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A QUASISTATIC ELECTRO-ELASTIC CONTACT PROBLEM
WITH NORMAL COMPLIANCE, FRICTION AND ADHESION

NADHIR CHOUGUI, SALAH DRABLA

Abstract. In this article we consider a mathematical model which describes
the contact between a piezoelectric body and a deformable foundation. The

constitutive law is assumed linear electro-elastic and the process is quasistatic.

The contact is adhesive and frictional and is modelled with a version of normal
compliance condition and the associated Coulomb’s law of dry friction. The

evolution of the bonding field is described by a first order differential equation.
We derive a variational formulation for the model, in the form of a coupled

system for the displacements, the electric potential and the bonding field. Un-

der a smallness assumption on the coefficient of friction, we prove an existence
result of the weak solution of the model. The proofs are based on arguments

of time-dependent variational inequalities, differential equations and Banach

fixed point theorem.

1. Introduction

In this work, we study a frictional contact problem with adhesion between an
elastic piezoelectric body and a deformable obstacle.

A piezoelectric material is one that produces an electric charge when a me-
chanical stress is applied (the material is squeezed or stretched). Conversely, a
mechanical deformation (the material shrinks or expands) is produced when an
electric field is applied. This kind of materials appears usually in the industry as
switches in radiotronics, electroacoustics or measuring equipments. Piezoelectric
materials for which the mechanical properties are elastic are also called electro-
elastic materials, and those for which the mechanical properties are viscoelastic are
also called electro-viscoelastic materials. Different models have been developed to
describe the interaction between the electric and mechanical fields ( see [1, 13],
[18]-[20], [28, 29]). General models for elastic materials with piezoelectric effect,
called electro-elastic materials, can be found in [1, 13]. A static frictional contact
problem for electric-elastic materials was considered in [2, 17] and a slip-dependent
frictional contact problem for electro-elastic materials was studied in [26].

Adhesion may take place between parts of the contacting surfaces. It may be
intentional, when surfaces are bonded with glue, or unintentional, as a seizure
between very clean surfaces. The adhesive contact is modelled by the introduction
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of a surface internal variable, the bonding field, denoted in this paper by β; it
describes the pointwise fractional density of active bonds on the contact surface,
and sometimeas referred to as the intensity of adhesion. Following [9, 10], the
bonding field satisfies the restrictions 0 ≤ β ≤ 1; when β = 1 at a point of the
contact surface, the adhesion is complete and all the bonds are active; when β = 0
all the bonds are inactive, severed, and there is no adhesion; when 0 < β < 1 the
adhesion is partial and only a fraction β of the bonds is active. Basic modelling
can be found in [9]–[11]. Analysis of models for adhesive contact can be found in
[3, 4] and in the monographs [24, 25]. An application of the theory of adhesive
contact in the medical field of prosthetic limbs was considered in [22, 23]; there, the
importance of the bonding between the bone-implant and the tissue was outlined,
since debonding may lead to decrease in the persons ability to use the artificial limb
or joint.

Since frictional contact is so important in industry, there is a need to model and
predict it accurately. However, the main industrial need is to effectively control the
process of frictional contact. Currently, there is a considerable interest in frictional
contact problems involving piezo-electric materials, see for instance [2, 15, 26].

The aim of this article is to continue the study of problems begun in [12, 21, 6].
The novelty of the present paper is to extend the result when the contact and
friction are modelled by a normal compliance condition and a version of Coulomb’s
law of dry friction, respectively. Moreover, the adhesion is taken into account at
the interface and the material behavior is assumed to be electro-elastic.

The paper is structured as follows. In Section 2 we present the electro-elastic
contact model with normal compliance, friction and adhesion and provide comments
on the contact boundary conditions. In Section 3 we list the assumptions on the
data and derive the variational formulation. In section 4, we present our main
existence results.

2. Problem statement

We consider the following physical setting. An electro-elastic body occupies a
bounded domain Ω ⊂ Rd (d = 2, 3) with a smooth boundary ∂Ω = Γ. The body
is submitted to the action of body forces of density f0 and volume electric charges
of density q0 . It is also submitted to mechanical and electric constraints on the
boundary. To describe them, we consider a partition of Γ into three measurable
parts Γ1, Γ2 and Γ3 on one hand, and a partition of Γ1 ∪Γ2 into two open parts Γa
and Γb, on the other hand., such that meas(Γ1) > 0 , meas(Γa) > 0. We assume
that the body is clamped on Γ1 and surface tractions of density f2 act on Γ2. On Γ3

the body is in adhesive contact with an insulator obstacle, the so-called foundation.
We also assume that the electrical potential vanishes on Γa and a surface electric
charge of density q2 is prescribed on Γb. We denote by Sd the space of second
order symmetric tensors on Rd and we use · and ‖·‖ for the inner product and
the Euclidean norm on Rd and Sd, respectively. Also, below ν represents the unit
outward normal on Γ. With these assumptions, the classical model for the process
is the following.

Problem (P). Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ :
Ω × [0, T ] → Sd, an electric potential ϕ : Ω × [0, T ] → R, an electric displacement
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field D : Ω× [0, T ]→ Rd and a bonding field β : Ω× [0, T ]→ R such that

σ = Fε(u)− E∗E(ϕ) in Ω× (0, T ), (2.1)

D = BE(ϕ) + Eε(u) in Ω× (0, T ), (2.2)

Div σ + f0 = 0 in Ω× (0, T ), (2.3)

divD = q0 in Ω× (0, T ), (2.4)

u = 0 on Γ1 × (0, T ), (2.5)

σν = f2 on Γ2 × (0, T ), (2.6)

−σν = pν(uν)− γνβ2Rν(uν) on Γ3 × (0, T ), (2.7)

‖στ + γτβ
2Rτ (uτ )‖ ≤ µpν(uν),

‖στ + γτβ
2Rτ (uτ )‖ < µpν(uν)⇒ u̇τ = 0,

‖στ + γτβ
2Rτ (uτ )‖ = µpν(uν)

⇒ ∃λ ≥ 0 such that στ + γτβ
2Rτ (uτ ) = −λu̇τ ,

(2.8)

on Γ3 × (0, T ),

β̇(t) = −[β(t)(γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2)− εa]+ on Γ3 × (0, T ), (2.9)

ϕ = 0 on Γa × (0, T ), (2.10)

D · ν = 0 on Γb × (0, T ), (2.11)

u(0) = u0 in Ω, (2.12)

β(0) = β0 on Γ3. (2.13)

We now provide some comments on equations and conditions (2.1)–(2.13). Equa-
tions (2.1) and (2.2) represent the electro-elastic constitutive law in which ε(u)
denotes the linearized strain tensor, E(ϕ) = −∇ϕ is the electric field, where ϕ
is the electric potential, F = (Fijkl) is a 4th rank tensor, called the elastic ten-
sor and its components Fijkl are called coefficients of elasticity, E represents the
piezoelectric operator, E∗ is its transposed, B denotes the electric permittivity op-
erator, and D = (D1, . . . , Dd) is the electric displacement vector. Details on the
constitutive equations of the form (2.1) and (2.2) can be find, for instance, in [1]
and in [2]. Next, equations ((2.3) and (2.4) are the equilibrium equations for the
stress and electric-displacement fields, respectively, in which Div and div denote
the divergence operator for tensor and vector valued functions, respectively. Equa-
tions (2.5) and (2.6) represent the displacement and traction boundary conditions.
Conditions (2.10) and (2.11) represent the electric boundary conditions. Condi-
tion (2.7) describes contact with normal compliance and adhesion where uν is the
normal displacement, σν represents the normal stress, γν denotes a given adhesion
coefficient and Rν is the truncation operator defined by

Rν(s) =


L if s < −L,
s if − L ≤ s ≤ 0,
0 if s > 0,

(2.14)

where L > 0 is the characteristic length of the bond, beyond which it does not
offer any additional traction. The introduction of operator Rν , together with the
operator Rτ defined below, is motivated by the mathematical arguments but it is
not restrictive for physical point of view, since no restriction on the size of the
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parameter L is made in what follows. Thus, by choosing L very large, we can
assume that Rν(uν) = uν .

