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NULL CONTROLLABILITY OF A MODEL IN POPULATION
DYNAMICS

YOUNES ECHARROUDI, LAHCEN MANIAR

ABSTRACT. In this article, we study the null controllability of a linear model
with degenerate diffusion in population dynamics. We develop first a Carleman
type inequality for the adjoint system of an intermediate model, and then an
observability inequality. By a fixed point technique, we establish the existence
of a control acting on a subset of the space domain that leads the population
of a certain age to extinction in a finite time.

1. INTRODUCTION

We consider the linear population dynamics model

dy Oy _ .
a + % - (k(x)yx)x + ,u(t,a,x)y - 19Xw m Q7

y(t,a,1) =y(t,a,0) =0 on (0,T) x (0, A4),
y(0,a,2) = yo(a,z) in Qa, (1.1)

A
y(t,Om):/O B(t,a,2)y(t,a,z)da in Qr,

where Q = (0,T) x (0,A) x (0,1), Qa = (0,4) x (0,1), Qr = (0,T) x (0,1) and
we will denote ¢ = (0,7) x (0, A) X w. The system models the dispersion
of a gene in a given population. In this case, x represents the gene type and
y(t,a,x) is the distribution of individuals of age a at time ¢ and of gene type x
of the population. The parameters 3(t, a, z), u(t, a, z) are respectively the natural
fertility and mortality rates of individuals of age a at time ¢ and of gene type x, A is
the maximal age of life of population, and & is the gene dispersion coefficient. The
subset w = (x1,z2) € (0,1) is the region where a control ¥ is acting. This control
corresponds to an external supply or to removal of individuals on the subdomain
w. Finally, fOA B(t,a,z)y(t, a, z)da is the distribution of the newborns of population
that are of gene type = at time ¢. The variable x can also represent a space variable,
as in some diffusion population models studied in the literature.

The question of null controllability is widely investigated in many papers, among
them we find [T, 2, B, 4, [I7] and the references therein. In [3, 4], the authors
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proved the existence of a control that leads the population to its steady state
ys. This is equivalent to show the null controllability for the system satisfied by
y — ys. To reach this goal, the authors took the adjoint system as a collection of
parabolic equations along characteristic lines, and used Carleman and observability
inequalities for the heat equation proved in [12]. In [T}, (2 [17], following the same
strategy of [12], the authors showed a direct Carleman estimate for the backward
adjoint system of the population model and deduced its null controllability by
showing adequate observability inequalities. Note that in [I7], Traore considered a
nonlinear distribution of newborns under the form F(fOA B(t,a,x)y(t,a,x)da). In
this contribution and contrary to the previous works, we consider that the dispersion
coefficient k£ in our problem depend on x and degenerate at the left boundary;
ie, k(0) =0, eg. k(z) = z®. In this case, we say that the model is a
degenerate population dynamics system. Genetically speaking, this assumption is
naturel because it means that if each population is not of a gene type, then this
gene can not be transmitted to its offspring.

In this context of degeneracy, we will study the null controllability of the de-
generate model at each fixed time 7" > 0. More exactly, we show that for all
Yo € L*(Q4) and any § € (0, A), there exists a control ¥ € L?(q) such that the
associated solution of verifies

y(T,a,2) =0, ae. in (4,A4) x (0,1). (1.2)

Such a control does not depend only on the initial distribution yg, but also on the
parameter 6. As in [2] and [I7], we prove this result by developing a new Carleman
estimate. This will be obtained by following the method of the work done in [6] for
degenerate heat equation.

The remainder of this article is organized as follows: in Section [3] we give the
functional framework in which system is wellposed and provide the proof
of the Carleman inequality for an intermediate trivial adjoint system. With the
help of this inequality, we establish the observability inequality and show the null
controllability of the intermediate system. Using a generalization of the Leray-
Schauder fixed point theorem, we will deduce in Section [4] the main result of null
controllability of . The last section is an appendix which is devoted to the
proof of a Caccioppoli’s inequality which plays a crucial rule in the proof of the
Carleman estimate.

2. WELL-POSEDNESS RESULT

In this article, we assume that the dispersion coefficient k satisfies the hypotheses
ke C([0,1]) nC*((0,1]), k> 0in (0,1] and k(0) =0

(2.1)
Iy €[0,1) : k' (z) < vk(z), =z €]0,1].

The above hypothesis on k means in the case of k(zr) = 2® that 0 < a < 1.
Similarly, all results of this chapter can be obtained also in the case of 1 < « < 2
taking, instead of Dirichlet condition, the Newmann condition (k(x)u,)(0) =0 on
z=0.

