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NAVIER-STOKES PROBLEM IN VELOCITY-PRESSURE
FORMULATION: NEWTON LINEARIZATION AND

CONVERGENCE

ANIS YOUNES, ABDENNACEUR JARRAY, MOHAMED BOUCHIBA

Abstract. In this article we study the nonlinear Navier-Stokes problem in

velocity-pressure formulation. We construct a sequence of a Newton-linearized

problems and we show that the sequence of weak solutions converges towards
the solution of the nonlinear one in a quadratic way.

1. Introduction

The stationary Navier-Stokes problem may be written in the form

−ν∆u+ (u · ∇)u+∇p = f in Ω
div u = 0 in Ω
u = 0 on Γ = ∂Ω

(1.1)

This equation describes the motion of an incompressible fluid contained in Ω and
subjected to an outside forces f , u is the velocity of fluid flow, p is the pressure and
ν its viscosity.

The variational formulation of the Navier Stokes equations in the classic form
is well studied in [8, 9, 16]. In most publications they uses a trilinear form in the
variational formulation for studying the nonlinear term presented in the equation
of momentum.

This paper is devoted to give another idea: we construct a sequence of a Newton-
linearized problems and we show, using Lax-Milgramm theorem, that the varia-
tional formulation of each one has an unique solution. We show then that the
sequence of weak solutions converges towards the solution of the nonlinear one in
a quadratic way.

The outline of the paper is as follows: In Section 2 we start by a Newton-
linearisation of the Navier Stokes equations. We obtain a sequence of linear prob-
lems and we show the existence of a weak solution. In Section 3 we show the
quadratic convergence of the sequence of the solutions in Theorem 3.3. In section
4 the nonhomogeneous problem is treated.
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2. Linearized problems

Linearization. Let Ω a bounded domain of R2 with Lipschitz-continuous bound-
ary Γ, and let

V = {v ∈ (H1
0 (Ω))2,div v = 0}

with norm ‖u‖V = max{‖u1‖H1
0
, ‖u2‖H1

0
}. We set L2

0 = (L2
0(Ω))2, and H1

0 (Ω) =
(H1

0 (Ω))2 with norm ‖u‖H1
0

= max{‖u1‖H1
0
, ‖u2‖H1

0
} and W = H1

0 (Ω)× L2
0.

The nonlinear term

(u · ∇)u =

(
u1

∂u1
∂x + u2

∂u1
∂y

u1
∂u2
∂x + u2

∂u2
∂y

)
can be written as

(u · ∇)u =
1
2
∇|u|2 + rotu ∧ u.

To solve (1.1) we construct a sequence of Newton-linearized problems. Starting
from an arbitrary u0 ∈ H1

0 (Ω) and p0 ∈ L2
0 we consider the iterative scheme:

−ν∆un+1 + (un+1 · ∇)un + (un · ∇)un+1 +∇pn+1 = fn in Ω
div un+1 = 0 in Ω
un+1 = 0 on Γ = ∂Ω

(2.1)

where fn = f + (un · ∇)un. Problem (2.1) is linear.

Variational formulation. The variational formulation of (2.1) is
Find (un+1, pn+1) ∈W such that

a0(un+1, v) + an(un+1, v) + an(un+1, v) + b(pn+1, v) = Ln(v) ∀v ∈ H1
0 (Ω)

b(q, un+1) = 0 ∀q ∈ L2
0

(2.2)

where the bilinear forms a0, an , an are given for v, u ∈ H1
0 (Ω) and p ∈ L2

0 by

a0(u, v) = ν

∫
Ω

∇u∇v dx, an(u, v) =
∫

Ω

(u · ∇un)v dx,

an(u, v) =
∫

Ω

(un · ∇u) v dx, b(p, v) =
∫

Ω

∇pv dx = −
∫

Ω

pdiv v dx

and Ln(v) = 〈fn, v〉 Using Green formula and div v = 0 we have b(p, v) = 0.
Then we associate to (2.2) the problem

Find un+1 ∈ V such that

a0(un+1, v) + an(un+1, v) + an(un+1, v) = Ln(v) ∀v ∈ V . (2.3)

Lemma 2.1. Problem (2.2) is equivalent to problem (2.3).

