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NAVIER-STOKES PROBLEM IN VELOCITY-PRESSURE
FORMULATION: NEWTON LINEARIZATION AND
CONVERGENCE

ANIS YOUNES, ABDENNACEUR JARRAY, MOHAMED BOUCHIBA

ABSTRACT. In this article we study the nonlinear Navier-Stokes problem in
velocity-pressure formulation. We construct a sequence of a Newton-linearized
problems and we show that the sequence of weak solutions converges towards
the solution of the nonlinear one in a quadratic way.

1. INTRODUCTION
The stationary Navier-Stokes problem may be written in the form
—vAu+ (u-Viu+Vp=f inQ
divu =0 in Q (1.1)
u=0 onI =090

This equation describes the motion of an incompressible fluid contained in 2 and
subjected to an outside forces f, u is the velocity of fluid flow, p is the pressure and
v its viscosity.

The variational formulation of the Navier Stokes equations in the classic form
is well studied in [8, [, [16]. In most publications they uses a trilinear form in the
variational formulation for studying the nonlinear term presented in the equation
of momentum.

This paper is devoted to give another idea: we construct a sequence of a Newton-
linearized problems and we show, using Lax-Milgramm theorem, that the varia-
tional formulation of each one has an unique solution. We show then that the
sequence of weak solutions converges towards the solution of the nonlinear one in
a quadratic way.

The outline of the paper is as follows: In Section 2 we start by a Newton-
linearisation of the Navier Stokes equations. We obtain a sequence of linear prob-
lems and we show the existence of a weak solution. In Section 3 we show the
quadratic convergence of the sequence of the solutions in Theorem In section
4 the nonhomogeneous problem is treated.
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2. LINEARIZED PROBLEMS

Linearization. Let  a bounded domain of R? with Lipschitz-continuous bound-
ary I', and let

V ={ve (HjQ)? dive =0}
with norm [[ully = max{||u1 |z, [uzllm}. We set L3 = (L3(Q))?, and H(Q) =
(Hy (2))? with norm [|ull g = max{||usl sy, [luzll gz } and W = Hg(Q) x Lj.

The nonlinear term
(u- Vyu= <leaz I“ﬁ%)
179z T U273,

can be written as

(u-V)u= %VMQ +rotu Awu.

To solve (|1.1) we construct a sequence of Newton-linearized problems. Starting
from an arbitrary ug € H{ () and py € L3 we consider the iterative scheme:

— VAU 1 + (Upt1 - VU + (Un - VUpg1 + Vppyr = frn in Q

divup41 =0 in 0 (2.1)
Upy1 =0 on I =00
where f,, = f + (up - V)u,. Problem is linear.

Variational formulation. The variational formulation of is
Find (up+1,Pn41) € W such that

ao(tn41,v) + an(Unt1,0) + @ (Unt1,0) + b(Ppi1,v) = Ly (v) Vv € H(Q) (2.2)

b(q,unt1) =0 Vg€ L

where the bilinear forms ag, a,, , a™ are given for v,u € H}(2) and p € L2 by

ag(u,v) = 1// VuVodz, a"(u,v) = / (u - Vup)vdz,
Q Q

an(u,v) = / (Up - Vu)vdz, b(p,v)= [ Vpvde =— / pdivodr
Q Q Q

and L, (v) = (fn,v) Using Green formula and divv = 0 we have b(p,v) = 0.
Then we associate to the problem
Find u,41 € V such that
ag(Un+1,v) + ap(tpt1,v) + a™(Ups1,v) = Lp(v) Yo e V.
Lemma 2.1. Problem is equivalent to problem .