Here pν is a nonnegative prescribed function, called normal compliance function.
Indeed, when uν < 0 there is no contact and the normal pressure vanishes. When
there is contact, uν is positive and is a measure of the interpenetration of the
asperities. A commonly used example of the normal compliance function pν is

pν(r) = cνr+,

where cν > 0 is the surface stiffness coefficient and r+ = max{0, r} denotes the
positive part of r. We can also consider the following truncated normal compliance
function:

pν(r) =

{
cνr+ if r ≤ α,
cνα if r > α,

where α is a positive coefficient related to the wear and hardness of the surface.
In this case, the above equality means that when the penetration exceeds α the
obstacle offers no additional resistance to penetration. It follows from (2.7) that
the contribution of the adhesion to the normal traction is represented by the term
γνβ

2Rν(uν), but as long as uν does not exceed the bond length L.
Condition (2.8) is the associated Coulomb’s law of dry friction, where uτ and στ

denote tangential components of vector u and tensor σ, respectively. Her µ is the
coefficient of friction and Rτ is the truncation operator given by

Rτ (υ) =

{
υ if ‖υ‖ ≤ L,
L υ
‖υ‖ if ‖υ‖ > L.

(2.15)

This condition shows that the contribution of the adhesion to the tangential shear
on the contact surface is represented by the term γτβ

2Rτ (uτ ), but again, only up
to the bond length L.

The evolution of the bonding field is governed by the differential equation (2.9)
with given positive parameters γν , γτ and εa. For more details about conditions
(2.7)–(2.9), we refer the reader to [24] and [25]. Here and below in this paper, a dot
above a function represents the derivative with respect to the time variable. We
note that the adhesive process is irreversible and, indeed, once debonding occurs
bonding cannot be reestablished, since β̇ ≤ 0. Finally, (2.12) and (2.13) represent
the initial conditions where β0 and u0 are given.

3. Variational formulation and preliminaries

In this section, we list the assumptions on the data and derive a variational for-
mulation for the contact problem. To this end we need to introduce some notation
and preliminary material.

We recall that the inner products and the corresponding norms on Rd and Sd
are given by

u · υ = uiυi, ‖υ‖ = (υ · υ)
1
2 ∀u, υ ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ)
1
2 ∀σ, τ ∈ Sd.

Here and everywhere in this paper, i, j, k, l run from 1 to d, summation over
repeated indices is applied and the index that follows a comma represents the partial
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derivative with respect to the corresponding component of the spatial variable, e.g.
ui,j = ∂ui

∂xj
.

Everywhere below, we use the classical notation for Lp and Sobolev spaces
associated to Ω and Γ. Moreover, we use the notation L2(Ω)d, H1(Ω)d, H and H1

for the following spaces

L2(Ω)d = {υ = (υi) : υi ∈ L2(Ω)}, H1(Ω)d = {υ = (υi) : υi ∈ H1(Ω)},
H = {τ = (τij) : τij = τji ∈ L2(Ω)}, H1 = {τ ∈ H : τij,j ∈ L2(Ω)}.

The spaces L2(Ω)d, H1(Ω)d, H and H1 are real Hilbert spaces endowed with the
canonical inner products

(u, υ)L2(Ω)d =
∫

Ω

u · υ dx, (u, υ)H1(Ω)d =
∫

Ω

u · υ dx+
∫

Ω

∇u · ∇υ dx,

(σ, τ)H =
∫

Ω

σ · τ dx, (σ, τ)H1 =
∫

Ω

σ · τ dx+
∫

Ω

Div σ ·Div τ dx,

and the associated norms ‖ · ‖L2(Ω)d , ‖ · ‖H1(Ω)d , ‖ · ‖H and ‖ · ‖H1 , respectively.
Here and below we use the notation

∇υ = (υi,j), ε(υ) = (εij(υ)), εij(υ) =
1
2

(υi,j + υj,i) ∀υ ∈ H1(Ω)d,

Div τ = (τij,j) ∀τ ∈ H1.

For every element υ ∈ H1(Ω)d. We also write υ for the trace of υ on Γ and we
denote by υν and υτ the normal and tangential components of υ on Γ given by
υν = υ · ν, υτ = υ − υνν.

Let now consider the closed subspace of H1(Ω)d defined by

V = {υ ∈ H1(Ω)d | υ = 0 on Γ1}.

Since meas(Γ1) > 0, the following Korn’s inequality holds

‖ε(υ)‖H ≥ cK ‖υ‖H1(Ω)d ∀υ ∈ V, (3.1)

where cK > 0 is a constant which depends only on Ω and Γ1. Over the space V we
consider the inner product given by

(u, υ)V = (ε(u), ε(υ))H, (3.2)

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (3.1) that
‖ · ‖H1(Ω)d and ‖ · ‖V are equivalent norms on V and, therefore, (V, ‖ · ‖V ) is a real
Hilbert space. Moreover, by the Sobolev trace theorem, (3.1) and (3.2), there exists
a constant c0 depending only on the domain Ω, Γ1 and Γ3 such that

‖υ‖L2(Γ3)d ≤ c0‖υ‖V ∀υ ∈ V. (3.3)

We also introduce the spaces

W = {ψ ∈ H1(Ω) | ψ = 0 on Γa},
W1 = {D = (Di) | Di ∈ L2(Ω), Di,i ∈ L2(Ω)}.

Since meas(Γa) > 0, the following Friedrichs-Poincaré inequality holds

‖∇ψ‖L2(Ω)d ≥ cF ‖ψ‖H1(Ω) ∀ψ ∈W, (3.4)
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where cF > 0 is a constant which depends only on Ω and Γa and ∇ψ = (ψ,i ). Over
the space W , we consider the inner product given by

(ϕ,ψ)W =
∫

Ω

∇ϕ · ∇ψ dx,

and let ‖ · ‖W be the associated norm. It follows from (3.4) that ‖ · ‖H1(Ω) and
‖ · ‖W are equivalent norms on W and therefore (W, ‖ · ‖W ) is a real Hilbert space.
Moreover, by the Sobolev trace theorem, there exists a constant c̃0, depending only
on Ω, Γa and Γ3, such that

‖ψ‖L2(Γ3) ≤ c̃0‖ψ‖W ∀ψ ∈W. (3.5)

The space W1 is a real Hilbert space with the inner product

(D,E)W1 =
∫

Ω

D · E dx+
∫

Ω

divD · divE dx,

and the associated norm ‖ · ‖W1 .
Finally, for every real Hilbert space X we use the classical notation for the spaces

Lp(0, T ;X) and W k,p(0, T ;X), 1 ≤ p ≤ ∞, k ≥ 1 and we also introduce the set

Q = {β ∈ L∞(0, T ;L2(Γ3)) : 0 ≤ β(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3}.