Proof. Indeed, if (un+1, pn+1) is a solution of problem (2.2) then un+1 is a solution
of (2.3). Reciprocally, if un+1 is a solution of the problem (2.3) then we apply de
Rham’s theorem: Let Ω a bounded regular domain of R2 and K a continuous linear
form on (H1

0 (Ω))2. Then the linear form K vanishes on V if and only if there exists
a unique function pn+1 ∈ L2(Ω)/R such that for all v ∈ H1

0 (Ω),

K(v) =
∫

Ω

pn+1 div v dx .

Let the linear form satisfies

K(v) = a0(un+1, v) + an(un+1, v) + an(un+1, v)− Ln(v).
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Therefore we have K(v) = 0 for all v ∈ V , then de Rham’s theorem implies that
there exists a unique function pn+1 ∈ L2(Ω)/R such that

a0(un+1, v) + an(un+1, v) + an(un+1, v)− Ln(v) =
∫

Ω

pn+1 div v dx ∀v ∈ H1
0 (Ω);

therefore,

a0(un+1, v) + an(un+1, v) + an(un+1, v)−
∫

Ω

pn+1divvdx = Ln(v) ∀v ∈ H1
0 (Ω) .

Which gives the desired result. �

Let us now show that problem (2.3) has an unique solution for each n. For this,
we need the following lemma.

Lemma 2.2. For fixed un ∈ V the form (u, v) → an(u, v) and (u, v) → an(u, v)
are continuous on H1

0 (Ω).

Proof. We have

an(u, v) =
2∑

i,j=1

∫
Ω

un,j
∂ui
∂xj

vi dx,

an(u, v) =
2∑

i,j=1

∫
Ω

uj
∂un,i
∂xj

vi dx

by Holder’s inequality we have∣∣ ∫
Ω

un,j
∂ui
∂xj

vi dx
∣∣ ≤ ‖un,j‖L4‖vi‖L4‖ ∂ui

∂xj
‖L2 (2.4)

According to the Sobolev Imbedding Theorem, the space H1(Ω) is continuously
embedded in L4(Ω). Then there exists C1 > 0 such that

|an(u, v)| ≤ C1‖u‖H1
0 (Ω)‖v‖H1

0 (Ω)‖un‖H1
0 (Ω). (2.5)

The same result holds with the term an,

|an(u, v)| ≤ C2‖u‖H1
0 (Ω)‖v‖H1

0 (Ω)‖un‖H1
0 (Ω). (2.6)

�

To show the coercivity of the form a = a0 +an+an we have the following lemma.

Lemma 2.3. We have an(u, u) = 0 for all u ∈ V .

Proof. Note that

an(u, u) =
∫

Ω

(un.∇)u u dx =
1
2

∫
Ω

un∇(|u|2) dx (2.7)

where

∇(|u|2) =

(
∂(u2

1+u2
2)

∂x
∂(u2

1+u2
2)

∂y

)
Using Green’s formula and div un = 0 and boundary conditions we have

2an(u, u) =
∫

Ω

∇|u|2un dx = −
∫

Ω

div un|u|2 dx = 0. (2.8)

�
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For α > 0, let Bα = {v ∈ V : ‖v‖H1
0 (Ω) ≤ α}.

Lemma 2.4. We have

a(u, u) ≥ (νC3 − αC2)‖u‖2H1
0 (Ω) ∀u ∈ V, ∀un ∈ Bα (2.9)

with C3 = min[ 1
2(Cp(Ω))2 ,

1
2 ].

Proof. Using (2.8) we obtain a(u, u) = a0(u, u)+an(u, u). By the Poincare inequal-
ity,

‖u‖L2(Ω) ≤ Cp(Ω)‖∇u‖L2(Ω), (2.10)

we obtain

a0(u, u) = ν‖∇u‖2L2(Ω) ≥ νmin[
1

2(Cp(Ω))2
,

1
2

]‖u‖2H1
0 (Ω) .

