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A QUASISTATIC ELECTRO-ELASTIC CONTACT PROBLEM
WITH NORMAL COMPLIANCE, FRICTION AND ADHESION

NADHIR CHOUGUI, SALAH DRABLA

ABSTRACT. In this article we consider a mathematical model which describes
the contact between a piezoelectric body and a deformable foundation. The
constitutive law is assumed linear electro-elastic and the process is quasistatic.
The contact is adhesive and frictional and is modelled with a version of normal
compliance condition and the associated Coulomb’s law of dry friction. The
evolution of the bonding field is described by a first order differential equation.
We derive a variational formulation for the model, in the form of a coupled
system for the displacements, the electric potential and the bonding field. Un-
der a smallness assumption on the coefficient of friction, we prove an existence
result of the weak solution of the model. The proofs are based on arguments
of time-dependent variational inequalities, differential equations and Banach
fixed point theorem.

1. INTRODUCTION

In this work, we study a frictional contact problem with adhesion between an
elastic piezoelectric body and a deformable obstacle.

A piezoelectric material is one that produces an electric charge when a me-
chanical stress is applied (the material is squeezed or stretched). Conversely, a
mechanical deformation (the material shrinks or expands) is produced when an
electric field is applied. This kind of materials appears usually in the industry as
switches in radiotronics, electroacoustics or measuring equipments. Piezoelectric
materials for which the mechanical properties are elastic are also called electro-
elastic materials, and those for which the mechanical properties are viscoelastic are
also called electro-viscoelastic materials. Different models have been developed to
describe the interaction between the electric and mechanical fields ( see [ [13],
[18]-]20], [28] 29]). General models for elastic materials with piezoelectric effect,
called electro-elastic materials, can be found in [T [13]. A static frictional contact
problem for electric-elastic materials was considered in [2, [I7] and a slip-dependent
frictional contact problem for electro-elastic materials was studied in [26].

Adhesion may take place between parts of the contacting surfaces. It may be
intentional, when surfaces are bonded with glue, or unintentional, as a seizure
between very clean surfaces. The adhesive contact is modelled by the introduction
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of a surface internal variable, the bonding field, denoted in this paper by 3; it
describes the pointwise fractional density of active bonds on the contact surface,
and sometimeas referred to as the intensity of adhesion. Following [9] [10], the
bonding field satisfies the restrictions 0 < 8 < 1; when 8 = 1 at a point of the
contact surface, the adhesion is complete and all the bonds are active; when 3 =0
all the bonds are inactive, severed, and there is no adhesion; when 0 < 5 < 1 the
adhesion is partial and only a fraction § of the bonds is active. Basic modelling
can be found in [9]-[I1]. Analysis of models for adhesive contact can be found in
[B, 4] and in the monographs [24], 25]. An application of the theory of adhesive
contact in the medical field of prosthetic limbs was considered in [22] 23]; there, the
importance of the bonding between the bone-implant and the tissue was outlined,
since debonding may lead to decrease in the persons ability to use the artificial limb
or joint.

Since frictional contact is so important in industry, there is a need to model and
predict it accurately. However, the main industrial need is to effectively control the
process of frictional contact. Currently, there is a considerable interest in frictional
contact problems involving piezo-electric materials, see for instance [2, [I5] 26].

The aim of this article is to continue the study of problems begun in [12] 211 [].
The novelty of the present paper is to extend the result when the contact and
friction are modelled by a normal compliance condition and a version of Coulomb’s
law of dry friction, respectively. Moreover, the adhesion is taken into account at
the interface and the material behavior is assumed to be electro-elastic.

The paper is structured as follows. In Section 2 we present the electro-elastic
contact model with normal compliance, friction and adhesion and provide comments
on the contact boundary conditions. In Section 3 we list the assumptions on the
data and derive the variational formulation. In section 4, we present our main
existence results.

2. PROBLEM STATEMENT

We consider the following physical setting. An electro-elastic body occupies a
bounded domain Q C R? (d = 2,3) with a smooth boundary 9Q = I'. The body
is submitted to the action of body forces of density fy and volume electric charges
of density qo . It is also submitted to mechanical and electric constraints on the
boundary. To describe them, we consider a partition of I into three measurable
parts I'y, I's and I's on one hand, and a partition of I'y UT'5 into two open parts I',
and T'p, on the other hand., such that meas(I'y) > 0, meas(I'a) > 0. We assume
that the body is clamped on I'; and surface tractions of density fs act on I'y. On I's
the body is in adhesive contact with an insulator obstacle, the so-called foundation.
We also assume that the electrical potential vanishes on I', and a surface electric
charge of density ¢ is prescribed on I',. We denote by S? the space of second
order symmetric tensors on R and we use - and ||-|| for the inner product and
the Euclidean norm on R? and S?, respectively. Also, below v represents the unit
outward normal on I". With these assumptions, the classical model for the process
is the following.

Problem (P). Find a displacement field u : Q x [0,T] — RY, a stress field o :
Q x [0,T] — S%, an electric potential ¢ : Q x [0,T] — R, an electric displacement
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field D : Q x [0,T] — R? and a bonding field 3 :  x [0,7] — R such that

oc=Fe(u) —E*E(p) inQx(0,T), (2.1)

D = BE(p) + &(u) inQx(0,7T), (2.2)

Dive+ fo=0 inQx(0,7), (2.3)

divD =¢qy in Q x (0,7), (2.4)

u=0 onTy x(0,7), (2.5)

ov=fs onTyx(0,7), (2.6)

—0y = pu(uu) - ’YVﬁQRV(Uﬂ) on I'3 x (07T>7 (27)
o + 'Yrﬁ2RT(u'r)” < ppy (),

lor + 7 B2 R (ur) || < ppu(ws,) = ;= 0, (2.8)

lor + 'VTﬂQRT(“T)” = ppy (uy)
= 3\ > 0 such that o + 7, 8°R.(uy) = =My,

on I's x (0,7),
Bt) = = [B() (v R (up(£)* + 72 | Re (ur (1)) |*) — £al+  on T5 x (0,7),  (2.9)
=0 onT,x(0,T), (2.10)
D-v=0 onTyx(0,7), (2.11)
u(0) =up in Q, (2.12)
B(0) =By on Ij. (2.13)

