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SPECTRUM FOR ANISOTROPIC EQUATIONS INVOLVING
WEIGHTS AND VARIABLE EXPONENTS

IONELA-LOREDANA STĂNCUŢ

Abstract. We study the problem

−
NX

i=1

h
∂xi

“
|∂xiu|

pi(x)−2∂xiu
”

+ |u|pi(x)−2u
i

+ |u|q(x)−2u = λg(x)|u|r(x)−2u

in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in RN (N ≥ 3), with smooth

boundary, λ is a positive real number, the functions pi, q, r : Ω → [2,∞)

are Lipschitz continuous, g : Ω→ [0,∞) is measurable and these fulfill certain

conditions. The main result of this paper establish the existence of two positive
constants λ0 and λ1 with 0 < λ0 ≤ λ1 such that any λ ∈ [λ1,∞) is an

eigenvalue, while any λ ∈ (0, λ0) is not an eigenvalue of our problem.

1. Introduction

The purpose of this paper is to study the eigenvalue problem

−
N∑
i=1

[
∂xi

(|∂xi
u|pi(x)−2∂xi

u) + |u|pi(x)−2u
]

+ |u|q(x)−2u = λg(x)|u|r(x)−2u in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain with smooth boundary in RN (N ≥ 3). The functions
pi, q, r : Ω→ [2,∞) are Lipschitz continuous, while g : Ω→ [0,∞) is a measurable
function for which there exists an open subset Ω0 ⊂ Ω such that g(x) > 0 for any
x ∈ Ω0, and λ ≥ 0 is a real number.

A motivation for the study of problem (1.1) is given in [8, 9]. In [8] the problem
studied involves the Laplace operator and Ω ⊂ RN is a bounded domain with
smooth boundary, while in [9] the authors deal with a problem involving the p(·)-
Laplace operator and Ω ⊂ RN (N ≥ 3) is a smooth exterior domain.

We emphasize the presence of ~p(·)-Laplace operator in problem (1.1). This is
a natural extension of the p(·)-Laplace operator. Both p(·)-Laplace operator and
~p(·)-Laplace operator are nonhomogeneous, unlike the p-Laplace operator, where p
is a positive constant. The study of nonlinear elliptic equations involving quasilin-
ear homogeneous type operators like the p-Laplace operator is based on the theory
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of standard Sobolev spaces to find weak solutions, while in the case of operators
p(·)-Laplace and ~p(·)-Laplace the natural setting is the use of the isotropic vari-
able exponent Sobolev spaces and anisotropic variable exponent Sobolev spaces
respectively (for our approach).

Thanks to the applicability to diverse fields of variable Sobolev spaces, in the
past decades appeared many papers which involve such spaces. These are used to
model various phenomena in image restoration (see [2]), in elastic mechanics (see
[15]) and for the modelling of electrorheological fluids (or smart fluids). The first
major discovery on electrorheological fluids was in 1949 due to Winslow [14]. These
fluids have the interesting property that their viscosity can undergoes a significant
change (namely can raise by up to five orders of magnitude) which depends on
the electric field in the fluid. This phenomenon is known as the Winslow effect.
Electrorheological fluids have been used in robotics and space technology. The
experimental research has been done mainly in the USA, for instance in NASA
laboratories.

2. Abstract framework

First, we introduce briefly a variable exponent Lebesgue-Sobolev setting. For
more information on properties of variable exponent Lebesgue-Sobolev spaces we
refer to [3, 4, 5, 6, 10, 11].

Throughout this paper, for any Lipschitz continuous function p : Ω→ (1,∞) we
define

p+ = ess supx∈Ω p(x) and p− = ess infx∈Ω p(x).

We define the variable exponent Lebesgue space

Lp(·)(Ω) =
{
u;uis a measurable real-valued function and

∫
Ω

|u|p(x)dx <∞
}
,

endowed with the so-called Luxemburg norm

|u|p(·) = inf
{
µ > 0;

∫
Ω

∣∣∣u(x)
µ

∣∣∣p(x)

dx ≤ 1
}
,

which is a separable and reflexive Banach space. If 0 < |Ω| < ∞ and p1, p2

are variable exponents such that p1(x) ≤ p2(x) almost everywhere in Ω, then the
embedding Lp2(·)(Ω) ↪→ Lp1(·)(Ω) is continuous.

We denote by Lp
′(·)(Ω) the conjugate space of Lp(·)(Ω), where 1

p(x) + 1
p′(x) = 1.

For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) the following Hölder type inequality∣∣∣ ∫
Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1
p′−

)
|u|p(·)|v|p′(·) ≤ 2|u|p(·)|v|p′(·) (2.1)

holds.
An important role in handling the generalized Lebesgue spaces is played by the

p(·)-modular of Lp(·)(Ω) space, which is the mapping ρp(·) : Lp(·)(Ω) → R defined
by

ρ(·)(u) =
∫

Ω

|u|p(x)dx.