Then
a0(u, u) ≥ νC3‖u‖2H1

0 (Ω) . (2.11)

Using (2.6) we have

an(u, u) ≤ C2α‖u‖2H1
0 (Ω) ∀u ∈ V, un ∈ Bα (2.12)

which gives
an(u, u) ≥ −C2α‖u‖2H1

0 (Ω) ∀u ∈ V, un ∈ Bα (2.13)

with (2.11) we have the result. �

Lemma 2.5. For ‖f‖(L2(Ω))2 small enough or ν large enough there is α∗ > 0
independent of n such that ‖un‖H1

0 (Ω) ≤ α∗ for all n ∈ N where un is solution of
(2.3) with n instead of n+ 1.

Proof. We must have (νC3 − C2α
∗) > 0. So we choose α∗ < νC3

C2
.

Remains to show by induction that if un is solution of (2.3) with n instead of
n+1, then ‖un‖H1

0 (Ω) ≤ α∗ for all n ∈ N. Let u0 ∈ Bα∗ and assume that un ∈ Bα∗ .
We note u = un+1 is a solution of (2.3) and ‖f‖2 = ‖f‖(L2(Ω))2 . We have

a(u, u) = Ln(u) =
∫

Ω

(f + (un∇)un)u dx . (2.14)

Then a(u, u) ≤ (‖f‖2 + Cα∗2)‖u‖H1
0 (Ω).

From (2.9) we obtain (νC3 − C2α
∗)‖u‖H1

0
(Ω) ≤ (‖f‖2 + Cα∗2) which gives

‖u‖H1
0 (Ω) ≤

‖f‖2 + Cα∗2

(νC3 − C2α∗)
.

So to deduce the result we must have

‖f‖2 + Cα∗2

(νC3 − C2α∗)
≤ α∗ .

We put

P (α∗) = (C + C2)α∗2 − νC3α
∗ + ‖f‖2 ≤ 0, α∗ <

νC3

C2

Therefore, the discriminant of the polynomial P (α∗) must verify

∆ = ν2C3
2 − 4(C + C2)‖f‖2 > 0 . (2.15)
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Then

‖f‖2 <
ν2C3

2

4(C + C2)
(2.16)

and hence P (α∗) has two roots

α1 =
νC3 −

√
∆

2(C + C2)
, α2 =

νC3 +
√

∆
2(C + C2)

Since α2 > 0 we can choose 0 < α∗ < min(νC3
C2

, α2). �

Theorem 2.6. (1) For f ∈ (L2(Ω))2 satisfying (2.14), problem (2.3) has a unique
solution un+1 ∈ V ∩Bα∗ .

(2) If u0 ∈ Bα∗ ∩H2(Ω), then un+1 ∈ H2(Ω).

Proof. (1) Since un ∈ Bα∗ , we have

|Ln(v)| ≤ (‖f‖2 + Cα∗2)‖v‖H1
0 (Ω)

which gives the continuity of Ln and using Lemma 2.1, Lemma 2.3 and Lemma 2.4
with Lax-Milgram Theorem we obtain the result.

(2) We assume that un ∈ H2(Ω) then (un∇)un ∈ (L2(Ω)2, which implies that
fn = f + (un∇)un ∈ (L2(Ω)2 for f ∈ (L2(Ω)2, and by classical regularity Theorem
we have un+1 ∈ H2(Ω). �

3. Convergence

The sequence (un)n∈N, solutions of (2.3) with n instead of n+ 1, satisfy

‖un‖H1
0 (Ω) ≤ α∗ ∀n ≥ 0, (3.1)

which implies that the sequence (un)n∈N is bounded in H1
0 (Ω). Then there exist

a subsequence that converges weakly to φ in H1
0 (Ω). Since the injection of H1

0 (Ω)
in (L2(Ω))2 is compact, there exists a subsequence still noted un which converges
strongly to φ in (L2(Ω))2.

We need the following result.