In the study of problem P, we consider the following assumptions on the problem
data.

The elasticity operator F , the piezoelectric operator E and the electric permit-
tivity operator B satisfy the following conditions:

(a) F = (F ijkl) : Ω× Sd → Sd,
(b) Fijkl = Fklij = Fjikl ∈ L∞(Ω),
(c) There exists mF > 0 such that Fijklεijεkl ≥ mF‖ε‖2 for all
ε ∈ Sd, a.e. in Ω.

(3.6)

(a) E : Ω× Sd → Rd,
(b) E(x, τ) = (eijk(x)τjk) for all τ = (τij) ∈ Sd, a.e. x ∈ Ω,
(c) eijk = eikj ∈ L∞(Ω).

(3.7)

(a) B : Ω× Rd → Rd,
(b) B(x,E) = (bij(x)Ej) for all E = (Ei) ∈ Rd, a.e. x ∈ Ω,
(c) bij = bji ∈ L∞(Ω),
(d) There exists mB > 0 such that bij(x)EiEj ≥ mB‖E‖2 for all
E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(3.8)

From assumptions (3.7) and (3.8), we deduce that the piezoelectric operator
E and the electric permittivity operator B are linear, have measurable bounded
components denoted eijk and bij , respectively, and moreover, B is symmetric and
positive definite.

Recall also that the transposed operator E∗ is given by E∗ = (e∗ijk) where e∗ijk =
ekij , and

Eσ · υ = σ · E∗υ ∀σ ∈ Sd, υ ∈ Rd. (3.9)
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The normal compliance function satisfies
(a) pν : Γ3 × R→ R+,
(b) there exists Lν > 0 such that ‖pν(x, r1)−pν(x, r2)‖ ≤ Lν |r1−
r2| for all r1, r2 ∈ R, a.e. x ∈ Γ3.
(c) x 7→ pν(x, r) is measurable on Γ3 for all r ∈ R.
(d) x 7→ pν(x, r) = 0 for all r ≤ 0 a.e. x ∈ Γ3.

(3.10)

We also suppose that the body forces and surface tractions have the regularity

f0 ∈W 1,∞(0, T ;L2(Ω)d), f2 ∈W 1,∞(0, T ;L2(Γ2)d), (3.11)

and the densities of electric charges satisfy

q0 ∈W 1,∞(0, T ;L2(Ω)), q2 ∈W 1,∞(0, T ;L2(Γb)). (3.12)

Finally, we assume that

q2(t) = 0 on Γ3 ∀t ∈ [0, T ]. (3.13)

Note that we need to impose assumption (3.13) for physical reasons; indeed, the
foundation is supposed to be insulator and therefore the electric boundary condi-
tions on Γ3 do not have to change in function of the status of the contact, are the
same on the contact and on the separation zone, and are included in the boundary
condition (2.11).

The Riesz representation theorem implies the existence of two functions f :
[0, T ]→ V and q : [0, T ]→W such that

(f(t), υ)V =
∫

Ω

f0(t) · υ dx+
∫

Γ2

f2(t) · υ da, (3.14)

(q(t), ψ)W =
∫

Ω

q0(t)ψ dx−
∫

Γb

q2(t)ψ da, (3.15)

for all υ ∈ V , ψ ∈ W and t ∈ [0, T ]. We note that conditions (3.11) and (3.12)
imply

f ∈W 1,∞(0, T ;V ), q ∈W 1,∞(0, T ;W ). (3.16)
The adhesion coefficients γν , γτ and the limit bound εa satisfy the conditions

γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0 a.e. on Γ3, (3.17)

and the friction coefficient µ is such that

µ ∈ L∞(Γ3), µ(x) ≥ 0 a.e. on Γ3. (3.18)

The initial condition β0 satisfies

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3. (3.19)

Next, we define the adhesion functional jad : L2(Γ3)× V × V → R by

jad(β, u, υ) =
∫

Γ3

(−γνβ2Rν(uν)υν + γτβ
2Rτ (uτ ) · υτ ) da, (3.20)

the normal compliance functional V × V → R by

jnc(u, υ) =
∫

Γ3

pν(uν(t))υν da, (3.21)

and the friction functional V × V → R by

jfr(u, υ) =
∫

Γ3

µpν(uν)‖υτ‖ da. (3.22)
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We consider the following assumptions on the conditions initials

u0 ∈ V, (3.23)

(Fε(u0), ε(υ))H + (E∗∇ϕ0, ε(υ))H + jad(β0, u0, υ) + jnc(u0, υ) + jfr(u0, υ)

≥ (f(0), υ)V ∀υ ∈ V,
(3.24)

(B∇ϕ0,∇ψ)L2(Ω)d = (Eε(u0),∇ψ)L2(Ω)d + (q(0), ψ)W ∀ψ ∈W. (3.25)

By a standard procedure based on Green’s formula we can derive the following
variational formulation of the contact problem (2.1)–(2.13).

Problem (PV ). Find a displacement field u : [0, T ] → V , an electric potential
field ϕ : [0, T ]→W and a bonding field β : [0, T ]→ L2(Γ3) such that

(Fε(u(t)), ε(υ)− ε(u̇(t)))H + (E∗∇ϕ(t), ε(υ)− ε(u̇(t)))H
+ jad(β, u(t), υ − u̇(t)) + jnc(u(t), υ − u̇(t))

+ jfr(u(t), υ)− jfr(u(t), u̇(t))

≥ (f(t), υ − u̇(t))V ∀υ ∈ V a.e. t ∈ [0, T ],

(3.26)

(B∇ϕ(t),∇ψ)L2(Ω)d − (Eε(u(t)),∇ψ)L2(Ω)d

= (q(t), ψ)W ∀ψ ∈W a.e. t ∈ [0, T ],
(3.27)

β̇(t) = −[β(t)
(
γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2

)
− εa]+ on Γ3 × (0, T ), (3.28)

u(0) = u0, β(0) = β0. (3.29)

In the rest of this section, we derive some inequalities involving the functionals
jad, jnc and jfr which will be used in the following sections. Below in this section
β1 and β2 denote elements of L2(Γ3) such that 0 ≤ β1, β2 ≤ 1 a.e. on Γ3, u1,
u2, υ1, υ2, u and υ represent elements of V and c is a generic positive constants
which may depend on Ω, Γ1 , Γ3, pν , γν , γτ and L, whose value may change from
place to place. For the sake of simplicity, we suppress in what follows the explicit
dependence on various functions on x ∈ Ω ∪ Γ3. Using (3.3), (3.10), (3.20) , (3.21)
and the inequalities |Rν(uν)| ≤ L, ‖Rτ (uτ )‖ ≤ L, |β1| ≤ 1, |β2| ≤ 1, we obtain

|jad(β1, u1, ω)− jad(β2, u2, ω) + jnc(u1, ω)− jnc(u2, ω)|
≤ c(‖β1 − β2‖L2(Γ3) + ‖u1 − u2‖V )‖ω‖V .