Proof. Indeed, if (ty41,Pn+1) is a solution of problem then wu,, 41 is a solution
of . Reciprocally, if u,1 is a solution of the problem then we apply de
Rham’s theorem: Let € a bounded regular domain of R? and K a continuous linear
form on (HE(€2))2. Then the linear form K vanishes on V' if and only if there exists
a unique function p, 1 € L?(2)/R such that for all v € H}(Q),

K(v):/pn+1divvdx.
Q

Let the linear form satisfies

(2.3)

K(v) = ao(un+1,v) + an(tng1,v) + a™ (tny1,v) — Ly (v).
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Therefore we have K(v) = 0 for all v € V, then de Rham’s theorem implies that
there exists a unique function p,; € L%(Q)/R such that

ag(Un+1,0) + an(tny1,0) + a™ (Upt1,v) — Lp(v) = /Qpn_H divvodr Vv e Hy(Q);
therefore,

ag(Unt1,0) + an(tny1,v) + a” (Upt1,v) — /Qpnﬂdivvdx =L,(v) Yve H} Q).

Which gives the desired result. O

Let us now show that problem (2.3) has an unique solution for each n. For this,
we need the following lemma.

Lemma 2.2. For fized u, € V the form (u,v) — an(u,v) and (u,v) — a™(u,v)
are continuous on Hg(Q).

Proof. We have
2
aui
an(u,v) = /un—vl dz,
2. | wnigy

4,j=1

2
a™(u,v) = Z /Quj a;;jlvi dx
j

i,j=1

by Holder’s inequality we have

Ju; Ou;
It o P P < (24

According to the Sobolev Imbedding Theorem, the space H'(f2) is continuously
embedded in L*(€2). Then there exists C; > 0 such that

|an (u, v)| < Ctllullmy @) IVl @) lunllmy @)- (2.5)
The same result holds with the term a™,

|a" (u, )| < Collull g ey [0l g @) lunll 3 0)- (2.6)
O

To show the coercivity of the form a = ag+a, +a™ we have the following lemma.
Lemma 2.3. We have a,(u,u) =0 for allu e V.
Proof. Note that

1
an(u,u) = / (up-V)uudr = 7/ u, V(Jul?) do (2.7)
Q 2 Ja
where
, O(u+uj)
V([ul*) = | 502
dy
Using Green’s formula and divu,, = 0 and boundary conditions we have
2ap, (u,u) = / VulPuy, dv = —/ div uy, |u|? dz = 0. (2.8)
Q Q
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For a >0, let By ={v eV :|v|mq < a}
Lemma 2.4. We have
a(u,u) > (vC3 — aC’g)||u||§{é(Q) Yu €V, Yu, € B, (2.9)

Proof. Using ([2.8)) we obtain a(u, u) = ag(u,u)+a™(u,u). By the Poincare inequal-
ity,

l[ull2(2) < Cp()[VullL2(0), (2.10)
we obtain
2 . 1 1 2
ao(u, u) = v[|Vulzq) = me[Wa §H|U||H(}(Q) .
Then
ag(u,u) > 1/03||u||§[é(9) . (2.11)
Using we have
a”™(u,u) < Cga||u||§{é(m Yu €V, u, € By (2.12)
which gives
a”(u,u) > —Cga||u|\?qé(g) YueV, u, € B, (2.13)
with we have the result. ]

Lemma 2.5. For || f||(L2(q)> small enough or v large enough there is o > 0
independent of n such that |[un| ) < o for all n € N where u, is solution of
(2.3) with n instead of n + 1.

Proof. We must have (vC5 — Caa™) > 0. So we choose o* < Vc&

Remains to show by induction that if w, is solution of with n instead of
n+1, then ||un||Hé(Q) < a* for all n € N. Let ug € B,+ and assume that u,, € Bgx.
We note u = uy41 is a solution of and || fll2 = [|fll(z2(q))2- We have

a(u,u) = Ly(u) = /Q(f + (un, V)uy)udz . (2.14)

Then a(u, u) < (|fll2 + Ca?)|[ull 3 0)-
From (2.9) we obtain (vCs — Caa™)||ul| g (€2) < (|| f[l2 + Ca*?) which gives

H5(2) = (105 — Cyar*)

So to deduce the result we must have

Wla+Ca® _
(I/C?, — 0205*) -
We put
* *2 * * VC3
P(a*) = (C+Co)a™ —vCsa™ 4+ ||fll2 <0, o* < o
2
Therefore, the discriminant of the polynomial P(a*) must verify

A =12C3% — 4(C + Co)||f]]2 > 0. (2.15)
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Then 20y
112 < H(C+C) (2.16)
and hence P(a*) has two roots
al:ng—\/Z az:uCg—i—\/E
2(C +Cy)’ 2(C + Cy)
Since ag > 0 we can choose 0 < o* < min(”c(:;S,ag). O

Theorem 2.6. (1) For f € (L*(Q))? satisfying , problem (2.3)) has a unique
solution upy1 € V N Bgx.