If (un), u ∈ Lp(·)(Ω), then the following relations hold:

|u|p(·) > 1⇒ |u|p
−

p(·) ≤ ρp(·)(u) ≤ |u|p
+

p(·), (2.2)
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|u|p(·) < 1⇒ |u|p
+

p(·) ≤ ρp(·)(u) ≤ |u|p
−

p(·), (2.3)

|un − u|p(·) → 0⇔ ρp(·)(un − u)→ 0. (2.4)

We denote by W 1,p(·)
0 the variable exponent Sobolev space defined by

W
1,p(·)
0 (Ω) =

{
u;u|∂Ω = 0, u ∈ Lp(·)(Ω) and |∇u| ∈ Lp(·)(Ω)

}
,

endowed with the equivalent norms

‖u‖p(·) = |u|p(·) + |∇u|p(·)

and

‖u‖ = inf
{
µ > 0;

∫
Ω

(∣∣∣∇u(x)
µ

∣∣∣p(x)

+
∣∣∣u(x)
µ

∣∣∣p(x))
dx ≤ 1

}
,

where, in the definition of ‖u‖p(·), |∇u|p(·) is the Luxemburg norm of |∇u|. We
remember that W 1,p(·)

0 (Ω) is a separable and reflexive Banach space. Also, we note
that if p, s : Ω → (1,∞) are Lipschitz continuous functions with p+ < N and
p(x) ≤ s(x) ≤ p∗(x) for all x ∈ Ω, then the there exists the continuous embedding
W

1,p(·)
0 (Ω) ↪→ Ls(·)(Ω), where p∗(x) = Np(x)

N−p(x) .

Next, we present the anisotropic variable exponent Sobolev space W
1,~p(·)
0 (Ω),

where ~p : Ω → RN is the vectorial function ~p(·) = (p1(·), . . . , pN (·)) and the com-
ponents pi, i ∈ {1, . . . , N}, are logarithmic Hölder continuous, that is, there ex-
ists M > 0 such that |pi(x) − pi(y)| ≤ −M/ log(|x − y|) for any x, y ∈ Ω with
|x − y| ≤ 1/2 and i ∈ {1, . . . , N}. Also, we define W

1,~p(·)
0 (Ω) as the closure of

C∞0 (Ω) under the norm

‖u‖~p(·) =
N∑
i=1

(
|∂xi

u|pi(·) + |u|pi(·)
)
,

and is a reflexive Banach space (see [7]).
Now, we introduce ~P+, ~P− ∈ RN as

~P+ = (p+
1 , . . . , p

+
N ), ~P− = (p−1 , . . . , p

−
N ),

and P+
+ , P

+
− , P

−
− ∈ R+ as

P+
+ = max{p+

1 , . . . , p
+
N}, P+

− = max{p−1 , . . . , p
−
N}, P−− = min{p−1 , . . . , p

−
N}.

We also always assume that
N∑
i=1

1
p−i

> 1,

and define P ∗−, P−,∞ ∈ R+ by

P ∗− =
N∑N

i=1 1/p−i − 1
, P−,∞ = max{P+

− , P
∗
−}.
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3. Main result

We study the problem (1.1) assuming that the functions pi, q and r satisfy the
hypotheses

2 ≤ P−− ≤ P+
+ < N, (3.1)

P+
− ≤ P+

+ < r− ≤ r+ < q− ≤ q+ < P ∗− ≤ p∗i (x) ∀x ∈ Ω, ∀i ∈ {1, . . . , N}. (3.2)

Furthermore, we assume that the weight function g(x) satisfies the hypotheses∫
Ω

(λg(x))
q(x)

q(x)−r(x) dx <∞, (3.3)

g ∈ L∞(Ω) ∩ Lp
0
i (·)(Ω), (3.4)

where p0
i (x) = p∗i (x)

p∗i (x)−r− for any x ∈ Ω and any i ∈ {1, . . . , N}.

We look for weak solutions for problem (1.1) in the space W 1,~p(·)
0 (Ω). We say

that λ ∈ R is an eigenvalue of problem (1.1) if there exists a u ∈ W 1,~p(·)
0 (Ω) \ {0}

such that ∫
Ω

[ N∑
i=1

(
|∂xi

u|pi(x)−2∂xi
u∂xi

v + |u|pi(x)−2uv
)

+ |u|q(x)−2uv
]
dx

− λ
∫

Ω

g(x)|u|r(x)−2uv dx = 0,

for all v ∈W 1,~p(·)
0 (Ω). We point out that if λ is an eigenvalue of problem (1.1) then

the corresponding u ∈W 1,~p(·)
0 (Ω) \ {0} is a weak solution of problem (1.1).

Define

λ1 := inf
u∈W 1,~p(·)

0 (Ω)\{0}

∫
Ω

∑N
i=1

(
|∂xi

u|pi(x)

pi(x) + |u|pi(x)

pi(x)

)
dx+

∫
Ω
|u|q(x)

q(x) dx∫
Ω
g(x)
r(x) |u|r(x)dx

,

λ0 := inf
u∈W 1,~p(·)

0 (Ω)\{0}

∫
Ω

∑N
i=1

(
|∂xiu|pi(x) + |u|pi(x)

)
dx+

∫
Ω
|u|q(x)dx∫

Ω
g(x)|u|r(x)dx

.

Our main result is given by the following theorem.

Theorem 3.1. Assume that conditions (3.1)–(3.4) are satisfied. Then

0 < λ0 ≤ λ1.

In addition, any λ ∈ (0, λ0) is not an eigenvalue of problem (1.1), while each
λ ∈ [λ1,∞) is an eigenvalue of our problem.