(3.30)

Next, we use (3.22), (3.10) and (3.3) to obtain

jfr(u, υ − u)− jfr(υ, υ − u) ≤ c20‖µ‖L∞(Γ3)Lν‖u− υ‖2V ∀u, υ ∈ V. (3.31)

jfr(u1, υ1)− jfr(u1, υ2) + jfr(u2, υ2)− jfr(u2, υ1)

≤ c20Lν‖µ‖L∞(Γ3)‖u1 − u2‖V ‖υ1 − υ2‖V .
(3.32)

Inequalities (3.30)–(3.32) will be used in various places in the rest of the paper.

4. Existence result

Our main result which states the solvability of Problem (PV ), is the following.

Theorem 4.1. Assume that (3.6)–(3.8), (3.10)–(3.13), (3.17)–(3.19) and (3.23)–
(3.25) hold. Then there exists µ0 > 0 depending only on Ω,Γ1, Γ3,Γa, F , B and E
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such that, if (Lν + Lν‖µ‖L∞(Γ3) + ‖γν‖L∞(Γ3) + ‖γν‖L∞(Γ3)) < µ0, Problem (PV )
has at least one solution (u, ϕ, β). Moreover, the solution satisfies

u ∈W 1,∞(0, T ;V ), (4.1)

ϕ ∈W 1,∞(0, T ;W ), (4.2)

β ∈W 1,∞(0, T ;L2(Γ3)) ∩Q. (4.3)

A “quintuplete” of functions (u, σ, ϕ, D, β) which satisfies (2.1), (2.2), (3.26)–
(3.29) is called a weak solution of the contact problem (P). To precise the regularity
of the weak solution we note that the constitutive relations (2.1)-(2.2), the assump-
tions (3.6)–(3.8) and the regularities (4.1), (4.2) show that σ ∈ W 1,∞([0, T ];H),
D ∈ W 1,∞([0, T ];L2(Ω)d). By putting υ = u̇(t) ± ξ, where ξ ∈ C∞0 (Ω)d in (3.26)
and ψ ∈ C∞0 (Ω) in (3.27) we obtain

Div σ(t) + f0(t) = 0, divD(t) = q0(t), ∀t ∈ [0, T ].

It follows now from the regularities (3.11), (3.12) that Div σ ∈W 1,∞(0, T ;L2(Ω)d)
and divD ∈W 1,∞(0, T ;L2(Ω)), which shows that

σ ∈W 1,∞(0, T ;H1), (4.4)

D ∈W 1,∞(0, T ;W1). (4.5)

We conclude that the weak solution (u, σ, ϕ,D, β) of the piezoelectric contact prob-
lem (P) has the regularity implied in (4.1), (4.2), (4.3), (4.4) and (4.5).

The proof of Theorem 4.1 is carried out in several steps and is based on the
following abstract result for evolutionary variational inequalities.

Let X be a real Hilbert space with the inner product (·, ·)X and the associated
norm ‖ · ‖X .

Let a : X ×X → R be a bilinear form on X, j : X ×X → R, f : [0, T ]→ X and
u0 ∈ X. With these data, we consider the following quasivariational problem: find
u : [0, T ]→ X such that

a(u(t), υ − u̇(t)) + j(u(t), υ)− j(u(t), u̇(t))

≥ (f(t), υ − u̇(t))X ∀υ ∈ X, a.e. t ∈ (0, T ),
(4.6)

u(0) = u0. (4.7)

To solve problem (4.6)–(4.7), we consider the following assumptions:

a : X ×X → R is a bilinear symmetric form, and
(a) there exists M > 0 such that |a(u, υ)| ≤ M‖u‖X‖υ‖X for all
u, υ ∈ X,
(b) there exists m > 0 such that a(υ, υ) ≥ m‖υ‖2X for all υ ∈ X.

(4.8)

For every ζ ∈ X, j(ζ, .) : X → R is a positively homogeneous
subadditive functional, i.e.
(a) j(ζ, λu) = λj(ζ, u) for all u ∈ X, λ ∈ R+,
(b) j(ζ, u+ υ) ≤ j(ζ, u) + j(ζ, υ) for all u, υ ∈ X,

(4.9)

f ∈W 1,∞(0, T ;X), (4.10)

u0 ∈ X. (4.11)

a(u0, υ) + j(u0, υ) ≥ (f(0), υ)X ∀υ ∈ X. (4.12)
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Keeping in mind (4.9), it results that for all ζ ∈ X, j(ζ, .) : X → R is a convex
functional. Therefore, there exists the directional derivative j′2 given by

j′2(ζ, u; υ) = lim
λ↘0

1
λ

[j(ζ, u+ λυ)− j(ζ, u) ] ∀ζ, u, υ ∈ X. (4.13)

We consider now the following additional assumptions on the functional j.
For every sequence (un) ⊂ X with ‖un‖X →, every sequence (tn) ⊂ [0, 1] and

each ū ∈ X one has

lim inf
n→+∞

[
1

‖un‖2X
j′2(tnun, un − ū;−un)] < m. (4.14)

For every sequence (un) ⊂ X with ‖un‖X →∞, every bounded sequence (ζn) ⊂
X and for each ū ∈ X, one has

lim inf
n→+∞

[
1

‖un‖2X
j′2(ζn, un − ū;−un)] < m. (4.15)

For all sequences (un) ⊂ X and (ζn) ⊂ X such that un ⇀ u ∈ X, ζn ⇀ ζ ∈ X
and for every υ ∈ X, we have

lim sup
n→+∞

[j(ζn, υ)− j(ζn, un)] ≤ j(ζ, υ)− j(ζ, u). (4.16)

There exists k0 ∈ (0,m) such that

j(u, υ − u)− j(υ, υ − u) ≤ k0‖u− υ‖2X ∀u, υ ∈ X. (4.17)

There exist two functions a1 : X → R and a2 : X → R, which map bounded sets
in X into bounded sets in R such that

|j(ζ, u)| ≤ a1(ζ)‖u‖2X + a2(ζ) ∀ζ, u ∈ X, and a1(0X) < m− k0. (4.18)

For every sequence (ζn) ⊂ X with ζn ⇀ ζ ∈ X and every bounded sequence
(un) ⊂ X one has

lim
n→+∞

[j(ζn, un)− j(ζ, un)] = 0. (4.19)

For every s ∈ (0, T ] and every pair of functions u, υ ∈ W 1,∞(0, T ;X), with
u(0) = υ(0), u(s) 6= υ(s),∫ s

0

[j(u(t), υ̇(t))− j(u(t), u̇(t)) + j(υ(t), u̇(t))− j(υ(t), υ̇(t))]dt

<
m

2
‖u(s)− υ(s)‖2X .