We now provide some comments on equations and conditions (2.1)-(2.13). Equa-
tions and represent the electro-elastic constitutive law in which e(u)
denotes the linearized strain tensor, F(¢) = —V is the electric field, where ¢
is the electric potential, F = (fijkl) is a 4th rank tensor, called the elastic ten-
sor and its components F;;j; are called coeflicients of elasticity, £ represents the
piezoelectric operator, £* is its transposed, B denotes the electric permittivity op-
erator, and D = (Dy,...,Dy) is the electric displacement vector. Details on the
constitutive equations of the form and can be find, for instance, in [I]
and in [2]. Next, equations ( and are the equilibrium equations for the
stress and electric-displacement fields, respectively, in which Div and div denote
the divergence operator for tensor and vector valued functions, respectively. Equa-
tions and 1-) represent the displacement and traction boundary conditions.
Condltlons 2.10) and (2.11) represent the electric boundary conditions. Condi-
tion descrlbes contact Wlth normal compliance and adhesion where u,, is the
normal dlsplacernent o, represents the normal stress, 7, denotes a given adhesion
coefficient and R, is the truncation operator defined by

L ifs<-—L,
R,(s)=<¢s if —L<s<0, (2.14)
0 ifs>0,

where L > 0 is the characteristic length of the bond, beyond which it does not
offer any additional traction. The introduction of operator R, , together with the
operator R, defined below, is motivated by the mathematical arguments but it is
not restrictive for physical point of view, since no restriction on the size of the
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parameter L is made in what follows. Thus, by choosing L very large, we can
assume that R, (u,) = u,.

Here p,, is a nonnegative prescribed function, called normal compliance function.
Indeed, when u, < 0 there is no contact and the normal pressure vanishes. When
there is contact, wu, is positive and is a measure of the interpenetration of the
asperities. A commonly used example of the normal compliance function p, is

Dv (T) = CyT+,

where ¢, > 0 is the surface stiffness coefficient and r; = maz{0,r} denotes the
positive part of r. We can also consider the following truncated normal compliance

function:
cuT if r <aq,
pu(r) _{ v+

c,a  ifr>aq,

where « is a positive coefficient related to the wear and hardness of the surface.
In this case, the above equality means that when the penetration exceeds a the
obstacle offers no additional resistance to penetration. It follows from that
the contribution of the adhesion to the normal traction is represented by the term
vB%R, (u,), but as long as u, does not exceed the bond length L.

Condition is the associated Coulomb’s law of dry friction, where u, and o
denote tangential components of vector u and tensor o, respectively. Her pu is the
coefficient of friction and R, is the truncation operator given by

v i) <L,
Lo if o] > L.

lloll

R, (v) = (2.15)
This condition shows that the contribution of the adhesion to the tangential shear
on the contact surface is represented by the term 7, 3%R, (u,), but again, only up
to the bond length L.

The evolution of the bonding field is governed by the differential equation
with given positive parameters v,,7v, and €,. For more details about conditions
[27)-([2.9), we refer the reader to [24] and [25]. Here and below in this paper, a dot
above a function represents the derivative with respect to the time variable. We
note that the adhesive process is irreversible and, indeed, once debonding occurs
bonding cannot be reestablished, since ﬂ < 0. Finally, and represent
the initial conditions where §y and wug are given.

3. VARIATIONAL FORMULATION AND PRELIMINARIES

In this section, we list the assumptions on the data and derive a variational for-
mulation for the contact problem. To this end we need to introduce some notation
and preliminary material.

We recall that the inner products and the corresponding norms on R¢ and S¢
are given by

UV = uv;, ||v||:(v~v)% Yu,v € RY,
0T = 04Tij, H7'||:(7'~7')% Vo, € S¢.

Here and everywhere in this paper, ¢,7,k,[ run from 1 to d, summation over
repeated indices is applied and the index that follows a comma represents the partial



EJDE-2014/257 ELECTRO-ELASTIC CONTACT PROBLEM 5

derivative with respect to the corresponding component of the spatial variable, e.g.
du,
Wij = Bz, -

Everywhere below, we use the classical notation for LP and Sobolev spaces
associated to € and I'. Moreover, we use the notation L?()¢, H* ()¢, H and H;
for the following spaces

L2 = {v=(v) :v; € L2(Q)}, HY Q)= {v=(v5):v; € H(Q)},
H= {T = (Tij) FTig = Tji S LQ(Q)}’ Hl = {T eH: Tij,5 S LQ(Q)}

The spaces L2(Q2)4, H1 ()4, ‘H and H; are real Hilbert spaces endowed with the
canonical inner products

(u,v)Lz(Q)dzfu-Udz, (u,v)Hl(Q)d:/u-vda:—l—/Vu-Vvdx,
o Q Q

(UaT)H:/U'TdIE, (O',T)HIZ/O'~Td{E+/DiVO'-DiVTdSC,
Q Q Q

and the associated norms || - [[z2(qya, || - |51()e, I - [l7 and || - ||, , respectively.
Here and below we use the notation

Vo= () o) = (), 20) = 3o+ g Ve H@)Y

Divr = (Tij7,j) V71 € Hi.

For every element v € H'(2)4. We also write v for the trace of v on I' and we
denote by v, and v, the normal and tangential components of v on I' given by
Uy = V-V, Up =0 — U, V.