4. Proof of the main result

In what follows we denote by E the generalized Sobolev space W 1,~p(·)
0 (Ω). We

need to define the functionals J1, I1, J0, I0 : E → R by

J1(u) =
∫

Ω

N∑
i=1

( |∂xi
u|pi(x)

pi(x)
+
|u|pi(x)

pi(x)

)
dx+

∫
Ω

|u|q(x)

q(x)
dx,

I1(u) =
∫

Ω

g(x)
r(x)
|u|r(x)dx,
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J0(u) =
∫

Ω

N∑
i=1

(
|∂xi

u|pi(x) + |u|pi(x)
)
dx+

∫
Ω

|u|q(x)dx,

I0(u) =
∫

Ω

g(x)|u|r(x)dx.

[7, Theorem 1] assures that J1, I1 ∈ C1(E,R) and the Fréchet derivatives are given
by

〈J ′1(u), v〉 =
∫

Ω

[ N∑
i=1

(
|∂xiu|pi(x)−2∂xiu∂xiv + |u|pi(x)−2uv

)
+ |u|q(x)−2uv

]
dx,

〈I ′1(u), v〉 =
∫

Ω

g(x)|u|r(x)−2uv dx.

Also, we define for any λ > 0 the functional

T 1
λ(u) = J1(u)− λ · I1(u) ∀u ∈ E.

We point out that λ is an eigenvalue of problem (1.1) if and only if there is an
element uλ ∈ E \ {0}, which is a critical point of the functional T 1

λ .
To give a clear view of what needs to be proved, we divide the proof of the

theorem in four steps.
Step 1. We show that λ0, λ1 > 0. It should be noticed that from the condition
(3.2), we have pi(x) < r(x) < q(x) for any x ∈ Ω and any i ∈ {1, . . . , N}, and
therefore

|u(x)|r(x) ≤ |u(x)|pi(x) + |u(x)|q(x) ∀u ∈ E, ∀x ∈ Ω, ∀i ∈ {1, . . . , N}.
Thus,∫

Ω

(
|u|pi(x) + |u|q(x)

)
dx ≥ 1

|g|∞
·
∫

Ω

g(x)|u|r(x)dx ∀u ∈ E, ∀i ∈ {1, . . . , N}. (4.1)

It is obvious that∫
Ω

N∑
i=1

(
|∂xiu|pi(x) + |u|pi(x)

)
dx+

∫
Ω

|u|q(x)dx ≥
∫

Ω

(
|u|pi(x) + |u|q(x)

)
dx,

which together with relation (4.1) we can deduce that∫
Ω

∑N
i=1

(
|∂xi

u|pi(x) + |u|pi(x)
)
dx+

∫
Ω
|u|q(x)dx∫

Ω
g(x)|u|r(x)dx

≥ 1
|g|∞

> 0.

Hence we obtain that λ0 > 0.
Next, using (4.1), by a simple computation we arrive at∫

Ω

|u|pi(x)

pi(x)
dx+

∫
Ω

|u|q(x)

q(x)
dx ≥ r−

q+ · |g|∞

∫
Ω

g(x)
r(x)
|u|r(x)dx.

It is clear that∫
Ω

N∑
i=1

( |∂xiu|pi(x)

pi(x)
+
|u|pi(x)

pi(x)

)
dx+

∫
Ω

|u|q(x)

q(x)
dx ≥

∫
Ω

|u|pi(x)

pi(x)
dx+

∫
Ω

|u|q(x)

q(x)
dx,

and considering the previous inequality we derive that∫
Ω

∑N
i=1

(
|∂xi

u|pi(x)

pi(x) + |u|pi(x)

pi(x)

)
dx+

∫
Ω
|u|q(x)

q(x) dx∫
Ω
g(x)
r(x) |u|r(x)dx

≥ r−

q+ · |g|∞
> 0,
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wherefrom λ1 > 0. Step 1 is verified.
Step 2. We prove that any λ ∈ (0, λ0) is not an eigenvalue of problem (1.1).

We argue indirectly. So, suppose that there is λ ∈ (0, λ0), an eigenvalue of
problem (1.1). Thereby we can deduce the existence of an element uλ ∈ E \ {0}
such that∫

Ω

[ N∑
i=1

(
|∂xi

uλ|pi(x)−2∂xi
uλ∂xi

v + |uλ|pi(x)−2uλv
)

+ |uλ|q(x)−2uλv
]
dx

= λ

∫
Ω

g(x)|uλ|r(x)−2uλv dx ∀v ∈ E.

Taking v = uλ in the above equality we obtain

J0(uλ) = λ · I0(uλ). (4.2)

By uλ ∈ E \ {0} we have J0(uλ) > 0 and I0(uλ) > 0. On the other hand

J0(uλ)
I0(uλ)

=

∫
Ω

∑N
i=1

(
|∂xi

uλ|pi(x) + |uλ|pi(x)
)
dx+

∫
Ω
|uλ|q(x)dx∫

Ω
g(x)|uλ|r(x)dx

≥ λ0.

This, together with (4.2) yield

J0(uλ) ≥ λ0 · I0(uλ) > λ · I0(uλ) = J0(uλ),

which is a contradiction. This proves the Step 2.
Step 3. We verify that each λ ∈ (λ1,∞) is an eigenvalue for problem (1.1). With
an eye to show what we proposed in this step, we start by proving the following
three lemmas.