(4.20)

There exists α ∈ (0, m2 ) such that for every s ∈ (0, T ] and for every functions
u, υ ∈W 1,∞(0, T ;X) with u(s) 6= υ(s), it holds that∫ s

0

[j(u(t), υ̇(t))− j(u(t), u̇(t)) + j(υ(t), u̇(t))− j(υ(t), υ̇(t))]dt

< α‖u(s)− υ(s)‖2X .
(4.21)

For the study of the evolutionary problem (4.6)–(4.7), we recall the following
result.

Theorem 4.2. Assume (4.8)–(4.12) hold.
(i) If assumptions (4.14)–(4.19) are satisfied, then there exists at least a solution

u ∈W 1,∞(0, T ;X) to problem (4.6)–(4.7).
(ii) If assumptions (4.14)–(4.20) are satisfied. then there exists a unique solution

u ∈W 1,∞(0, T ;X) to problem (4.6)–(4.7).
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(iii) If assumptions (4.14)–(4.19) and (4.21) are satisfied, then there exists a
unique solution u ∈ W 1,∞(0, T ;X) to (4.6)–(4.7), and the mapping (f, u0)→ R is
Lipschitz continuous from W 1,∞(0, T ;X)×X to L∞(0, T ;X).

The proof can be find in [16], it is obtained in several steps and it is based on
arguments of elliptic quasivariational inequalities and a time discretization method.

We return now to proof of theorem 4.1. To this end, we assume in the following
that (3.6)–(3.8), (3.10)–(3.13), (3.17)–(3.19) and (3.23)–(3.25) hold. Below, c is a
generic positive constants which may depend on Ω, Γ1, Γ3, F , pν , γν , γτ and L,
whose value may change from place to place. For the sake of simplicity, we suppress
in what follows the explicit dependence on various functions on x ∈ Ω ∪ Γ3.

Using the Riesz’s representation theorem, we define the operators G : W → W
and R : V →W respectively by

(Gϕ(t), ψ)W = (B∇ϕ(t),∇ψ)L2(Ω)d ∀ϕ,ψ ∈W, (4.22)

(Rυ, ϕ)W = (Eε(υ),∇ϕ)L2(Ω)d ∀ϕ ∈W,υ ∈ V. (4.23)

We can show that G is a linear continuous symmetric positive definite operator.
Therefore, G is an invertible operator on W . We can also prove that R is a linear
continuous operator on V . Let R∗ the adjoint of R. Thus, from (3.9) we can write

(R∗ϕ, υ)V = (E∗∇ϕ, ε(υ))H ∀ϕ ∈W, υ ∈ V. (4.24)

By introducing (4.22)–(4.23) in (3.27) we obtain

(Gϕ(t), ψ)W = (Ru(t), ψ)W + (q(t), ψ)W ∀ψ ∈W,

and consequently
Gϕ(t) = Ru(t) + q(t).

On the other hand, G is invertible where the previous equality gives us

ϕ(t) = G−1Ru(t) + G−1q(t). (4.25)

Using (4.24)–(4.25) and (3.26) we obtain

(Fε(u(t)), ε(υ)− ε(u̇(t)))H + (R∗G−1Ru(t), υ − u̇(t))V
+ jad(β, u(t), υ − u̇(t)) + jnc(u(t), υ − u̇(t)) + jfr(u(t), υ)− jfr(u(t), u̇(t))

≥ (f(t)−R∗G−1q(t), υ − u̇(t))V ∀υ ∈ V, a.e. t ∈ (0, T ).

(4.26)

Let now the operator L : V → V defined by

L(υ) = R∗G−1R(υ), ∀υ ∈ V. (4.27)

Using the properties of the operators G, R and R∗, we deduce that L is a linear
symmetric positive operator on V . Indeed, we have

(Lu, υ)V = (R∗G−1Ru, υ)V

= (G−1Ru,Rυ)W

= (Ru,G−1Rυ)W

= (u,R∗G−1Rυ)V
= (u, Lυ)V ∀u, υ ∈ V

(Lυ, υ)V = (R∗G−1Rυ, υ)V ,

(Lυ, υ)V = (G−1Rυ,Rυ)W ≥ 0 ∀υ ∈ V. (4.28)
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Now, let the bilinear form a : V × V → R be such that

a(u, υ) = (Fε(u(t)), ε(υ))H + (Lu, υ)V ∀u, υ ∈ V. (4.29)

The bilinear form a is continuous and coercive on V . Indeed, we have

|a(u, υ)| ≤ (M + ‖L‖)‖u‖V ‖υ‖V ∀u, υ ∈ V, (4.30)

a(υ, υ) ≥ m‖υ‖2V ∀υ ∈ V, (4.31)

and the symmetry of F and L leads to the symmetry of a.
Let now the function f : [0 T ]→ V be defined by

f(t) = f(t)−R∗G−1q(t) ∀t ∈ [0, T ]. (4.32)

From (3.16) we obtain

f ∈W 1,∞(0, T, V ). (4.33)

The relations (4.26), (4.29), (4.32), (3.28) and (3.29) lead us to consider the follow-
ing variational problem, in the terms of displacement and bonding fields.

Problem PV1 . Find a displacement field u : [0, T ] → V , and a bonding field
β : [0, T ]→ L2(Γ3) such that

a(u(t), υ − u̇(t)) + jad(β, u(t), υ − u̇(t)) + jnc(u(t), υ − u̇(t))

+ jfr(u(t), υ)− jfr(u(t), u̇(t))

≥ (f(t), υ − u̇(t))V ∀υ ∈ V, a.e. t ∈ (0, T ),
(4.34)

β̇(t) = −[β(t)(γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2)− εa]+ on Γ3 × (0, T ), (4.35)

u(0) = u0, β(0) = β0. (4.36)

Theorem 4.3. Assume that (3.6)–(3.8), (3.10)–(3.13), (3.17)–(3.19) and (3.23)–
(3.25) hold. Then, there exists µ0 > 0 depending only on Ω,Γ1, Γ3,Γa, F , B and
E such that, if

Lν + Lν‖µ‖L∞(Γ3) + ‖γν‖L∞(Γ3) + ‖γτ‖L∞(Γ3)) < µ0,

then Problem PV1 has at least one solution (u, β). Moreover, the solution satisfies

u ∈W 1,∞(0, T ;V ), (4.37)

β ∈W 1,∞(0, T ;L2(Γ3)) ∩Q. (4.38)

We assume in the following that the conditions of Theorem 4.3 hold. Let β ∈
W 1,∞(0, T ;L2(Γ3)) ∩Q be given and jβ : V × V → R defined by

jβ(u, υ) =
∫

Γ3

pν(uν(t))υνda+
∫

Γ3

µpν(uν)‖υτ‖ da

+
∫

Γ3

(
− γνβ2Rν(uν)υν + γτβ

2Rτ (uτ ) · υτ
)
da,

(4.39)

Now, we consider the following intermediate problem, in the term of displacement
field.
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Problem PV2 . Find the displacement field uβ : [0, T ]→ V such that

a(uβ(t), υ − u̇β(t)) + jβ(uβ(t), υ)− jβ(uβ(t), u̇β(t))

≥ (f(t), υ − u̇β(t))V ∀υ ∈ V, a.e. t ∈ (0, T ),
(4.40)

uβ(0) = u0, (4.41)

Remark 4.4. From (3.24) and (3.25), we can deduce (4.12).