Let now consider the closed subspace of H'(Q)? defined by

V={ve H Q) |v=00nT}.
Since meas(I'1) > 0, the following Korn’s inequality holds
le()li 2 ex llvllgr e Yo eV, (3.1)

where cx > 0 is a constant which depends only on Q2 and I';. Over the space V' we
consider the inner product given by

(u, v)v = (e(u), &(v))n, (3.2)
and let || - ||y be the associated norm. It follows from Korn’s inequality (3.1]) that
[ - |1 (@ye and || - [|[v are equivalent norms on V' and, therefore, (V|| - [|v) is a real

Hilbert space. Moreover, by the Sobolev trace theorem, (3.1]) and (3.2)), there exists
a constant ¢y depending only on the domain 2, I'y and I's such that

ol 2y < collvly Yo € V. (3.3)
We also introduce the spaces
W={y e H'(Q) |¥=0o0nTa},
Wi ={D = (D;) | D; € L*(Q), D;; € L*(Q)}.
Since meas(I'y) > 0, the following Friedrichs-Poincaré inequality holds

”VwHLz(Q)d > cF ||1/}HH1(Q) Yy € W, (34)
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where ¢ > 0 is a constant which depends only on 2 and 'y, and V¢ = (¢,; ). Over
the space W, we consider the inner product given by

(W)W:/Qwvwx,

and let || - ||w be the associated norm. It follows from that || - || g1 () and
I - llw are equivalent norms on W and therefore (W, || - ||w) is a real Hilbert space.
Moreover, by the Sobolev trace theorem, there exists a constant ¢y, depending only
on 2, I', and I'z, such that

¥l z2(ry) < Gollllw Vi € W. (3.5)

The space W is a real Hilbert space with the inner product
(D, E)w /D de—i—/dlvD div F dz,
Q

and the associated norm || - ||y,
Finally, for every real Hilbert space X we use the classical notation for the spaces
LP(0,T; X) and W*P(0,T; X), 1 < p < 00, k > 1 and we also introduce the set

Q={BeL®0,T;L*('3)): 0 < B(t) <1Vt € [0,T], ae. on I's}.

In the study of problem P, we consider the following assumptions on the problem
data.

The elasticity operator F, the piezoelectric operator £ and the electric permit-
tivity operator B satisfy the following conditions:

(a) F = (Fiy) : © x S1 - 8%,
(b) gkl = fklz] = JSjikl € L= (Q) (3 6)
¢) There exists mz > 0 such that Fjjpeiep > mr|e|? for all
e€S% ae. in Q.

) E:Q xS — RY,

) E(z, ) = (esju(x )Tjk) for all 7 = (7;;) € S, a.e. x € Q, (3.7)
C) €ijk = €ikj € LOO(Q)
) B:Qx R¢ — R?,
) B(z, E) = (b() ;) for all E = (E;) € R ae. z € Q,

) bi; = by € Lo(92), (3.8)
) There exists mp > 0 such that b;;(z)E;E; > mgl||E||? for all
E=(E;)eR ae z €.

(a
(b
(
(a
(b
(c
(d

From assumptions and , we deduce that the piezoelectric operator
& and the electric permittivity operator B are linear, have measurable bounded
components denoted e;;, and by, respectively, and moreover, B is symmetric and
positive definite.

Recall also that the transposed operator £* is given by £* = (ej;;) where e} =
€kij, and

Eo-v=0-E VYoe$t veRe (3.9)
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The normal compliance function satisfies
(@) pp 1 s x R — Ry,
(b) there exists L, > 0 such that ||p, (x,m1) —pu(x,m2)|| < Ly|r1 —
ro| for all r1, 7y € R, a.e. x € I's. (3.10)
(¢) z — py(x,r) is measurable on I's for all r € R.
(d) x+— py(x,r)=0forall r <0 ae. zeTls.

We also suppose that the body forces and surface tractions have the regularity

fo e Whoo(0,T; L2 (Q)Y),  fo € WH(0,T; L*(T2)%), (3.11)
and the densities of electric charges satisfy
go € WH(0,T; L*(2)), g2 € WH™(0,T; L*(Ty)). (3.12)

Finally, we assume that
¢2(t) =0 onT3Vte]l0,T]. (3.13)

Note that we need to impose assumption for physical reasons; indeed, the
foundation is supposed to be insulator and therefore the electric boundary condi-
tions on I's do not have to change in function of the status of the contact, are the
same on the contact and on the separation zone, and are included in the boundary
condition .

The Riesz representation theorem implies the existence of two functions f :
[0,7] = V and ¢ : [0,T] — W such that

(f(t),v)vz/nfo(t)~vdx+ [ p(v-via (3.14)
(q(), ) = /qu(t)z/)dx— /F 0 (t)0 da, (3.15)

forallv e V, ¢ € W and t € [0,T]. We note that conditions (3.11)) and (3.12)
imply

feWh>0,T;V), qeWh>(0,T;W). (3.16)
The adhesion coefficients +,, v, and the limit bound ¢, satisfy the conditions
Yoy ¥+ € L¥(T3), €o € L*(T3), o, Vry €a >0 a.e. on Iz, (3.17)
and the friction coefficient y is such that
pwe L>*(Ts), p(x)>0 ae onls. (3.18)
The initial condition [y satisfies
Bo€ L*(T'3), 0< By <1 ae. onTls. (3.19)
Next, we define the adhesion functional j,q : L2(I'3) x V x V — R by
uaBoev) = [ (R, + 908 Belun) v da, (320)
3

the normal compliance functional V' x V' — R by

Jne(u,v) = /ngy(uu(t))v,, da, (3.21)

and the friction functional V' x V — R by

e, v) = / ) de. (3.22)
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We consider the following assumptions on the conditions initials
ug €V, (323)

(Fe(ug),e(v))n + (E*Vo,e(0)x + Jad(Bos o, v) + Jne(uo, v) + 7 (o, v)
> (f(o)’U)V Yv eV,
(3.24)

(BV@o, V) 2(qya = (Ee(uo), V) L2(qye + (q(0),V)w Vi € W. (3.25)
By a standard procedure based on Green’s formula we can derive the following

variational formulation of the contact problem (2.1)—(2.13]).