(2) If ug € Bax N H?(Q), then up1 € H?(Q).
Proof. (1) Since u,, € By~, we have

Lu(@)] < (I£]l2 + Ca™) o]l 0

which gives the continuity of L,, and using Lemma [2.1} Lemma [2.:3]and Lemma
with Lax-Milgram Theorem we obtain the result.

(2) We assume that u,, € H?(2) then (u,V)u, € (L?(2)2, which implies that
fn=f+ W, V)u, € (L*(Q)? for f € (L?(2)2, and by classical regularity Theorem
we have u, 11 € H?(). O

3. CONVERGENCE

The sequence (uy, )nen, solutions of (2.3)) with n instead of n + 1, satisfy
[unlla@) <@ Vn >0, (3.1)

which implies that the sequence (u,)nen is bounded in H}(2). Then there exist
a subsequence that converges weakly to ¢ in H{(2). Since the injection of HE ()
in (L%(Q))? is compact, there exists a subsequence still noted u,, which converges
strongly to ¢ in (L?(Q))?.
We need the following result.

Lemma 3.1. Forv € V, we have:

(1> hmn%oo aO(unJrla U) = a0<¢a U); .

(2) limy o0 @n(Unt1,v) = oo (P, v) = fﬂ(¢V)¢Ud$,
(3) it 0 (tn1,0) = 0 (6,0) = [ (6¥) v
(4) We have limy .o Ly (v) = Log(v) = [, [f + (6V)@lvda.
Proof. (1) Since u, — ¢, and by linearity of v — ag(u,v) we have ag(un+1,v) —

ag(p,v) for all v € V.
(2) Let

E = |a" (up+1,0) — a™®(¢,v)| = | /Q {(wn1 V)un — (6V)ptvda|  (3.2)
We can write

(Ung1 - V)tun — (0.V)d = ((tng1 — @) - V)uy + (¢ - V)(un — ¢) (3.3)
which gives with u,, € H?(Q2) and using Green’s theorem,
E < Cllluntr = @llallunllmr vl gy + llun = @ll2(IVollm (|6 g + VOl a2 HU||H(1)]~)
3.4
Since u,, converges strongly to ¢ in (L?(R))?, it follows that E — 0.
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(3) Let

F = |an(tns1,) — oo ()] = / (- V)t — (6~ V)dJv i

Then
F < Clllup = @llzlluntallz[[vllae + [untr = Sll2([v]| a2 [Vl 1 + |]l 1 [Vl )]s
(3.5)

thus F' — 0.
(4) Let
G = |Ln(0) = Lot} < [ (1,5 1,) = (679)]|V0] o

Then
G < Clllun = ll2(lunllar[v]l e + Ol VOl a2 + VOl g llol|an)]. (3.6)
Then Lemma [3.1] gives the desired result. O

For using de Rham’s Theorem, let £ a continuous linear form on (H}(2))? which
vanishes on V if and only if there exists a unique function ¢ € L?(Q2)/R such that
for all v € H}(Q),

L(v) = / pdivodz.
Q
Theorem 3.2. We have lim,, oo u, = ¢ in V then ¢ is a solution of (1.1]).
Proof. Tt follows from Lemma [3.1] that
nh—>n<;10 o (u”+17 ’U) + an (un+17 ’U) +a"” (un+17 ’U) = a0(¢7 ’U) + 2000 (¢7 U) = Lo (U) .