Theorem 4.5. Assume that (3.6)–(3.8), (3.10)–(3.13), (3.17)–(3.19) and (3.23)–
(3.25) hold. Then there exists µ0 > 0 depending only on Ω,Γ1, Γ3,Γa, F , B and E
such that, if

Lν + Lν‖µ‖L∞(Γ3) + ‖γν‖L∞(Γ3) + ‖γν‖L∞(Γ3) < µ0,

then Problem PV2 has at least one solution uβ ∈W 1,∞(0, T, V ).

We will use the results given by the Theorem 4.2 to give a result of existence
of solutions of problem PV2 . We remark that the functional jβ , given by (4.39),
satisfies condition (4.9). In addition, we have the following results.

Lemma 4.6. The functional jβ satisfies the assumptions (4.14) and (4.15).

Proof. Let ζ, u, ū ∈ V and let λ ∈]0, 1]. Using (3.22), it follows that jβ satisfies

jβ(ζ, u− u− λu)− jβ(ζ, u− u)

≤ −λ
∫

Γ3

pν(ζν)uν da− λ
∫

Γ3

µpν(ζν)‖uτ − uτ‖ da+ λ

∫
Γ3

µpν(ζν)‖uτ‖ da

+ λ

∫
Γ3

γνβ
2Rν(ζν)uν da− λ

∫
Γ3

γτβ
2Rτ (ζτ ) · uτ da,

and as µ ≥ 0, pν ≥ 0 a.e. on Γ3, we obtain

jβ(ζ, u− u− λu)− jβ(ζ, u− u)

≤ −λ
∫

Γ3

pν(ζν)uν da+ λ

∫
Γ3

µpν(ζν)‖uτ‖ da+ λ

∫
Γ3

γνβ
2Rν(ζν)uν da

− λ
∫

Γ3

γτβ
2Rτ (ζτ ) · uτ da, ∀ζ, u, ū ∈ V.

Moreover, we deduce from (4.13) that

j′2(ζ, u− u;−u)

≤ −
∫

Γ3

pν(ζν)uν da+
∫

Γ3

µpν(ζν)‖uτ‖ da

+
∫

Γ3

γνβ
2Rν(ζν)uν da−

∫
Γ3

γτβ
2Rτ (ζτ ) · uτ da ∀ζ, u, ū ∈ V.

(4.42)

Now consider the sequences (un)n∈N ⊂ V , (tn)n∈N ⊂ [0 1] and the element u ∈ V .
Using (3.3), (3.10), (3.18) and (4.42), we find

j′2(tnun, un − u;−un)

≤ −
∫

Γ3

pν(tnunν)unν +
∫

Γ3

µpν(tnunν)‖uτ‖ da

+
∫

Γ3

γνβ
2Rν(tnunν)unν da−

∫
Γ3

γτβ
2Rτ (tnunτ ) · unτ da ∀ζ, u, ū ∈ V

(4.43)
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Keeping in mind that 0 ≤ β ≤ 1 a.e. on Γ3 and using (3.10), (2.15) and (3.17) we
obtain pν(tnunν)unν ≥ 0 and γτβ2Rτ (tnunτ ) · uτ ≥ 0 p.p. on Γ3. So (4.43) implies

j′2(tnun, un − u;−un) ≤
∫

Γ3

µpν(tnunν)‖uτ‖ da+
∫

Γ3

γνβ
2Rν(tnunν)unν da.

Now, using (3.10)(b), (3.3) and the fact that |Rν(tnunν)| ≤ L we obtain

j′2(tnun, un − u;−un)

≤ ‖µ‖L∞(Γ3)Lν

∫
Γ3

|unν |‖uτ‖ da+ L‖γν‖L∞(Γ3)

∫
Γ3

|unν | da

≤ c20‖µ‖L∞(Γ3)Lν‖un‖V ‖u‖V + c0L‖γν‖L∞(Γ3) meas(Γ3)‖un‖V .
It follows from the previous inequality that if ‖un‖V → +∞, then

lim inf
n→+∞

[ 1
‖un‖2V

j′2(tnun, un − u;−un)
]
≤ 0,

and we conclude that jβ satisfies assumption (4.14).
Now consider the sequences (un)n∈N ⊂ V , (ζn)n∈N ⊂ V such that

‖un‖V → +∞, (4.44)

‖ζn‖V ≤ C ∀n ∈ N, (4.45)

where C > 0. Let u ∈ V . Using (3.3), (3.10), (3.18), (4.42) and (4.45) we obtain

j′2(ζn, un − u;−un) ≤ c20Lν‖ζn‖V ‖un‖V + c20‖µ‖L∞(Γ3)Lν‖ζn‖V ‖u‖V
+ c0L‖γν‖L∞(Γ3) meas(Γ3)‖un‖V
+ c0L‖γτ‖L∞(Γ3) meas(Γ3)‖un‖V ∀n ∈ N.

(4.46)

From (4.44) and (4.46), we conclude that

lim inf
n→+∞

[ 1
‖un‖2V

j′2(ζn, un − u;−un)
]
≤ 0 .

Thus, we deduce that jβ satisfies (4.15). �

Lemma 4.7. The functional jβ satisfies the conditions (4.16) and (4.19).

Proof. Let (un)n∈N ⊂ V , (ζn)n∈N ⊂ V be two sequences such that un ⇀ u ∈ V
and ζn ⇀ ζ ∈ V . Using the compactness property of the trace map and (3.10), it
follows that

pν(ζnν)→ pν(ζν) in L2(Γ3), (4.47)

un → u in L2(Γ3)d. (4.48)

Rν(ζnν)→ Rν(ζν) in L2(Γ3).

Rτ (ζnτ )→ Rτ (ζτ ) in L2(Γ3)d
(4.49)

Therefore, we deduce from (4.47), (4.48) and (4.49) that

jβ(ζn, υ)→ jβ(ζ, υ) ∀υ ∈ V,
jβ(ζn, un)→ jβ(ζ, u),

which show that the functional jβ satisfies

lim sup
n→+∞

[jβ(ζn, υ)− jβ(ζn, un)] ≤ jβ(ζ, υ)− jβ(ζ, u).

Thus, we deduce that jβ satisfies (4.16).
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Now we consider (un)n∈N a bounded sequence of V , i.e.

‖un‖V ≤ C ∀n ∈ N, (4.50)

where C > 0. We have

|jβ(ζn, un)− jβ(ζ, un)| ≤
∫

Γ3

|pν(ζnν)− pν(ζν)||unν | da

+ ‖µ‖L∞(Γ3)

∫
Γ3

|pν(ζnν)− µpν(ζν)|‖unτ‖ da

+ ‖γν‖L∞(Γ3)

∫
Γ3

|Rν(ζnν)−Rν(ζν))||unν | da

+ ‖γτ‖L∞(Γ3)

∫
Γ3

‖Rτ (unτ )−Rτ (unτ )‖‖unτ‖ da,

using (3.3), we obtain

|jβ(ζn, un)− jβ(ζ, un)|
≤ c0(‖pν(ζnν)− pν(ζν)‖L2(Γ3) + ‖µ‖L∞(Γ3)‖pν(ζnν)− pν(ζν)‖L2(Γ3)

+ ‖γν‖L∞(Γ3)‖Rν(ζnν)−Rν(ζν))‖L2(Γ3)

+ ‖γτ‖L∞(Γ3)‖Rτ (unτ )−Rτ (unτ )‖L2(Γ3))‖un‖V ,

(4.51)

Thus, from (4.47), (4.49), (4.50) and (4.51), we conclude that jβ satisfies

lim
n→+∞

[jβ(ζn, un)− jfr(ζ, un)] = 0.