Problem (PY). Find a displacement field u : [0,7] — V, an electric potential
field ¢ : [0,7] — W and a bonding field 3 : [0,T] — L?(T'3) such that

(Fe(u(t), e(v) —e(@(t))n + (E7Ve(t), e(v) — e(ilt)))n

+ Jad(B,u(t), v = 0(t)) + jne(u(t),v —(t))
g u(t),0) = o (ult), i) (326)

> (f(t),v—u(t)y YveVae tel0,T],
(BVo(t), Vi) L2(qye — (Ee(u(t)), ViP) L2 (q)a (3.27)

= (q(t),Y)w Vi € W ae. t €[0,T],

B(t) = =[B(t) (1 R (w, (£)® + 77 | Rr (ur ())[?) — €aly on T3 x (0,7),  (3.28)
u(0) = ug, B(0) = fo. (3.29)

In the rest of this section, we derive some inequalities involving the functionals
Jads Jne and jg, which will be used in the following sections. Below in this section
B1 and By denote elements of L?(T'3) such that 0 < 3;, B2 < 1 a.e. on I's, uy,
ug,v1,V2, u and v represent elements of V and c¢ is a generic positive constants
which may depend on Q, 'y |, I's, p,, 7, 7+ and L, whose value may change from
place to place. For the sake of simplicity, we suppress in what follows the explicit
dependence on various functions on z € QUT's. Using (3.3), (3.10), (3:20) , (3.21)
and the inequalities |R, (u,)| < L, ||R-(ur)|| < L, |B1] < 1, |B2] < 1, we obtain

|jad(/817u17w) - jad(ﬁZau%w) +jnc(u17w) _jnc(u27w)|
< (B = Ballra(ry) + lur — uallv)[[w]lv-

Next, we use (3.22)), (3.10) and (3.3]) to obtain
Gre(sv =) = jo(v,0 = ) < Ellallpe g Lullu — v} Yuv eV (331)
Jpr(ui,v1) — jpr(ur,v2) + jpr(u2, v2) — jpr(uz, v1)

< GLy ||l poo () lur — uzlv |lur — vy

Inequalities (3.30)—(3.32)) will be used in various places in the rest of the paper.

(3.30)

(3.32)

4. EXISTENCE RESULT

Our main result which states the solvability of Problem (PV), is the following.

Theorem 4.1. Assume that (3.6)—(3.8), (3.10)—(3.13)), (3.17)—(3.19) and (3.23)-
(3.25)) hold. Then there exists pg > 0 depending only on Q,T'1, I's, Ty, F, B and €
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such that, if (L, + Ly ||[pll oo rg) + Il oo rg) + 1llLosra)) < po, Problem (PY)
has at least one solution (u,p,3). Moreover, the solution satisfies

ue€ Wh>(0,T;V), (4.1
p e WH(0,T; W), (4.2)
BeWh>(0,T; L*(T3)) N Q. (4.3

A “quintuplete” of functions (u, o, ¢, D, ) which satisfies (2.1, [2.2), (3.26)-
is called a weak solution of the contact problem (P). To precise the regularity
of the Weak solut1on we note that the constitutive relations (2.1 ., the assump-
tions and the regularities (4.1), (4.2) show that o € Whee([0,T); H),
D e W1’°°([O7T];L2(Q)d). By putting v = 1(t) £ &, where £ € C5°(2)? in
and ¢ € C§°(Q) in we obtain

Divo(t) + fo(t) =0, divD(t) =qo(t), Vte€][0,T).

It follows now from the regularities (3.11), (3.12) that Divo € W°(0,T; L*(2))
and div D € W1°°(0,T; L?()), which shows that

o € Wh*(0,T;H,), (4.4)
D € W0, T;Wy).

‘We conclude that the weak solution (u o, <p, D, 3) of the plezoelectrlc Contact prob-
lem (P) has the regularity implied in ., (@.3), (4.4) and (4.5

The proof of Theorem is carrled out in several steps and is based on the
following abstract result for evolutionary variational inequalities.

Let X be a real Hilbert space with the inner product (-,-)x and the associated
norm || - ||x.

Let a: X x X — R be a bilinear formon X, j: X x X — R, f:[0,7] — X and
ug € X. With these data, we consider the following quasivariational problem: find
u: [0,T] — X such that

a(u(t),v —a(t)) + j(u(t),v) = j(u(t),u(t))

4.6
> (f(t),v—u(t)x YveX, ae te(0,T), (4.6)
u(0) = up. (4.7)
To solve problem (4.6))—(4.7]), we consider the following assumptions:
a: X X X — R is a bilinear symmetric form, and
(a) there exists M > 0 such that |a(u,v)| < M|ju||x||v|x for all
u,v € X, (4.8)
(b) there exists m > 0 such that a(v,v) > m||v|% for all v € X.
For every ¢ € X, j(¢,.) : X — R is a positively homogeneous
subadditive functional, i.e. (4.9)
(a) 4(¢, Au) = Aj(C,u) for allu € X, A € Ry, )
(b) (¢, u+v) <j(¢u)+j(¢,v) for all u,v € X,
fewh>(0,T; X), (4.10)
up € X. (4.11)

a(ug,v) + jlug,v) > (f(0),v)x Yve X. (4.12)
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Keeping in mind (4.9)), it results that for all { € X, j(¢,.) : X — R is a convex
functional. Therefore, there exists the directional derivative j5 given by

(Cauav) - hm 1[ ((,’LL-F )\’U) _J(Cv ) } VC,U,U € X. (413)

We consider now the followmg additional assumptions on the functional j.
For every sequence (u,) C X with ||u,||x —, every sequence (t,) C [0,1] and
each u € X one has

n—-+o0o

1
lim mf[WjQ( nlhn, U — Uy —Up )| < m. (4.14)