Lemma 3.1. For v ∈ V , we have:
(1) limn→∞ a0(un+1, v) = a0(φ, v);
(2) limn→∞ an(un+1, v) = a∞(φ, v) =

∫
Ω

(φ∇̇)φvdx;
(3) limn→∞ an(un+1, v) = a∞(φ, v) =

∫
Ω

(φ∇̇)φvdx;
(4) We have limn→∞ Ln(v) = L∞(v) =

∫
Ω

[f + (φ∇̇)φ]vdx.

Proof. (1) Since un ⇀ φ, and by linearity of u → a0(u, v) we have a0(un+1, v) →
a0(φ, v) for all v ∈ V .

(2) Let

E = |an(un+1, v)− a∞(φ, v)| =
∣∣ ∫

Ω

{(un+1∇̇)un − (φ∇̇)φ}v dx
∣∣ (3.2)

We can write

(un+1 · ∇)un − (φ.∇)φ = ((un+1 − φ) · ∇)un + (φ · ∇)(un − φ) (3.3)

which gives with un ∈ H2(Ω) and using Green’s theorem,

E ≤ C[‖un+1 − φ‖2‖un‖H1‖v‖H1 + ‖un − φ‖2(‖∇v‖H1‖φ‖H1 + ‖∇φ‖H1‖v‖H1)].
(3.4)

Since un converges strongly to φ in (L2(Ω))2, it follows that E → 0.
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(3) Let

F = |an(un+1, v)− a∞(φ, v)| =
∫

Ω

{(un · ∇)un+1 − (φ · ∇)φ}v dx .

Then

F ≤ C[‖un − φ‖2‖un+1‖H1‖v‖H1 + ‖un+1 − φ‖2(‖v‖H1‖∇φ‖H1 + ‖φ‖H1‖∇v‖H1)];
(3.5)

thus F → 0.
(4) Let

G = |Ln(v)− L∞(v)| ≤
∫

Ω

|(un∇un)− (φ∇φ)||∇v| dx.

Then

G ≤ C[‖un − φ‖2(‖un‖H1‖v‖H1 + ‖φ‖H1‖∇v‖H1 + ‖∇φ‖H1‖v‖H1)]. (3.6)

Then Lemma 3.1 gives the desired result. �

For using de Rham’s Theorem, let L a continuous linear form on (H1
0 (Ω))2 which

vanishes on V if and only if there exists a unique function ϕ ∈ L2(Ω)/R such that
for all v ∈ H1

0 (Ω),

L(v) =
∫

Ω

ϕdiv v dx.

Theorem 3.2. We have limn→∞ un = φ in V then φ is a solution of (1.1).

Proof. It follows from Lemma 3.1 that

lim
n→∞

a0(un+1, v) + an(un+1, v) + an(un+1, v) = a0(φ, v) + 2a∞(φ, v) = L∞(v) .

Let the linear form L(v) = a0(φ, v) + a∞(φ, v) + a∞(φ, v) − L∞(v). Therefore
L(v) = 0 for all v ∈ V , then de Rham’s theorem implies that there exists a unique
function p ∈ L2(Ω)/R such that

a0(φ, v) + 2a∞(φ, v)− L∞(v) =
∫

Ω

p div v dx ∀v ∈ H1
0 (Ω) (3.7)

which gives

ν

∫
Ω

∇φ ∇v dx+
∫

Ω

(φ∇̇)φv dx−
∫

Ω

p div v dx =
∫

Ω

fv dx ∀v ∈ H1
0 (Ω), (3.8)∫

Ω

(−ν∆φ+ (φ∇̇)φ+∇p− f)v dx = 0 ∀v ∈ H1
0 (Ω) . (3.9)

Then in D′(Ω),

− ν∆φ+ (φ∇̇)φ+∇p− f = 0 . (3.10)

Since φ ∈ V we conclude that φ is the solution of (1.1). �

Theorem 3.3. Let un+1 be the solution of (2.2), and φ be the solution of (1.1).
Then convergence of the sequence (un+1)n∈N towards φ is quadratic; i.e.,