Lemma 4.1. Assume that conditions (3.1)–(3.4) are fulfilled and s is a real number
such that r+ < s < P ∗−. Then g ∈ L

s

s−r− (Ω) ∩ L
s

s−r+ (Ω) and∫
Ω

g(x)|u|r(x)dx ≤ |g| s

s−r−
|u|r

−

s + |g| s

s−r+
|u|r

+

s ∀u ∈ E. (4.3)

Proof. In the first instance we highlight the inequalities
s

s− r+
≥ s

s− r−
>

P ∗−
P ∗− − r−

≥ p∗i (x)
p∗i (x)− r−

= p0
i (x) (4.4)

for all x ∈ Ω and all i ∈ {1, . . . , N}. Also, we have

(p0
i )
− ≤ p0

i (x) ≤
P ∗−

P ∗− − r−
∀x ∈ Ω, ∀i ∈ {1, . . . , N}.

So we arrive at

|g|
s

s−r−
−(p0i )−

∞ + |g|
s

s−r−
−

P∗−
P∗−−r−

∞ ≥ |g|
s

s−r−
−p0i (x)

∞ ∀x ∈ Ω, ∀i ∈ {1, . . . , N}. (4.5)

By (3.4), (4.4) and (4.5) we can easily see that∫
Ω

[g(x)]
s

s−r− dx =
∫

Ω

[g(x)]p
0
i (x) · [g(x)]

s

s−r−
−p0i (x)

dx

≤
∫

Ω

[g(x)]p
0
i (x) · |g|

s

s−r−
−p0i (x)

∞ dx

≤
(
|g|

s

s−r−
−(p0i )−

∞ + |g|
s

s−r−
−

P∗−
P∗−−r−

∞

)∫
Ω

[g(x)]p
0
i (x)dx <∞,
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that is g ∈ L
s

s−r− (Ω). In a similar fashion, we can show that g ∈ L
s

s−r+ (Ω).
From

|u(x)|r
−

+ |u(x)|r
+
≥ |u(x)|r(x) ∀u ∈ E, ∀x ∈ Ω, (4.6)

and Hölder type inequality (2.1), we deduce∫
Ω

g(x)|u|r(x)dx ≤
∫

Ω

g(x)|u|r
−
dx+

∫
Ω

g(x)|u|r
+
dx

≤ |g| s

s−r−
|u|r

−

s + |g| s

s−r+
|u|r

+

s ∀u ∈ E .

The proof of Lemma 4.1 is complete. �

Lemma 4.2. For each λ > 0 we have

lim
‖u‖~p(·)→∞

T 1
λ(u) =∞.

Proof. Let s ∈ R be such that

r+ < s < q− < P ∗−. (4.7)

Without loss of generality we assume that ‖u‖~p(·) > 1 for each u ∈ E. By (3.2) and
(4.7) we have

|u(x)|pi(x) + |u(x)|q(x) ≥ |u(x)|s ∀u ∈ E, ∀x ∈ Ω, ∀i ∈ {1, . . . , N} .

This implies ∫
Ω

( N∑
i=1

|u|pi(x) + |u|q(x)
)
dx ≥

∫
Ω

|u|sdx. (4.8)

Now, using (4.8) and Lemma 4.1 we have

T 1
λ(u) =

∫
Ω

N∑
i=1

( |∂xi
u|pi(x)

pi(x)
+
|u|pi(x)

pi(x)

)
dx+

∫
Ω

|u|q(x)

q(x)
dx− λ

∫
Ω

g(x)
r(x)
|u|r(x)dx

≥
( 1
P+

+

∫
Ω

N∑
i=1

|∂xi
u|pi(x)dx+

1
2P+

+

∫
Ω

N∑
i=1

|u|pi(x)dx
)

+
( 1

2P+
+

∫
Ω

N∑
i=1

|u|pi(x)dx+
1
q+

∫
Ω

|u|q(x)dx
)
− λ

r−

∫
Ω

g(x)|u|r(x)dx

≥ 1
2P+

+

∫
Ω

N∑
i=1

(
|∂xiu|pi(x) + |u|pi(x)

)
dx+

1
max{2P+

+ , q
+}

∫
Ω

|u|sdx

− C1|u|r
−

s − C2|u|r
+

s ,

where C1 = λ
r− |g| s

s−r−
and C2 = λ

r− |g| s

s−r+
. To go further we need to define for

each i ∈ {1, . . . , N} the following:

αi =

{
P+

+ for |∂xi
u|pi(·) < 1

P−− for |∂xi
u|pi(·) > 1,

βi =

{
P+

+ for |u|pi(·) < 1
P−− for |u|pi(·) > 1.
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From that fact and applying the Jensen’s inequality to the convex function a :
R+ → R+, a(t) = tP

−
− , P−− ≥ 2, we can write

T 1
λ(u) ≥ 1

2P+
+

N∑
i=1

(
|∂xi

u|αi

pi(·) + |u|βi

pi(·)
)

+
1

max{2P+
+ , q

+}

∫
Ω

|u|sdx− C1|u|r
−

s − C2|u|r
+

s

≥ 1
2P+

+

N∑
i=1

|∂xi
u|P

−
−
pi(·) −

1
2P+

+

∑
{i;αi=P

+
+ }

(
|∂xiu|

P−−
pi(·) − |∂xiu|

P+
+

pi(·)
)

+
1

2P+
+

N∑
i=1

|u|P
−
−
pi(·) −

1
2P+

+

∑
{i; βi=P

+
+ }

(
|u|P

−
−
pi(·) − |u|

P+
+

pi(·)
)

+
1

max{2P+
+ , q

+}

∫
Ω

|u|sdx− C1|u|r
−

s − C2|u|r
+

s

≥
‖u‖P

−
−
~p(·)