So, we deduce that jβ satisfies (4.19). �

Lemma 4.8. The functional jβ satisfies the assumption (4.18) for all k0 ∈ (0,m).
Moreover,

jfr(u, υ − u)− jfr(υ, υ − u)

≤ c20(Lν + ‖µ‖L∞(Γ3)Lν + ‖γν‖L∞(Γ3) + ‖γτ‖L∞(Γ3))‖u− υ‖2V
(4.52)

Proof. Let ζ, u ∈ V . Using (3.10), (3.18) and (4.39), we obtain

|jβ(ζ, u)| ≤ Lν‖ζν‖L2(Γ3)‖uν‖L2(Γ3)

+ ‖µ‖L∞(Γ3)Lν‖ζν‖L2(Γ3)‖uτ‖L2(Γ3)d

+ ‖γν‖L∞(Γ3)‖Rν(ζν)‖L2(Γ3)‖uν‖L2(Γ3)

+ ‖γτ‖L∞(Γ3)‖Rτ (ζτ )‖L2(Γ3)d‖uτ‖L2(Γ3)d .

Keeping in mind (3.3) and that Rτ , Rν are Lipschitz continuous operators, we
obtain

|jβ(ζ, u)| ≤ c20Lν‖ζν‖V ‖u‖V + c20‖µ‖L∞(Γ3)Lν‖ζ‖V ‖u‖V
+ c20‖γν‖L∞(Γ3)‖ζ‖V ‖u‖V + c20‖γτ‖L∞(Γ3)‖ζ‖V ‖u‖V ,

Finally, we obtain

|jβ(ζ, u)| ≤ c20(Lν + ‖µ‖L∞(Γ3)Lν + ‖γν‖L∞(Γ3) + ‖γτ‖L∞(Γ3))‖ζ‖V ‖u‖V
which implies condition (4.18), for all k0 ∈ (0,m). Now let u, υ ∈ V . Using again
the assumptions (3.10), (3.18) and (4.39) we find

jβ(u, υ − u)− jβ(υ, υ − u)
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=
∫

Γ3

(pν(uν)− pν(υν))(υν − uν) da+
∫

Γ3

µ(pν(uν)− pν(υν))‖υτ − uτ‖ da

+
∫

Γ3

γνβ
2(Rν(uν)−Rν(υν))(υν − uν) da

+
∫

Γ3

γτβ
2(Rτ (uτ )−Rτ (υτ )).(υτ − uτ ) da

Keeping in mind (3.10), (3.3) and that Rτ , Rν are Lipschitz continuous operators,
we obtain

jβ(u, υ − u)− jβ(υ, υ − u)

≤ Lν
∫

Γ3

|υν − uν |2 da+ ‖µ‖L∞(Γ3)Lν

∫
Γ3

|υν − uν |‖υτ − uτ‖ da

+ ‖γν‖L∞(Γ3)

∫
Γ3

|υν − uν |2 da+ ‖γτ‖L∞(Γ3)

∫
Γ3

‖υτ − uτ‖2 da

It follows from the previous inequality that

jfr(u, υ − u)− jfr(υ, υ − u)

≤ c20(Lν + ‖µ‖L∞(Γ3)Lν + ‖γν‖L∞(Γ3) + ‖γτ‖L∞(Γ3))‖u− υ‖2V

which implies (4.52). �

Proof of Theorem 4.5. Using the symmetry of F and L and (4.31), we see that the
bilinear form a defined by (4.29) is symmetric and coercive.

Let µ0 = m
c20

. Clearly, µ0 depends only on Ω, Γ1, Γ3, Γa, F , E and B. Now
assume that

Lν + ‖µ‖L∞(Γ3)Lν + ‖γν‖L∞(Γ3) + ‖γτ‖L∞(Γ3) < µ0.

We deduce that

c20(Lν + ‖µ‖L∞(Γ3)Lν + ‖γν‖L∞(Γ3) + ‖γτ‖L∞(Γ3)) < m.

Then, there exists a real k0 such that

c20(Lν + ‖µ‖L∞(Γ3)Lν + ‖γν‖L∞(Γ3) + ‖γτ‖L∞(Γ3)) ≤ k0 < m.

Using (4.52) we deduce that (4.17) is verified. Using Lemmas 4.6–4.8, (3.23), Re-
mark 4.4 and Theorem 4.2(i), we deduce that problem PV2 has at least one solution
uβ ∈W 1,∞(0, T ;V ). �

As in [5], we adopt the following time-discretization. For all n ∈ N∗, we set
ti = i∆t, 0 ≤ i ≤ n, and ∆t = T/n. We denote respectively by ui = u(ti) where
u is the solution of Problem PV1 and βi the approximation of β at time ti and
∆u(ti) = u(ti+1)− u(ti), ∆βi = βi+2 − βi. For a continuous function w(t), we use
the notation wi = w(ti). Then we obtain a sequence of time-discretized problems
P in of Problem PV1 defined for u(0) = u0 and β0 = β0 by:
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Problem P in. For u(ti) ∈ V , βi ∈ L∞(Γ3), find u(ti+1) ∈ V , βi+1 ∈ L∞(Γ3) such
that

a(u(ti+1), w − u(ti+1)) + jad(βi+1, u(ti+1), w − u(ti+1))

+ jnc(u(ti+1), w − u(ti+1)) + jfr(u(ti+1), w − u(ti))− jfr(u(t),∆u(ti))

≥ (f(ti+1), w − u(ti+1))V ,

βi+1 − βi

∆t
= −[βi+1(γν(Rν(ui+1

ν ))2 + γτ (|Rτ (ui+1
τ )|)2)− εa]+ a.e. on Γ3.

(4.53)
We have the following result.

Proposition 4.9. There exists µc > 0 such that for ‖µ‖L∞(Γ3) < µc, Problem P in
has a unique solution.

For the proof of the above proposition, it suffices to invoke [23, Proposition
4.4] In the next step, we use the displacement field uβ obtained in Theorem 4.5,
let u = uβ and denote by uν , uτ its normal and tangential components, and we
consider the following initial value problem.

Problem Pβu

3 . Find a bonding field βu : [0, T ]→ L2(Γ3) such that

β̇u(t) = −[βu(t)(γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2)− εa]+ a.e. t ∈ (0, T ), (4.54)

βu(0) = β0. (4.55)

We obtain the following result.

Lemma 4.10. There exists a unique solution βu to Problem Pβu

3 and it satisfies
βu ∈W 1,∞(0, T, L2(Γ3)) ∩Q.