For every sequence (u,) C X with |[u,[[x — oo, every bounded sequence (¢,) C
X and for each u € X, one has

lim inf|
n—-+4oo

1
7‘212(%,% — W —up)] < m. (4.15)

[[n

For all sequences (u,) C X and (¢,) C X such that u, ~uve X, ( = (e X
and for every v € X, we have

1imiup[j(Cn, v) = J(Gns un)] < 5(C0) = 5(C, ). (4.16)
There exists kg € (0,m) such that
Jlu,v —u) — j(v,v —u) < kollu —v||%  Yu,v € X. (4.17)

There exist two functions a; : X — R and as : X — R, which map bounded sets
in X into bounded sets in R such that

(¢ w)] < ar(Qflulk +a2(¢) V¢,u€ X, and a1(0x) < m — ko. (4.18)

For every sequence (¢,) C X with ¢, — ¢ € X and every bounded sequence
(un) C X one has

lm [§(nyun) — 45( un)] =0. (4.19)

n—-+oo
For every s € (0,7] and every pair of functions u,v € WhH>(0,T; X), with
(

u(0) = v(0), u(s) # v(s),
/0 (u(t), 0(8)) — G(u(®), u(t)) + j(v(), a(t)) — j(u(t), o(t))]dt
< Fllu(s) = v(s)[%-

There exists o € (0, %) such that for every s € (0,7] and for every functions
u,v € Whe(0,T; X) with u(s) # v(s), it holds that

/OSU(U(t), 0(t)) = j(u(t), @(t) + 5 (v(t), u(t)) — j(v(t), O(F))]dt

< allu(s) —v(s)[%-
For the study of the evolutionary problem (4.6)—(4.7]), we recall the following
result.

(4.20)

(4.21)

u € WhHe(0,T; X) to problem (14.6) .
(ii) If assumptions (4.14)~([.20) are satisfied. then there exists a unique solution
u € WHe°(0,T; X) to problem (4.6)—(4.7).
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(iii) If assumptions (4.14)-(.19) 1) and are satisfied, then there exists a
1- ;

unique solution u € W (0,T; X) to and the mapping (f,ug) — R is
Lipschitz continuous from W ’ (0 T; X x X to L*°(0,T;X).

The proof can be find in [I6], it is obtained in several steps and it is based on
arguments of elliptic quasivariational inequalities and a time discretization method.
We return now to proof of theorem To this end, we assume in the following

that (3.6)—(3.8), (3-10)-(3.13), (B-17)-(3.19) and (3.23)—(3.25) hold. Below, c is a

generic positive constants which may depend on Q, 'y, I's, F, p,, v, v- and L,
whose value may change from place to place. For the sake of simplicity, we suppress
in what follows the explicit dependence on various functions on x € Q U I's.

Using the Riesz’s representation theorem, we define the operators G : W — W
and R : V — W respectively by

(Go(t), V)w = (BVp(t), Vi) 2)a Vo, €W, (4.22)
(Ru, p)w = (Ee(v), V) 20y Vo € W,v € V. (4.23)

We can show that G is a linear continuous symmetric positive definite operator.
Therefore, G is an invertible operator on W. We can also prove that R is a linear
continuous operator on V. Let R* the adjoint of R. Thus, from (3.9 we can write

(R*p,v)y = (E*Vp,e(v))y VoeW, veV. (4.24)
By introducing (4.22)—(4.23) in (3.27)) we obtain

and consequently

Ge(t) = Ru(t) + q(t).
On the other hand, G is invertible where the previous equality gives us
e(t) = G Ru(t) + G q(t). (4.25)
Using (4.24)—(4.25)) and (3.26)) we obtain
(Fe(u(t),e(v) — e(a(t))n + (R*G™ Ru(t),v —a(t))v
+ Jaa(B, ult), v — (1)) + Jne(u(t),v — u(t)) + jpr(u(t), v) = dpe(ult), (t)) (4.26)
> (f(t) = R*G 'q(t),v —u(t))y Vv eV, ae te(0,T).
Let now the operator L : V — V defined by
L(v) =R*G'R(v), Vv € V. (4.27)

Using the properties of the operators G, R and R*, we deduce that L is a linear
symmetric positive operator on V. Indeed, we have

(Lu,v)y = (R*G ' Ru,v)y
= (G7'Ru, Ru)w
= (Ru, G 'Ru)w
= (
= (

u, R*G 'Ry
u, Lu)y Yu,v € V
(Lv,v)y = (R*G'Ru,v)y,
(Lv,v)y = (GT'Ru, Rv)w >0 Vv € V. (4.28)
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Now, let the bilinear form a : V' x V' — R be such that
a(u,v) = (Fe(u(t)),e(v))y + (Lu,v)y Yu,v € V. (4.29)
The bilinear form a is continuous and coercive on V. Indeed, we have

la(u, v)] < (M + [[LID[lullv]lvllv Vu,v eV, (4.30)
a(v,v) > mlv||} Vv eV, (4.31)

and the symmetry of F and L leads to the symmetry of a.
Let now the function f : [0 7] — V be defined by

f(t) = f(t) — R*G q(t) Vte[0,T]. (4.32)
From we obtain
f e Wh>(0,T,V). (4.33)

The relations (4.26]), (4.29)), (4.32)), (3.28) and (3.29)) lead us to consider the follow-
ing variational problem, in the terms of displacement and bonding fields.