2P+
+ (2N)P

−
−−1

− N

P+
+

+ (C3|u|ss − C1|u|r
−

s ) + (C3|u|ss − C2|u|r
+

s ),

(4.9)

where C3 = 1
2 max{2P+

+ , q
+} . We are going to show that for each u ∈ E there are two

positive constants L1 = L1(r−, s, C1, C3) and L2 = L2(r+, s, C2, C3) such that

C3|u|ss − C1|u|r
−

s ≥ −L1, (4.10)

C3|u|ss − C2|u|r
+

s ≥ −L2. (4.11)

For this purpose, we define the functional Υ : (0,∞)→ R as

Υ(t) = αta − βtb,

where α, β, a, b are positive constants with a > b. By a usual computation we find
that Υ achieves its negative global minimum

Υ(t0) = −(a− b)
( bb
aa

) 1
a−b

α
b

b−a · β
a

a−b ,

where t0 =
(
βb
αa

) 1
a−b > 0. Consequently,

αta − βtb ≥ −(a− b)
( bb
aa

) 1
a−b

α
b

b−a · β
a

a−b ∀t > 0. (4.12)

Taking in (4.12) a = s, b = r−, α = C3 and β = C1 we find

L1 = C(s, r−)α
r−

r−−s β
s

s−r− .

In a similar manner, taking in (4.12) a = s, b = r+, α = C3 and β = C2 we deduce
that (4.11) holds for

L2 = C(s, r+)α
r+

r+−s β
s

s−r+ .

Finally, putting together (4.9)–(4.11) we conclude Lemma 4.2. �

Lemma 4.3. For any λ > 0, the functional T 1
λ is weakly lower semicontinuous on

E.
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Proof. Let (un) ⊂ E be such that un ⇀ u0 in E. We define

F (x, u) =
1

q(x)
|u|q(x) − λg(x)

r(x)
|u|r(x),

f(x, u) = Fu(x, u) = |u|q(x)−2u− λg(x)|u|r(x)−2u.

Using ordinary rule of the derivation we find

fu(x, u) = (q(x)− 1)|u|q(x)−2 − λg(x)(r(x)− 1)|u|r(x)−2. (4.13)

We shall employ in what follows the following inequality: for any k1, k2 > 0 and
0 < q < r we have

k1|t|q − k2|t|r ≤ Ck1

(k1

k2

) q
r−q ∀t ∈ R,

where C = C(q, r) > 0 is a constant depending on q and r.
If we make the substitutions k1 = q(x) − 1, k2 = λg(x)(r(x) − 1), q = q(x) − 2

and r = r(x)− 2, then (4.13) becomes

fu(x, u) ≤ C(q(x)− 1)
(q(x)− 1
r(x)− 1

) q(x)−2
r(x)−q(x)

(λg(x))
q(x)−2

q(x)−r(x) .

As a result of the fact that C(q(x) − 1)
( q(x)−1
r(x)−1

) q(x)−2
r(x)−q(x) is a bounded expression,

we arrive at

fu(x, u) ≤ C1(λg(x))
q(x)−2

q(x)−r(x) , (4.14)

where C1 is a positive constant. Also, the equalities∫ s

0

fu(x, u0 + t(un − u0))dt =
f(x, u0 + s(un − u0))− f(x, u0)

un − u0

=
Fu(x, u0 + s(un − u0))− Fu(x, u0)

un − u0

hold. Integrating over [0, 1] it results that∫ 1

0

∫ s

0

fu(x, u0 + t(un − u0))dt ds

=

∫ 1

0

[
Fu(x, u0 + s(un − u0))− Fu(x, u0)

]
ds

un − u0

=
F (x, un)− F (x, u0)

(un − u0)2
− f(x, u0)
un − u0

,

which can be also written in the equivalent form

F (x, un)− F (x, u0) = (un − u0)2

∫ 1

0

∫ s

0

fu(x, u0 + t(un − u0))dt ds

+ (un − u0)f(x, u0).
(4.15)
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Taking into account (4.14), (4.15) and using the definition of T 1
λ it follows that

T 1
λ(u0)− T 1

λ(un)

=
∫

Ω

N∑
i=1

( |∂xi
u0|pi(x)

pi(x)
− |u0|pi(x)

pi(x)

)
dx−

∫
Ω

N∑
i=1

( |∂xi
un|pi(x)

pi(x)
− |un|

pi(x)

pi(x)

)
dx

+
∫

Ω

[F (x, un)− F (x, u0)]dx

≤
∫

Ω

N∑
i=1

( |∂xiu0|pi(x)

pi(x)
− |u0|pi(x)

pi(x)

)
dx−

∫
Ω

N∑
i=1

( |∂xi
un|pi(x)

pi(x)
− |un|

pi(x)

pi(x)

)
dx

+
∫

Ω

(un − u0)2

∫ 1

0

∫ s

0

fu(x, u0 + t(un − u0))dt ds dx

+
∫

Ω

(un − u0)f(x, u0)dx

≤
∫

Ω

N∑
i=1

( |∂xi
u0|pi(x)

pi(x)
− |u0|pi(x)

pi(x)

)
dx−

∫
Ω

N∑
i=1

( |∂xi
un|pi(x)

pi(x)
− |un|

pi(x)

pi(x)

)
dx

+ C2

∫
Ω

(un − u0)2(λg(x))
q(x)−2

q(x)−r(x) dx+
∫

Ω

(un − u0)f(x, u0)dx,

(4.16)
where C2 is a positive constant. We intend to prove that the last two integrals
converge to 0 as n→∞.