Proof. Consider the mapping F : [0, T ]× L2(Γ3)→ L2(Γ3) defined by

F (t, βu) = −[βu(t)(γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2)− εa]+, (4.56)

for all t ∈ [0, T ] and βu ∈ L2(Γ3). It follows from the properties of the truncation
operators Rν and Rτ that F is Lipschitz continuous with respect to the second
argument, uniformly in time. Moreover, for any βu ∈ L2(Γ3), the mapping t 7→
F (t, βu) belongs to L∞(0, T ;L2(Γ3)). Using now a version of Cauchy-Lipschitz
theorem, see [25, page 48], we obtain the existence of a unique function βu ∈
W 1,∞(0, T, L2(Γ3)) which solves (4.54), 4.55. We note that the restriction 0 ≤
βu ≤ 1 is implicitly included in the Cauchy problem Pβu

3 . Indeed, (4.54) and (4.55)
guarantee that βu(t) ≤ β0 and, therefore, assumption (3.19) shows that βu(t) ≤ 1
for t ≥ 0, a.e. on Γ3. On the other hand, if βu(t0) = 0 at t = t0, then it follows
from (4.54) and (4.55) that β̇u(t) = 0 for all t ≥ t0 and therefore, βu(t) = 0 for all
t ≥ t0, a.e. on Γ3. We conclude that 0 ≤ βu(t) ≤ 1 for all t ∈ [0, T ], a.e. on Γ3.
Therefore, from the definition of the set Q, we find that βu ∈ Q. Then, it follows
that βu ∈W 1,∞(0, T, L2(Γ3))∩ Q, which concludes the proof of Lemma 4.10. �

Now we introduce the sequences of functions βn(t) and un(t) defined on [0;T ] by
βn(t) = βi+1, un(t) = ui+1 = u(ti+1), ũn(t) = ui + (t−ti)

∆t ∆ui and fn(t) = f i+1 =
f(ti+1) for all t ∈]ti, ti+1[; i = 0, . . . , n−1; and βn(0) = β0, un(0) = u0, fn(0) = f0.

Lemma 4.11. Let u and β be the solutions to Problem PV2 and Problem Pβu

3 ,
respectively. Then we have:
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(i) un → u and ũn → u̇ strongly in L∞(0, T ;V ), For t ∈ (ti, ti+1),
(ii) βn → β strongly in L∞(0, T ;L2(Γ3)), For t ∈ (ti, ti+1)

Proof. (i) Since u ∈ W 1,∞(0, T, V ), we deduce that un → u and ˜̇un → u̇ strongly
in L∞(0, T ;V ), For t ∈ (ti, ti+1).

(ii) For t ∈ (ti, ti+1) we have

‖βn(t)− β(t)‖L2(Γ3) ≤ ‖βn(t)− β(ti+1)‖L2(Γ3) + ‖β(ti+1)− β(t)‖L2(Γ3).

As β ∈W 1,∞(0, T ;L2(Γ3)), we have

‖β(ti+1)− β(t)‖L2(Γ3) ≤
T

n
‖β̇‖L∞(0,T ;L2(Γ3)).

Using the properties of Rν and Rτ , in [5], we have

lim
n→∞

max
i=0,...,n

‖βi − β(ti)‖L2(Γ3) = 0.

So we deduce that
lim
n→∞

max
t∈[0,T ]

‖βn(t)− β(t)‖L2(Γ3) = 0.

�

Now we have all the ingredients to prove the following proposition.

Proposition 4.12. (u, β) is a solution to Problem PV1 .

Proof. In the inequality (4.53), for v ∈ V set w = u(ti) + v∆t and divide by ∆t;
we obtain

a(u(ti+1), v − ∆u(ti)
∆t

) + jnc(u(ti+1), v − ∆u(ti)
∆t

) + jfr(u(ti+1), v)

− jfr(u(t),
∆u(ti)

∆t
) + jad(βi+1, u(ti+1), v − ∆u(ti)

∆t
)

≥ (f i+1, v − ∆u(ti)
∆t

)V .

Whence for any v ∈ L2(0, T ;V ), we have

a(u(ti+1), v − ∆u(ti)
∆t

) + jnc(u(ti+1), v − ∆u(ti)
∆t

) + jfr(u(ti+1), v)

− jfr(u(ti+1),
∆u(ti)

∆t
) + jad(βi+1, u(ti+1), v − ∆u(ti)

∆t
)

≥ (f i+1, v − ∆u(ti)
∆t

)V

Integrating both sides of the above inequality on (0, T ), we obtain

a(un(t), v(t)− ˜̇un) + jfr(un(t), v(t))− jfr(un(t), ˜̇un(t))

+ jnc(un(t), v(t)− ˜̇un(t)) + jad(βn(t), un(t), v(t)− ˜̇un(t))

≥ (fn(t), v(t)− ˜̇un(t))

(4.57)

To pass to the limit in this inequality we need to establish the following properties.
After whihc the proof will be complete. �
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Lemma 4.13. We have the following properties for v ∈ L2(0, T ;V ):

lim
n→∞

∫ T

0

a(un(t), v(t)− ˜̇un)dt =
∫ T

0

a(u(t), v(t)− u̇(t))dt, (4.58)

lim inf
n→∞

∫ T

0

jfr(un(t), ˜̇un(t))dt ≥
∫ T

0

jfr(u(t), u̇(t))dt, (4.59)

lim
n→∞

∫ T

0

jfr(un(t), v(t))dt =
∫ T

0

jfr(u(t), v(t))dt, (4.60)

lim
n→∞

∫ T

0

jnc(un(t), v(t)− ˜̇un(t))dt ≥
∫ T

0

jnc(u(t), v(t)− u̇(t))dt, (4.61)

lim
n→∞

∫ T

0

(fn(t), v(t)− ˜̇un(t))V dt =
∫ T

0

(f(t), v(t)− u̇(t))V dt, (4.62)

lim
n→∞

∫ T

0

jad(βn(t), un(t), v(t)− ˜̇un(t))dt =
∫ T

0

jad(β(t), u(t), v(t)− u̇(t))dt.

(4.63)

Proof. For (4.58) and (4.62) we refer the reader to [30, Lemma 4.6]. To prove
(4.59) and (4.61) it suffices to see [16, Lemma 3.5]. To prove (4.60), it suffices to
use Lemma 4.11(i). Finally for the proof of (4.63) we refer the reader to [5, Lemma
3.8] and use the properties of operators Rτ , Rν .

Now using lemma 4.11(ii) and Lemma 4.13 we pass to the limit as n → +∞ in
the inequality (4.57) to obtain∫ T

0

a(u(t), v(t)− u̇(t))dt+
∫ T

0

jfr(u(t), v(t))dt−
∫ T

0

jfr(u(t), u̇(t))dt

+
∫ T

0

jnc(u(t), v(t)− u̇(t))dt+
∫ T

0

jad(β(t), u(t), v(t)− u̇(t))dt

≥
∫ T

0

(f(t), v(t)− u̇(t))V dt,

from which we deduce (4.34) and also that β is the unique solution of the differential
equation (4.35). �

Proof of Theorem 4.1. Let (u, β) be the solution of Problem PV1 . It follows from
(4.32), (4.29), (4.27), (4.25), (4.24), (4.23) and (4.22) that (u, ϕ, β) is, at least, a
solution of Problem PV . Property (4.1), (4.2) and (4.3) follow from Theorem 4.3
and (4.25). �
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