Problem P). Find a displacement field u : [0,7] — V, and a bonding field
B:10,T) — L?(T'3) such that
a(u(t), v —u(t)) + jaa(B, u(t), v = w(t)) + jne(u(t), v —u(t))
+ g (u(t),v) = jpr(u(t), i(t)) (4.34)
> (f(t),v —a(t)y YveV, ae te(0,7),
B(t) = ~[B(0) (1 Ro (uy (8))® + 72| Rr (ur (8))[1?) —€als on Ty x (0,7),  (4.35)
u(0) =uo, 3(0) = So. (4.36)

Theorem 4.3. Assume that (3.6)-(3.8), (-10)-@B.13), B17)-B-19) and (3:23)-

(3.25)) hold. Then, there exists pg > 0 depending only on Q,T'1, I's, Ty, F, B and
E such that, if

Ly + Ly||lpl Lo rg) + [ llzoerg) + el 2o (rs)) < pos
then Problem P} has at least one solution (u,3). Moreover, the solution satisfies
u € WhHe(0,T; V), (4.37)
B e Wh>(0,T; L*(T3)) N Q. (4.38)
We assume in the following that the conditions of Theorem hold. Let ¢ €
Whee(0,T; L3(T'3)) N Q be given and j : V x V — R defined by

Ja(uv) = / oty ()0 da + / 19, (u)|or | da

v " (4.39)

* / ( N ,yuﬁ2R”(uV)’UV + 'Y-rﬁzR'r(uT) ’ UT) da,
s

Now, we consider the following intermediate problem, in the term of displacement
field.
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Problem PJ'. Find the displacement field ug : [0, T] — V such that
a(up(t), v —ug(t)) + jp(us(t), v) — js(us(t), us(t))
> (f(t),v —ug(t))y YveV, ae te(0,T),
ug(0) = o, (4.41)

Remark 4.4. From (3.24) and (3.25)), we can deduce (4.12).
Theorem 4.5. Assume that (3.6)-(3.8), (3.10) -(3.13), (3.17) (3.19) and (3.23)) -

(3.25) hold. Then there exists pg > 0 depending only on Q, Ty, T's, Ty, F, B and €
such that, if

(4.40)

Ly, + Lyl o rg) + 17l oo (rg) + 170l oo () < h0,
then Problem P has at least one solution ug € W1>°(0,T,V).

We will use the results given by the Theorem to give a result of existence
of solutions of problem P). We remark that the functional js, given by (#.39),
satisfies condition (4.9)). In addition, we have the following results.

Lemma 4.6. The functional jz satisfies the assumptions (4.14) and -
Proof. Let ¢,u,u € V and let A €]0,1]. Using (3.22), it follows that jg satisfies
Ja(Cu—u = Au) — jg(C,u — )

<A / pu(Cy)uy da — A / 1 () r — T, da+ A / 1p ()T || da
I'3 I'3 I'3

+ >\/ 'YVﬂQRV<<u)uV da — )\/ 'YTBQRT(CT) - ur da,
rs rs
and as pu > 0, p, > 0 a.e. on I's, we obtain
Jﬁ((au —u— /\U) 7].{3(43“ 7ﬂ)
< [ mlcrmdasn [ @l ldat A [ 5B RG ), da
I3 rs rs

X[ %B*R.(¢) -urda, Y, u,u € V.
rs

Moreover, we deduce from (4.13]) that
]é((a U — ﬂ; 7’(1,)

< _/ngu(Cu)uv da+/I‘3 ﬂpv(CV)HETHda (4'42)
+ /1“3 ’yyﬁZRV(CV)u,, da —/F ’yTﬁZRT(CT) curda V¢, u,u € V.

Now consider the sequences (un)nen CV, (tn)nen C [0 1] and the element uw € V.

Using . , and -, we find

.72(tnuna Up — U, _un)

< —/ pu(tnunu)unt/"‘/ 1Py (tntiny ) |07 || da
I3 I3

+ / 0B Ry (bt Yty dt — / e B2 R (bntns) - iy da ¥C,u, 0 € V
I3 I'3
(4.43)
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Keeping in mind that 0 < 8 < 1 a.e. on I's and using (3.10)), (2.15) and (3.17) we
obtain p, (tpUny )tn, > 0 and v, 32 R; (tptn,) - ur > 0 p.p. on I's. So ([{#.43) implies

ottt — T —ttn) < / 1o (bt )T ]| da + / o B Ry (bt Yt .
I3 I'3

Now, using (3.10)(b), (3.3) and the fact that |R, (t,un,)| < L we obtain

jé(tnu'm Up — W; —Unp)
< Millzecra Lo [ fen el da+ Loy | Tun] da
rs r3

< cgllell oo o) L lunllv @llv + oLyl o ry) meas(T's) [|un ||y

It follows from the previous inequality that if ||u, ||y — 400, then

1
lim inf [ (bt = T —t)| <0,
I 108 | P2t ton =5 —in) | <

and we conclude that js satisfies assumption (4.14]).
Now consider the sequences (t)neny C V, (Cn)nen C V such that

l[wnllv — +o0, (4.44)
Iully < C Vn eN, (4.45)
where C' > 0. Let w € V. Using (3.3), (3.10), (3.18), (4.42)) and we obtain
G5 (Gns tn = T —tun) < GLu[|Gnllv lunllv + €gllpll Lo gy LulICallv [Tllv
+ coL |yl Lo (ry) meas(T's) [un || v (4.46)
+ coL||vr || Lo (ry) meas(T'3)[Jun|lv  ¥n € N.

From (4.44) and (4.46)), we conclude that

(Cns un — W3 —up)] 0.

- )
lim inf | T2 72

Thus, we deduce that jsz satisfies (4.15)). |

Lemma 4.7. The functional jg satisfies the conditions (4.16]) and (4.19).

