X → 2Y be defined by

Hn(t, x) = {v ∈ Y : v satisfies inequality (5.5)}. (5.6)

It follows from (5.5) that Hn(t, x) is well defined for a.e. on J and all x ∈ X, and
its values are open sets. Using [25, Corollary 2.1] (since we can assume without
loss of generality that U(t, x) is Σ⊗BX measurable, see [11, Proposition 2.7.9]), we
obtain that, for any ε > 0, there is a compact set Jε ⊆ J with µ(J\Jε) ≤ ε, such
that the restriction of U(t, x) to Jε×X is l.s.c and the restrictions of vn(t) and k1(t)
to Jε are continuous. So (5.5) and (5.6) imply that the graph of the restriction of
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Hn(t, x) to Jε ×X is an open set in Jε ×X × Y . Let a map H : J ×X → 2Y be
defined by

H(t, x) = Hn(t, x) ∩ U(t, x). (5.7)

It is obvious that, for a.e. t ∈ J and all x ∈ X, H(t, x) 6= ∅. Due to the arguments
above and Proposition 1.2.47 in [11], we know that the restriction of H(t, x) to
Jε ×X is l.s.c. and so does H(t, x) = H(t, x), here the bar stands for the closure
of a set in Y .

Now we consider the system (1.1) with the constraint on the control

u(t) ∈ H(t, x(t)) a.e. on J. (5.8)

Since H(t, x) ⊆ U(t, x), the a priori estimate Lemma 3.1 also holds in this situation.
Repeating the proof of Theorem 4.1, we obtain that there is a solution (xn(·), un(·))
of the control system (1.1), (5.8). The definition of H implies that (xn(·), un(·)) ∈
RU and

‖vn(t)− un(t)‖Y ≤ k1(t)‖x∗(t)− xn(t)‖X +
1
n
. (5.9)

Since (xn(·), un(·)) ∈ RU , n ≥ 1, and (x∗(·), u∗(·)) ∈ RcoU , we have

x∗(t) = Pα(t)x0 +
∫ t

0

(t− s)α−1Qα(t− s)
(
g(s)u∗(s) + h(s, x∗(s))

)
ds (5.10)

and

xn(t) = Pα(t)x0 +
∫ t

0

(t− s)α−1Qα(t− s)
(
g(s)un(s) + h(s, xn(s))

)
ds. (5.11)

Theorem 4.1 and {(xn(·), un(·))}n≥1 ⊆ RU ⊆ RcoU imply that we can assume,
possibly up to a subsequence, that the sequence (xn(·), un(·))→ (x(·), u(·)) ∈ RcoU

in C(J,X) × ω-L1/β(J, Y ). Subtracting (5.11) from (5.10), and using (H3)(2),
(H2)(2) and (5.9), we have

‖x∗(t)− xn(t)‖X

=
∥∥∥∫ t

0

(t− s)α−1Qα(t− s)
(
g(s)u∗(s)− g(s)un(s)

)
ds

+
∫ t

0

(t− s)α−1Qα(t− s)
(
h(s, x∗(s))− h(s, xn(s))

)
ds
∥∥∥
X

≤
∥∥∫ t

0

(t− s)α−1Qα(t− s)g(s)
(
u∗(s)− vn(s)

)
ds
∥∥
X

+
∥∥∫ t

0

(t− s)α−1Qα(t− s)g(s)
(
vn(s)− un(s)

)
ds
∥∥
X

+
∥∥∫ t

0

(t− s)α−1Qα(t− s)
(
h(s, x∗(s))− h(s, xn(s))

)
ds
∥∥
X

≤
∥∥∫ t

0

(t− s)α−1Qα(t− s)g(s)
(
u∗(s)− vn(s)

)
ds
∥∥
X

+
αMAd

Γ(1 + α)

∫ t

0

(t− s)α−1
( 1
n

+ k1(s)‖x∗(s)− xn(s)‖X
)
ds

+
αMA‖l‖L∞

Γ(1 + α)

∫ t

0

(t− s)α−1‖x∗(s)− xn(s)‖Xds
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≤
∥∥∫ t

0

(t− s)α−1Qα(t− s)g(s)
(
u∗(s)− vn(s)

)
ds
∥∥
X

+
αMAdb

α

nαΓ(1 + α)

+
αMA(d‖k1‖L∞ + ‖l‖L∞)

Γ(1 + α)

∫ t

0

(t− s)α−1‖x∗(s)− xn(s)‖Xds. (5.12)

Due to (5.4), one has vn → u∗ in ω-L1/β(J, Y ) by Lemma 2.4. Then it is easy to
show that g(t)vn(t) → g(t)u∗(t) in ω-L1/β(J,X). By the property of the operator
H defined in the proof of Lemma 3.3, we have that, for any t ∈ J ,∥∥∫ t

0

(t− s)α−1Qα(t− s)g(s)
(
u∗(s)− vn(s)

)
ds
∥∥
X
→ 0, as n→∞.