Relying on [7, Theorem 1] we find that E is compactly embedded in Lq(·)(Ω),
and since un ⇀ u0 in E we obtain un → u0 in Lq(·)(Ω). This implies∫

Ω

|un − u0|q(x)dx→ 0,

yielding (un − u0)2 ∈ L
q(·)
2 (Ω). Based on Hölder type inequality (2.1) and the

hypothesis (3.3) we derive that∫
Ω

(un − u0)2 · (λg(x))
q(x)−2

q(x)−r(x) dx ≤ 2
∣∣∣(λg(x))

q(x)−2
q(x)−r(x)

∣∣∣
q(·)

q(·)−2

∣∣(un − u0)2
∣∣

q(·)
2
.

On the other hand,

ρ q(·)
2

(
(un − u0)2

)
=
∫

Ω

∣∣(un − u0)2
∣∣ q(x)

2 dx =
∫

Ω

|un − u0|q(x)dx→ 0.

Thereupon, relation (2.4) implies
∣∣(un−u0)2

∣∣
q(·)
2
→ 0, and for this reason we obtain∫

Ω

(un − u0)2 · (λg(x))
q(x)−2

q(x)−r(x) dx→ 0. (4.17)

Next, we define Θ : E → R by

Θ(v) =
∫

Ω

f(x, u0)v dx.
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In the first instance, it is clear that Θ is linear. On the other hand,

|Θ(v)| ≤
∫

Ω

|f(x, u0)v|dx

=
∫

Ω

∣∣|u0|q(x)−2u0 − λg(x)|u0|r(x)−2u0

∣∣ |v|dx
≤
∫

Ω

|u0|q(x)−1|v|dx+ λ

∫
Ω

g(x)|u0|r(x)−1|v|dx.

(4.18)

In accordance with the Hölder type inequality (2.1) we obtain∫
Ω

|u0|q(x)−1|v|dx ≤ 2
∣∣|u0|q(x)−1

∣∣
q(·)

q(·)−1
|v|q(·).

We know that the embedding E ↪→ Lq(·)(Ω) is continuous; that is, there is a positive
constant C such that

|v|q(·) ≤ C‖v‖~p(·) ∀v ∈ E.
The last two inequalities lead us to∫

Ω

|u0|q(x)−1|v|dx ≤ C1‖v‖~p(·),

where C1 > 0 is a constant. Also, reasoning as above we have∫
Ω

g(x)|u0|r(x)−1|v|dx ≤ |g|∞
∫

Ω

|u0|r(x)−1|v|dx

≤ 2|g|∞
∣∣|u0|r(x)−1

∣∣
r(·)

r(·)−1
|v|r(·) ≤ C2‖v‖~p(·),

where C2 > 0 is a constant.
In light of the above, (4.18) becomes

|Θ(v)| ≤ C‖v‖~p(·) ∀v ∈ E

(where C > 0 is a constant); that is to say, Θ is continuous. Accordingly, we
conclude that Θ(un)→ Θ(u0), and therefore∫

Ω

f(x, u0)(un − u0)dx→ 0. (4.19)

To complete the proof of lemma, we must prove that the functional Ξ1 : E → R,

Ξ1(u) =
∫

Ω

N∑
i=1

|u|pi(x)

pi(x)
dx

is convex. Considering that the function [0,∞) 3 t 7→ tγ is convex for each γ > 1,
for any x ∈ Ω fixed we can say that∣∣∣α+ β

2

∣∣∣pi(x)

≤
∣∣∣ |α|+ |β|

2

∣∣∣pi(x)

≤ 1
2
|α|pi(x) +

1
2
|β|pi(x) (4.20)

for all α, β ∈ R and all i ∈ {1, . . . , N}. If we take α = u and β = v in (4.20),
multiply by 1/pi(x), sum from 1 to N and intergate over Ω, we obtain

Ξ1

(u+ v

2

)
≤ 1

2
Ξ1(u) +

1
2

Ξ1(v) ∀u, v ∈ E.
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In the same manner we can prove that the functional Ξ2 : E → R defined by

Ξ2(u) =
∫

Ω

N∑
i=1

|∂xi
u|pi(x)

pi(x)
dx

is convex. Thereby Ξ1 + Ξ2 is convex on E. Next, we propose to show that the
functional Ξ1 + Ξ2 is weakly lower semicontinuous on E. Making use of Corollary
III.8 in [1] we ascertain that is enough to demonstrate the lower semicontinuity of
Ξ1 + Ξ2. Therefor, we fix u ∈ E and ε > 0. Let v ∈ E be arbitrary. By convexity
of Ξ1 + Ξ2 and Hölder type inequality (2.1) we have

Ξ1(v) + Ξ2(v)

≥ Ξ1(u) + Ξ2(u) + 〈Ξ′1(u) + Ξ′2(u), v − u〉

= Ξ1(u) + Ξ2(u) +
∫

Ω

N∑
i=1

|∂xiu|pi(x)−2∂xiu∂xi(v − u)dx

+
∫

Ω

N∑
i=1

|u|pi(x)−2u(v − u)dx

≥ Ξ1(u) + Ξ2(u)−
∫

Ω

N∑
i=1

|∂xiu|pi(x)−1|∂xi(v − u)|dx−
∫

Ω

N∑
i=1

|u|pi(x)−1|v − u|dx

≥ Ξ1(u) + Ξ2(u)− 2
( N∑
i=1

∣∣|∂xiu|pi(x)−1
∣∣

pi(·)
pi(·)−1

|∂xi
(v − u)|pi(·)