Proof. Let (up)nen C V, (Cu)nen C V be two sequences such that v, — v € V
and ¢, — ¢ € V. Using the compactness property of the trace map and (3.10)), it
follows that

pu(Cu) = po(G)  in L (T3), (4.47)
U, —u in L?(T'3)%. (4.48)
Ry(Cuw) — Ru(G) in L*(Ts).
R(Cnr) = Re(Gr) in L2(T5)
Therefore, we deduce from (4.47)), (4.48) and (4.49) that
38(Cnsv) = js(Gv) Vv eV,
jﬁ(CmUn) - jﬁ(c,u),
which show that the functional js satisfies
lim sup[jg(Cn, v) = j(Gns un)] < ja(¢,v) — s (¢, w).

n—-+oo

Thus, we deduce that jg satisfies (4.16).
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Now we consider (u,)nen a bounded sequence of V, i.e.
lunllv < C VneN, (4.50)
where C' > 0. We have

175(Cus ) — G5(Coun)| < / 1Pu (Cow) — Do (G 1ty | da
I'3
il / 900G = 1)t de
) / Ry (o) — Ro(6) 1ty da

+ ||’YT||L°°(F3) /F | Ry (tnr) — Rr(nz) || [|tinr || da,
3

using 7 we obtain
175 (Cns un) — Jig(Co un)|
< collpv (Gnv) = po(Co)llz2ra) + 1l oo (0g) [P0 (Gr) = o (Co) |2 (ra)
+ el o () 1B (Cav) — Ru(Co)) I 2(rs)
+ 17 Lo (o) |1 Rr (tnr) = Ry (tnr ) || 22(r5)) lnl v,
Thus, from ([£.47), (£.49), (4.50) and ([@.51)), we conclude that jg satisfies
nEI_EOO[]B(Cm un) - jfr((a un)] =0.
So, we deduce that jg satisfies (£.19). O

(4.51)

Lemma 4.8. The functional jg satisfies the assumption (4.18)) for all ko € (0,m).
Moreover,

jf,«(’LL,'U - u) _jfr(U;'U - u)
< co(Ly + il oo (rg) Lo + 11| oo gy + 177 [l 20w (0g)) 1 = 0[5
Proof. Let ¢,u € V. Using (3.10)), (3.18)) and (4.39)), we obtain

(4.52)

176(¢ )| < Lullull Lz og) 1w ll 22 (rs)
+ [[pll oo (0a) Lo lICull L2 () 10 | L2 (05
+ H%HLoo(m,)||Ru(Cu)||L2(F3)HUvHLZ(Fs)
+ e Lo o) 1 R7 (G | L2 rgya llwr | L2 (rg)e-

Keeping in mind (3.3) and that R,, R, are Lipschitz continuous operators, we
obtain

8 (C W) < LG lIv l[ullv + cglll e gy Lo v llullyv
+ gl g ISV llullv + vl g ISy llullv,
Finally, we obtain

178(Cw)] < (L + |l ow ra) Lo + [l (o) + 12l oo ) ISV el

which implies condition (4.18]), for all kg € (0,m). Now let u,v € V. Using again
the assumptions (3.10)), (3.18)) and (4.39) we find

Jg(u,v —u) — jg(v,v —u)
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- / (0o (1) — o () 0y — ) da + / (s () — po(0,)) [0 — ur| da
'3

I3

+ /1“3 ’yyﬂz(Ry(uu) —R,(v,)) (v, —uy) da
[ B R r) = Rew) (0 = ) da

Keeping in mind (3.10)), (3.3)) and that R,, R, are Lipschitz continuous operators,
we obtain

Jjs(u,v —u) — jg(v,v —u)

< L,,/ vy — |2 da+ ||u||Lm(F3)Ly/ vy — un[|vr — s da
I3 I3
ol [ 1o = wP dat el [ for = url? da
T3 I'3
It follows from the previous inequality that

jfr(u7U - u) _jfr(vvv - ’LL)
2 2
< cg(Ly + |l oe (rg) Lo + 17l o (rg) + 177 oo () [l — 0|57

which implies (4.52)). O

Proof of Theorem[/.5. Using the symmetry of F and L and (4.31)), we see that the
bilinear form a defined by (4.29) is symmetric and coercive.
Let po = %. Clearly, po depends only on €, I'y, I's, I'y, F, & and B. Now
0

assume that

Ly + [|pll Loe (rg) Lo + 17 ll o (rg) + 177 o (rs) < o

We deduce that

g (Ly + 1l oe (rg) Lo + 7ol oo () + 177 | 2o (mg)) < M.

Then, there exists a real kg such that
c3(Ly + ll oo gy Ly + 19l oo (rg) + 17 [l £ow 1)) < ko <

Using (4.52)) we deduce that (4.17) is verified. Using Lemmas 4.8] (3.23)), Re-
mark 4.4 and Theorem [4.2{1), we deduce that problem P} has at least one solution

ug € W (0,T; V). O

As in [5], we adopt the following time-discretization. For all n € N*, we set
t; = iAt, 0 < i < n, and At = T/n. We denote respectively by u’ = u(t;) where
u is the solution of Problem P} and 3 the approximation of 3 at time t; and
Au(t;) = u(tiv1) — u(t;), AB* = B2 — 3. For a continuous function w(t), we use
the notation w?® = w(t;). Then we obtain a sequence of time-discretized problems
P? of Problem P} defined for u(0) = ug and 8% = 3y by:
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Problem P!. For u(t;) € V, 8 € L>°(T'3), find u(t;11) € V, B! € L>(T'3) such
that

a(u(tisr),w = u(tivr)) + Jaa(BF ultivn), w — ultivr))

+ Jne(u(tivr), w — u(tivr)) + Jpr(utivn), w —u(t:)) — jpr(u(t), Au(t;))

> (£(tit1),w —u(tiv1))v,

/611+1 ﬂl . . .
— BT (v (R (u5™ )2 + v (|R-(uEH))?) — 4]y ave. on Ty,

At
(4.53)
We have the following result.

Proposition 4.9. There exists pi. > 0 such that for ||| e,y < pte, Problem P
has a unique solution.

For the proof of the above proposition, it suffices to invoke [23] Proposition
4.4] In the next step, we use the displacement field ug obtained in Theorem
let v = ug and denote by u,, u, its normal and tangential components, and we
consider the following initial value problem.

Problem P{*. Find a bonding field 3, : [0,7] — L*(T'3) such that

Bu(t) = =[Bu() (W R (w, (1)* + 77 | e (ur (D)%) —€al+ e t€(0,T), (4.54)
Bu(0) = Bo. (4.55)
We obtain the following result.