Since ‖x∗(t)‖X ≤ L, ‖xn(t)‖X ≤ L for any n, t ∈ J and xn → x in C(J,X), letting
n→∞ in (5.12), we obtain

‖x∗(t)− x(t)‖X ≤
αMA(d‖k1‖L∞ + ‖l‖L∞)

Γ(1 + α)

∫ t

0

(t− s)α−1‖x∗(s)− x(s)‖Xds.

Then by [5, Theorem 3.1], we obtain x∗ = x; i.e., we have xn → x∗ in C(J,X).
Hence from (5.9), we have (vn− un)→ 0 in L1/β(J, Y ). Therefore, un = un− vn +
vn → u∗ in ω-L1/β(J, Y ) and L

1/β
ω (J, Y ), i.e., (5.1) and (5.2) hold.

Since it is clear that T rU ⊆ T rcoU and T rcoU is compact in C(J,X) by Theorem
4.1, then from the proof of the first part of this theorem, we have

T rU = T rcoU ,

where the bar stands for the closure in C(J,X). This completes the proof. �

6. An example

In this section, we present an example of control systems governed by fractional
partial differential equations. In particular, to illustrate the abstract results of this
paper, we provide the following example which do not aim at generality but indicate
how our theorems can be applied to concrete problems. Since the hypotheses on
the operator g and the function h are very common, we mainly pay attention to
the operator A and the multivalued map U here.

Let J = [0, 1] and Ω = [0, π]. Put X = Y = L2(Ω). We consider the fractional
control system

CDα
t x(t, z) = ∂2

zx(t, z) + h̄(t, z, x(t, z)) + b̄(t)ū(t, z), t ∈ J, z ∈ Ω,

x(t, 0) = x(t, π) = 0,

x(0, z) = x0(z),

ū(t, z) ∈ Ū(t, z, x(t, z)), a.e. in J × Ω,

(6.1)

where CDα
t is the Caputo fractional derivative of order 0 < α < 1, h̄, b̄ are suitable

functions, Ū is a multivalued function which will be given below.
Define the operator A by Aω = ω′′ with D(A) consisting of all ω ∈ X with ω,

ω′ are absolutely continuous, ω′′ ∈ X and ω(0) = ω(π) = 0. Then

Aω = −
∞∑
n=1

n2〈ω, en〉en, ω ∈ D(A),

where en(z) = (2/π)
1
2 sin(nz), z ∈ Ω, n = 1, 2, 3, · · · , is the orthogonal set of

eigenfunctions of A and 〈·, ·〉 denotes the L2 inner product. It is clear that A is the
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infinitesimal generator of a strongly continuous semigroup {T (t), t ≥ 0} in X and
T (t), t > 0 is also compact, which is given by

T (t)ω =
∞∑
n=1

e−n
2t〈ω, en〉en, ω ∈ X.

Hence the assumption (H1) is satisfied.
(H5) Ū : J × Ω× R→ R is a multivalued function with closed values satisfying

the following conditions:
(1) the map (t, z)→ Ū(t, z, x) is measurable;
(2) h(Ū(t, z, x1), Ū(t, z, x2)) ≤ k̄1(t)|x1 − x2| a.e. in t ∈ J × Ω with k̄1 in

L∞+ (J);
(3) |Ū(t, z, x)| ≤ ā2(t, z)+c̄2(t, z)|x| a.e. in J×Ω with ā2 ∈ L1/β(J, L2

+(Ω)),
0 < β < α and c̄2 ∈ L∞+ (J × Ω).

Put x(t) = x(t, ·); that is x(t)(z) = x(t, z), t ∈ J , z ∈ Ω. Define a multivalued map
U : J ×X → 2Y by

U(t, x) = {u ∈ Y : u(z) ∈ Ū(t, z, x(z)) a.e. in Ω}, x ∈ X.
Suppose assumption (H5) holds, then it is easy to verify that (H4)(1) and (H4)(2)
are satisfied. Moveover, we have

sup{‖u‖Y : u ∈ U(t, x)} ≤ |ā2(t)|2 + ‖c̄2‖L∞‖x‖X ,

where |ā2(·)|2 ∈ L1/β(J,R+), |ā2(t)|2 = (
∫

Ω
a2(t, z)dz)

1
2 . This means that (H4)(3)

holds.
Let h(t, x)(z) = h̄(t, z, x(t)(z)) and g(t) = b̄(t). With A and U defined above, the

fractional control system (6.1) can be rewritten to our abstract form (1.1), (1.2).
Hence the abstract results obtained in the previous sections can be applied to the
control system (6.1).

Conclusions. Existence results and relaxation property of a class of fractional
feedback control systems in Banach spaces have been investigated. With some
auxiliary results provided in section 3, we obtained the existence results of the
control systems by Schauder’s fixed point theorem. To get the relaxation property,
we used some tools from multivalued analysis.

Our future work will be devoted to study the following fractional control prob-
lems: systems with Riemann-Liouville fractional derivative, time optimal control,
optimal control of Lagrange type and relaxed control systems by using other con-
vexification techniques.
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