+
N∑
i=1

∣∣|u|pi(x)−1
∣∣

pi(·)
pi(·)−1

|v − u|pi(·)

)
= Ξ1(u) + Ξ2(u)− 2

N∑
i=1

(∣∣|∂xi
u|pi(x)−1

∣∣
pi(·)

pi(·)−1
|∂xi

(v − u)|pi(·)

+
∣∣|u|pi(x)−1

∣∣
pi(·)

pi(·)−1
|v − u|pi(·)

)
≥ Ξ1(u) + Ξ2(u)− 2

N∑
i=1

(∣∣|∂xi
u|pi(x)−1

∣∣
pi(·)

pi(·)−1

+
∣∣|u|pi(x)−1

∣∣
pi(·)

pi(·)−1

)(
|∂xi

(v − u)|pi(·) + |v − u|pi(·)
)

≥ Ξ1(u) + Ξ2(u)− C
N∑
i=1

(
|∂xi

(v − u)|pi(·) + |v − u|pi(·)
)

= Ξ1(u) + Ξ2(u)− C‖v − u‖~p(·)
for all v ∈ E with ‖v − u‖~p(·) ≤ ε/C, where C > 0 is a constant, whence we obtain
the weakly lower semicontinuity of Ξ1 + Ξ2 on E; that is,

lim inf
n→∞

(Ξ1 + Ξ2)(un) ≥ (Ξ1 + Ξ2)(u0). (4.21)

Passing to the limit in (4.16) and making use of (4.17), (4.19) and (4.21) it follows
that

lim inf
n→∞

T 1
λ(un) ≥ T 1

λ(u0)



EJDE-2014/241 SPECTRUM FOR ANISOTROPIC EQUATIONS 13

meaning that Lemma 4.3 holds. �

Then on the basis of these three lemmas above mentioned, we are going to show
what we have proposed to Step 3. We fix λ ∈ (λ1,∞). In the light of coercivity
and weakly lower semicontinuity of T 1

λ we can use [13, Theorem 1.2] to obtain the
existence of a global minimum point of T 1

λ , uλ ∈ E. Ultimately, to complete Step 3
we have to show only that uλ is not trivial. In truth, we have λ1 = infu∈E\{0}

J1(u)
I1(u)

and λ1 < λ whence we obtain that there is a vλ ∈ E so that T 1
λ(vλ) < 0. Thus

inf
E
T 1
λ < 0,

and so we can conclude that uλ is a nontrivial critical point of T 1
λ or, in other words,

λ is an eigenvalue of problem (1.1) leading to Step 3 is verified.

Step 4. In this last step we show that λ1 is an eigenvalue of problem (1.1). First
of all we prove two lemmas.

Lemma 4.4. We have that

lim
‖u‖~p(·)→0

J0(u)
I0(u)

= +∞.

Proof. We fix s ∈ R such that

r+ < s < q− < P ∗−.

It should be noticed that from the condition (3.2), we have P−,∞ = P ∗−. Thereby
s < P−,∞ and so E ↪→ Ls(Ω) continuously, whence we obtain the existence of a
positive constant C such that

|u|s ≤ C‖u‖~p(·) ∀u ∈ E. (4.22)

Without loss of generality we consider that ‖u‖~p(·) < 1 for any u ∈ E. By applying

the Jensen’s inequality to the convex function a : R+ → R+, a(t) = tP
−
− , P−− ≥ 2,

using αi and βi defined in Lema 4.2, and by (4.3) and (4.22) we infer that

J0(u)
I0(u)

=

∫
Ω

∑N
i=1

(
|∂xi

u|pi(x) + |u|pi(x)
)
dx+

∫
Ω
|u|q(x)dx∫

Ω
g(x)|u|r(x)dx

≥

‖u‖
P
−
−

~p(·)

(2N)
P
−
−−1
− 2N

|g| s

s−r−
|u|r−s + |g| s

s−r+
|u|r+s

≥
‖u‖P

−
−
~p(·) − (2N)P

−
−

(2N)P
−
−−1

(
|g| s

s−r−
Cr−‖u‖r−~p(·) + |g| s

s−r+
Cr+‖u‖r+~p(·)

) .
Given that r+ ≥ r− > P−− and passing to the limit in the above inequality it is
obvious that lim‖u‖~p(·)→∞

J0(u)
I0(u) = +∞ occurs, and so the Lemma 4.4 is proved. �

Lemma 4.5. Suppose that (un) converges weakly to u in E. Then we have

lim
n→∞

〈I ′1(un), un − u〉 = 0. (4.23)
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Proof. We define Φ : E → R by

Φ(v) =
∫

Ω

g(x)|un|r(x)−2unv dx.

Is easily seen that Φ is linear and we want to show that is also continuous. Indeed,
by Hölder type inequality (2.1) we have

|Φ(v)| =
∣∣ ∫

Ω

g(x)|un|r(x)−2unv dx
∣∣ ≤ ∫

Ω

∣∣∣g(x)|un|r(x)−2unv
∣∣∣ dx

=
∫

Ω

g(x)|un|r(x)−1|v|dx ≤ |g|∞
∫

Ω

|un|r(x)−1|v|dx

≤ 2|g|∞
∣∣|un|r(x)−1

∣∣
r(·)

r(·)−1
|v|r(·).