‖un+1 − φ‖H1
0 (Ω) ≤ C2‖un − φ‖2H1

0 (Ω) (3.11)
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Proof. Let ωn = un − φ and χn = pn − p. Subtracting problem (2.1) from (1.1) we
obtain

−ν∆ωn+1 + (ωn+1∇)un + (un∇)ωn+1 +∇χn+1 = (ωn∇)ωn in Ω
divωn+1 = 0 in Ω
ωn+1 = 0 on Γ

(3.12)

The variational formulation of (3.12) is
Find (ωn+1, χn+1) ∈W such that

a(ωn+1, v) + b(χn+1, v) = Fn(v) ∀v ∈ H1
0 (Ω)

b(q, ωn+1) = 0 ∀q ∈ L2
0,

(3.13)

where a = a0 + an + an and

b(q, ωn+1) = −
∫

Ω

q divωn+1 dx, Fn(v) =
∫

Ω

(ωn∇)ωnv dx.

Since divωn+1 = 0, using Lemma2.1 and Lemma 2.5, for un ∈ Bα∗ and v = ωn+1,
we obtain

(νC1 − Cα∗)‖ωn+1‖2H1
0 (Ω) ≤ a(ωn+1, ωn+1) = F(ωn+1)

≤ C‖ωn‖2H1
0 (Ω)‖ωn+1‖H1

0 (Ω) .
(3.14)

This gives 3.10, with C2 = C
(νC1−Cα∗) and the convergence is quadratic. �

4. Nonhomogeneous problem

We are concerned now with the nonhomogeneous problem
−ν∆u+ (u · ∇)u+∇p = f in Ω

div u = 0 in Ω
u = g on Γ

(4.1)

Where the state u is sought in the space (H1(Ω))2 ∩ V .
Throughout this section Ω denotes a bounded domain in R2, with Lipschitz-

continuous boundary Γ = ∩Γi i = 1, . . . , 4. We assume in this section that∫
Γi

g.ni dσ = 0 with g ∈ H = (H1/2(Γ))2 and f ∈ K = (H−1(Ω))2. (4.2)

We assume also that for a given g ∈ H satisfying 3.11, for any c > 0 there exists a
function w0 ∈ (H1(Ω))2 such that

divw0 = 0, w0|Γ = g, (4.3)

|an(w0, un)| ≤ c‖un‖2H1
0 (Ω) ∀un ∈ V. (4.4)

The existence of w0 satisfying 3.11, 3.14 is a technical result due to Hopf [11].

Theorem 4.1. Given (g, f) ∈ K ×H satisfying 3.14, there exists a pair (u, p) ∈
(H1(Ω))2 × L2

0(Ω) which is a solution of (4.1).

Proof. Let ξ0 = u0 − w0 where w0 verify 3.11, 3.14 and an arbitrary u0 ∈ V . We
consider the sequence of linear problems

−ν∆ξn+1 + (ξn+1.∇)ξn + (ξn · ∇)ξn+1 +∇pn+1 = fn in Ω
div ξn+1 = 0 in Ω
ξn+1 = 0 on Γ

(4.5)
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with ξn+1 = un+1−w0, un+1 ∈ H1
0 (Ω) and fn = f + (ξn∇)ξn + ν∆w0− (w0 ·∇)w0.

Then ξn+1 is a solution of the variational problem

Find ξn+1 ∈ V such that

a(ξn+1, v) = Ln(v) ∀v ∈ V , (4.6)

where a(ξ, v) = a0(ξ, v) + an(ξ, v) + an(ξ, v) + a?(ξ, v) with

a?(ξ, v) =
∫

Ω

(ξ∇̇)w0v dx+
∫

Ω

(w0∇̇)ξv dx

and Ln(v) = 〈fn, v〉.
Taking c > ν and using 2.9 we obtain

|a(ξn+1, ξn+1)| ≥ (ν − c)‖ξn+1‖2H1
0 (Ω) (4.7)

Thus we have the coercivity and L is obviously continuous on V . We observe that
problem (4.6) fits into the framework of section 1 and therefore the sequence ξn
converges towards a solution of (4.1). �
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