Lemma 4.10. There exists a unique solution B3, to Problem P3“ and it satisfies
Bu € WE(0,T, L*(T'3)) N Q.

Proof. Consider the mapping F : [0,T] x L?(T's) — L?(I'3) defined by

F(t,8u) = =[Bu(t) (3 Ro (un ())* + 77 | Rr (ur (1))I7) — €0+, (4.56)

for all t € [0,7] and B, € L*(T'3). It follows from the properties of the truncation
operators R, and R, that F' is Lipschitz continuous with respect to the second
argument, uniformly in time. Moreover, for any 3, € L?(I'3), the mapping t
F(t,3,) belongs to L>(0,T; L*(T3)). Using now a version of Cauchy-Lipschitz
theorem, see [28 page 48], we obtain the existence of a unique function 3, €
W12°(0,T, L?(I's)) which solves (4.54), We note that the restriction 0 <
By < 1is implicitly included in the Cauchy problem ’PS” Indeed 4.54]) and ( -
guarantee that 3, (t) < By and, therefore, assumption (3 ShOWS that Bu(t) <

for t > 0 a.e. on I's. On the other hand, if 5,(ty) = O at t = tg, then it follows
from and ( - that ﬂu =0 for all ¢t >ty and therefore, 3, (t) = 0 for all
t> to, a.e. on I's. We conclude that 0 < B,(¢t) <1 for all t € [0,T], a.e. on I's.
Therefore, from the definition of the set Q, we find that 3, € Q. Then, it follows
that 3, € W1>°(0,T, L*(T'3))N Q, which concludes the proof of Lemma O

Now we introduce the sequences of functions 5" (t) and «"(t) defined on [0; T] by
90) = B4 () = ! = ult), @) = ol & U5 A’ and f7(1) = [+ =
f(tis1) for all t €]t;, ti41[;i=0,...,n—1; and 3"(0) = fo, u"(0) = uo, f"(0) = fo.

Lemma 4.11. Let u and 3 be the solutions to Problem PY and Problem Pﬁ“
respectively. Then we have:
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(i) u™ — u and ™ — u strongly in L>=(0,T;V), Fort € (t;,ti+1),
(ii) B" — B strongly in L>(0,T; L*(T3)), For t € (t;,tiy1)

Proof. (i) Since u € W1°°(0,T,V), we deduce that u™ — u and U — @ strongly
in L*°(0,T;V), For t € (t;,t;11)-
(ii) For t € (t;,t;41) we have

18" (8) = B2 (rs) < 8™ () = Bt 1)l L2ry) + [18(ti41) = Bl L2(r)-
As g€ WHee(0,T; L?('3)), we have

T .
15(tiv1) = B@)z2(rs) < —llBllLe(o,7:02(rs)-
Using the properties of R, and R, in [5], we have

lim max - Hﬁz B(ti)llLz(rs) = 0.

n—oo i=0,.
So we deduce that
lim max 18™(t) — B(t) |2 (ry) = 0.

n—o0 te[0,T

Now we have all the ingredients to prove the following proposition.
Proposition 4.12. (u,3) is a solution to Problem P} .

Proof. In the inequality (4.53)), for v € V set w = u(t;) + vAt and divide by At;
we obtain

aultirn),o — S0 4 jouttin), v~ 200D) 4 g ltinn). 0
~pelutt), 22Dy (5 i) 0 - A‘f )
> (- B0,

Whence for any v € L2(0,T; V), we have
aultssn) v = SR + (a0 = 295 e uttinn), o
T O R
> (i 0 - 2y,

Integrating both sides of the above inequality on (0,7T), we obtain
a(u™(8),0(t) = @) + g (W (1), 0() = g (" (1), @ (1))
+ e (8),0(t) — 0" (1)) + Jaa(B" (), (1), v(t) — 0 (t) (4.57)
> (f™(t),v(t) — 4" ()

To pass to the limit in this inequality we need to establish the following properties.
After whihc the proof will be complete. O



EJDE-2014/257 ELECTRO-ELASTIC CONTACT PROBLEM 19

Lemma 4.13. We have the following properties for v € L*(0,T;V):

T . T
nhﬂn;() ; a(u™(t),v(t) —u )dtz/o a(u(t),v(t) — u(t))dt, (4.58)
twin [ gy, (0.3" )t > [ dpu(o. i) (159)
0 0
T T
Tim [ (a0, () dt = / Gpe(u(t), v(®))dt, (4.60)
0 0
T [ et @00 =T @) > [ guctulo) o) it @6
0 0
T . T
Jm [ o0 =T O = [ w00 -iwva, 66

Jim [ a5 0), (0, v00) — 0 (1))t = / Jaa(B(1), u(t), v(t) — a(t))dt.
(4.63)

Proof. For (4.58)) and we refer the reader to [30, Lemma 4.6]. To prove
and (4.61)) it suffices to see [16, Lemma 3.5]. To prove (4.60), it suffices to
use Lemma i). Finally for the proof of we refer the reader to [5l Lemma
3.8] and use the properties of operators R;, R,.

Now using lemma M(u) and Lemma we pass to the limit as n — 400 in
the inequality to obtain

T T T
/0 a(u(t), o(t) — a(t))dt + / e (ult), o(t))dt — / e (u(t), at))dt
; / e (u(t), 0(t) — (1)) dt + / Jaa(B(E), u(t), v(t) — a(t))dt
T
> / (F(8), v(t) — a(t))vt,

from which we deduce (4.34)) and also that 3 is the unique solution of the differential
equation (4.35)). O

Proof of Theorem[4.1. Let (u, () be the solution of Problem PY. It follows from
(4.32), (4.29), (4.27), (4.25), (4.24), 4 23 and (4.22)) that (u, ¢, ) is, at least, a

solution of Problem ’PV Property (4.1)), (4.2) and (4.3)) follow from Theorem
and (4.25)). D
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