Let the linear form L(v) = ag(d,v) + aoo(P,v) + a®(p,v) — Loo(v). Therefore
L(v) =0 for all v € V, then de Rham’s theorem implies that there exists a unique
function p € L?(Q)/R such that

ag (P, v) 4 2600 (¢, v) — Loo(v) = /deivvdx Vv € Hy () (3.7

which gives

V/QVQSVvd:c—k/Q(qSV)(;Svdx—/deivvdm:/vadx Yo € H} (Q), (3.8)

/(—VA(;S +(oV)p+ Vp— fludz =0 Vv e HH(Q). (3.9)
Q
Then in D' (),

—vAG+ (¢V)p+Vp— f=0. (3.10)
Since ¢ € V we conclude that ¢ is the solution of . O

Theorem 3.3. Let u,y1 be the solution of (2.2), and ¢ be the solution of (L.1).
Then convergence of the sequence (Upt1)nen towards ¢ is quadratic; i.e.,

[unt1 = @llmg () < Collun — dll % ) (3.11)
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Proof. Let wy, = u, — ¢ and x,, = p, — p. Subtracting problem (2.1)) from (1.1)) we
obtain

—vAwp11 + (W1 V)uy + (UnV)wni1 + Vxnsr = (WpV)w,  in Q
divwp41 =0 in Q (3.12)
wpy1 =0 onT
The variational formulation of is
Find (wn+1, Xnt+1) € W such that
a(Wni1,0) +b(Xni1,v) = Fu(v) Yo € HYH(R) (3.13)
b(¢,wni1) =0 Vg€ L3,
where a = ag + a” + a,, and

b(q, wn+1) :f/ﬂqdivwm_l dz, F,(v) :/Q(an)wnvdz.

Since divwy41 = 0, using Lemma2.T] and Lemma [2.5] for u,, € B+ and v = wp41,
we obtain

(vC1 = Ca™)llwns1llip ) < alwns1,wnt1) = Fwns)

) (3.14)
< Cllwnllga o lwntillmz o) -
This gives with Cy = WCC‘Q) and the convergence is quadratic. (]
4. NONHOMOGENEOUS PROBLEM
We are concerned now with the nonhomogeneous problem
—vAu+ (u-V)u+Vp=f inQ
divu=0 inQ (4.1)

u=g onl

Where the state u is sought in the space (H(2))2 N V.
Throughout this section © denotes a bounded domain in R?, with Lipschitz-
continuous boundary I' = NI'; ¢ = 1,...,4. We assume in this section that

/ gn;do=0 withge H=(HY?T))?and fe K =(H Q)  (4.2)
1".

We assume also that for a given g € H satisfying for any ¢ > 0 there exists a
function wo € (H'(Q2))? such that

divwy =0, wo|l' =g, (4.3)
an (w0, )] < cllunlyy @ Vitn € V. (1.4)
The existence of wy satisfying is a technical result due to Hopf [11].

Theorem 4.1. Given (g, f) € K x H satisfying there exists a pair (u,p) €
(HY(Q))? x LE(Q) which is a solution of (4.1)).

Proof. Let & = ug — wo where wy verify and an arbitrary ug € V. We
consider the sequence of linear problems

—VAfn+1 + (£n+1v)§n + (gn : V)§n+1 +Vppy1 =fn in Q
divé,11 =0 inQ (4.5)
€n+l =0 onl
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With €n41 = Un i1 — Wo, Uny1 € HY(Q) and f, = f + (£, V)&, + vAwy — (wo - V)wo.

Then &,41 is a solution of the variational problem

Find &,41 € V such that

a(&nt1,v) = Lp(v) Yo eV, (46)
where a(€,v) = ao(€, v) + an(E,v) + a"(6,0) + ax (€, v) with
a,(&,v) = /Q(§V)wov dx + /Q(wOV)fv dx
and Ly, (v) = (fa, v).
Taking ¢ > v and using 2.9 we obtain
|a(&nt1,€nr1)l = (v = Ol&ns1llip o) (4.7)

Thus we have the coercivity and L is obviously continuous on V. We observe that
problem (4.6]) fits into the framework of section 1 and therefore the sequence &,

converges towards a solution of (4.1)). O
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