(4.24)

We have E ↪→ Lr(·)(Ω) continuously, thus there exists a constant C > 0 such that

|v|r(·) ≤ C‖v‖~p(·) ∀v ∈ E.

By the above inequality and (4.24) we obtain the continuity of Φ. Then Φ(un) →
Φ(u), or

lim
n→∞

∫
Ω

g(x)|un|r(x)−2un(un − u)dx = 0

which is exactly (4.23). �

Now, we return to the proof of Step 4. Let λn ↘ λ1. Considering the Step 3 we
infer that for any n there exists un ∈ E \ {0} so that

〈J ′1(un), v〉 = λn · 〈I ′1(un), v〉 ∀v ∈ E. (4.25)

Making the substitution v = un in (4.25) we obtain

J0(un) = λn · I0(un), (4.26)

and passing to the limit as n→∞ we find that

lim
n→∞

(J0(un)− λn · I0(un)) = 0. (4.27)

Now, if we suppose that ‖un‖~p(·) → ∞, then reasoning as in the proof of Lemma
4.2 we reach a contradiction with (4.27). Hence, the sequence (un) is bounded in
E. On the other hand, we know that E is a reflexive Banach space, and due to
this reason we deduce that there is an element u ∈ E so that, up to a subsequence,
labeled again (un), we have that un ⇀ u in E. Therefore, (4.23) occurs.

To proceed we use the inequality(
|ξi|ri−2ξi − |ψi|ri−2ψi

)
(ξi − ψi) ≥ 2−ri |ξi − ψi|ri ∀ξi, ψi ∈ R, ∀ri ≥ 2 (4.28)

(see [12, inequality (2.2)]). Replacing in the above inequality ξi by ∂xi
un, ψi by

∂xi
u and ri by pi(x) , and then ξi by un, ψi by u and ri by pi(x) respectively,

for each i ∈ {1, . . . , N} and x ∈ Ω, then adding the two inequalities obtained, and
taking into account that 2pi(x) is bounded, it results that there exists L1 > 0 such
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that

L1

∫
Ω

(
|∂xi

un − ∂xi
u|pi(x) + |un − u|pi(x)

)
dx

≤
∫

Ω

(
|∂xiun|pi(x)−2∂xiun − |∂xiu|pi(x)−2∂xiu

)
(∂xiun − ∂xiu)dx

+
∫

Ω

(
|un|pi(x)−2un − |u|pi(x)−2u

)
(un − u)dx ∀i ∈ {1, . . . , N}.

(4.29)

Also, using again inequality (4.28), we find that there is L2 > 0 such that

L2

∫
Ω

|un − u|q(x)dx ≤
∫

Ω

(
|un|q(x)−2un − |u|q(x)−2u

)
(un − u)dx. (4.30)

Summing from 1 to N in (4.29) and adding the inequality which we obtain with
(4.30) we can see that

L1

∫
Ω

N∑
i=1

(
|∂xi

un − ∂xi
u|pi(x) + |un − u|pi(x)

)
dx

≤
∫

Ω

N∑
i=1

(
|∂xi

un|pi(x)−2∂xi
un − |∂xi

u|pi(x)−2∂xi
u
)

(∂xi
un − ∂xi

u)dx

+
∫

Ω

N∑
i=1

(
|un|pi(x)−2un − |u|pi(x)−2u

)
(un − u)dx

+
∫

Ω

(
|un|q(x)−2un − |u|q(x)−2u

)
(un − u)dx

= 〈J ′1(un)− J ′1(u), un − u〉.

Taking into account (4.23) and (4.25) and that (un) converges weakly to u in E,
we arrive at

L1

∫
Ω

N∑
i=1

(
|∂xi

un − ∂xi
u|pi(x) + |un − u|pi(x)

)
dx

≤ 〈J ′1(un)− J ′1(u), un − u〉
= 〈J ′1(un), un − u〉 − 〈J ′1(u), un − u〉
≤ |〈J ′1(un), un − u〉|+ |〈J ′1(u), un − u〉|
= λn|〈I ′1(un), un − u〉|+ |〈J ′1(u), un − u〉| → 0,

as n→∞. By (2.4) we deduce that
N∑
i=1

(
|∂xiun − ∂xiu|pi(·) + |un − u|pi(·)

)
→ 0

or equivalently
‖un − u‖pi(·) → 0,

that is, un → u in E. Passing to the limit, as n→∞ in (4.25), yields

〈T 1
λ1

′
(u), v〉 = 0 ∀v ∈ E,

which means that u is a critical point for T 1
λ1

. We intend to show that u 6= 0 and
this fact would lead us to λ1 is an eigenvalue for (1.1). To this end we suppose that
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u = 0. Then un → 0 in E, that is to say, ‖un‖~p(·) → 0. Applying Lemma 4.4 we
obtain

lim
‖un‖~p(·)→0

J0(un)
I0(un)

= +∞. (4.31)

But, if we pass to the limit as n→∞ in (4.26) we obtain

lim
n→∞

J0(un)
I0(un)

= λ1,

which is a contradiction to (4.31). So the assumption made is false, accordingly,
u 6= 0 and thus λ1 is an eigenvalue for problem (1.1) and Step 4 is verified.

From Steps 2–4 we obtain λ0 ≤ λ1 and thereby the proof of Theorem 3.1 is
complete.
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