On the other hand, we assume that the rates p and § satisfy

p€LX(Q), p>0ae inQ,
B e C%([0,T] x [0,4] x [0,1]), B >0 a.e. in Q.
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To prove the well-posedness of (|1.1)), we introduce the following weighted Sobolev
spaces
H}(0,1) := {u € L*(0,1) : u is abs. cont. in [0, 1],
Vu, € L*(0,1),u(1) = u(0) = 0}, (2:3)
HZ(0,1) := {u € H(0,1) : k(z)u, € H'(0,1)},
endowed respectively with the norms
||U||fq;(o,1) = ||UH%2(0,1) + ||\/Euz||%2(0,1)7 u € Hli((), 1),
lullfe = lluliFr 0,1y + 1(k(2)ua)alZ2 0,0y w € HE(O,1).
We recall from [10} [IT] that the operator Cu := (k(z)uy)z, u € D(C) = HZ(0,1),
is closed self-adjoint and negative with dense domain in L?(0,1).
Using properties of the operator C, one can show as in [I3] [14] [19] the existence
of a unique solution of the model ([1.1)) and that this solution is generated by a Cp-
semigroup on the space L?((0, A) x (0,1)). Moreover, this solution has additional

time, age and gene regularity. More precisely, the following well-posedness result
holds.

Theorem 2.1. Under the assumptions (2.1) and and for all 9 € L*(Q) and
yo € L?(Q4), the system admits a unique solution y. This solution belongs
to E == C([0,T], L*((0, A) x (0,1))) N C([0, A], L*((0,T) x (0,1))) N L2((0,T) x
(0,A), HL(0,1)). Moreover, the solution of satisfies the inequality

1 A T
s (Ol + s 1Y@ lEr + / / / (VR(@)ya)? di da da
ac|0,

te[0,T

gc(/qﬂ“‘Jr/QAygdadx).

The properties of operator C' allow us also to define the root of the operator
B = —C denoted by B'/2. On the other hand, by the definitions and
and following the same arguments used in the proofs of [I8, Propositions 3.5.1,
3.6.1] one can show that D(B'/2) = H}(0,1). Moreover, the following result is
needed in the sequel. For the proof, see [I8, Corollary 3.4.6].

(2.4)

Proposition 2.2. The operator B defined above has a unique extension
B € L(H(0,1), H; ' (0, 1)), (2.5)
where H,:l(O7 1) denotes the dual space of HL(0,1) with respect to the pivot space
L2(0,1).
3. NULL CONTROLLABILITY OF AN INTERMEDIATE SYSTEM

In this section, we investigate the null controllability of the system

oy Oy _ ;
5t T 5y~ K@)ys)s + ult,a,2)y = 9x0 inQ,

y(t,a,1) =y(t,a,0) =0 in (0,T) x (0, A), (3.1)
y(oa CL,Z) = yo(a,x) in QAv
y(t,0,2) = b(t,z) in Qr,

with b € L?(Q7). To reach this target, we show first a Carleman estimate for the
adjoint system of (3.1)).
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3.1. Carleman inequalities results. Consider the adjoint system of ([3.1)),

ow Ow
E + % + (k(x)wx)x - ,U,(t, a, .T)IU =0,
w(t,a,1) = w(t, a,0) =0, (3.2)
w(T, a,z) = wr(a,x),

w(t, A, x) = 0.

We assume that u satisfies (2.2)), wr € L?(Q4) and that the coefficient of diffu-
sion k satisfies (2.1]). Let us introduce the weight functions

1 o
O(t,a) == T = ))iat” Y(z) = cl(/o Mdr —c2), (3.3)
p(t; a, ) := O(t, a)y ().

For the moment, we suppose that co > m and ¢; > 0. One can observe that

P(z) <0,z € (0,1), or O(a,t) — +oo as t — 07,7~ and a — 0F. The first result
of this paragraph is the following proposition.

Proposition 3.1. Consider the two following systems with h € L*(Q),
ow | ow
ot Oa

w(a,t,1) = w(a,t,0) =0, (3.4)

+ (k(x)wg)s = h,

w(a, T,z) = wr(a, ),
w(A,t,x) =0,

— + D0 + (k(x)wa:)a: - M(ta CL7LL‘>’U) = h,
w(t,a,1) =w(t,a,0) =0, (3.5)
w(T, a,z) = wr(a,x),
w(t, A,x) = 0.

Then, there exist C > 0 and sg > 0, such that every solutions of (3.4) or (3.5
satisfy, for s > sq, the inequality

2
53/ 03 L w262 dt dadx + s/ Ok(x)w2e?? dt da dx
@ M) © (3.6)

A T
< C’(/ |h|2e?5% dt da dx + sk‘(l)/ / Ow?(a,t,1)e? (@t gt da).
Q o Jo

Proof. We establish the inequality (3.6)) for every solution of system (3.4), and then
deduce the result for the model (3.5)). Let w be the solution of (3.4)). The function
v(t,a,x) = 5?02y (¢, a, ) satisfies the system
Liv+Liv=e*h, (3.7)
v(t,a,1) =v(t,a,0) =v(T,a,2) = v(0,a,z) = v(t, A, x) = v(t,0,z) = 0, .

where
L;rl/ = (k(2)vz)e — s(pa + @)V + 52<p§k($)y,
Lov:=vi+ v, — 2sk(x)ppve — s(k(x)psz)v.
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Passing to the norm in (3.7)), one has
||L:I/H%2(Q) + ||LS_V||%2(Q) =+ 2<le/, LS_I/>L2(Q) = ||65S0(a7t,$)hH%2(Q).

Then, the proof of step one is based on the calculus of the inner product (Lfv, L v)
whose a first expression is given in the following lemma.

Lemma 3.2. The identity (LTv, L;v) = S1 + S2 holds with

S1 = s/ (k(2)v2 )% 0ue dt da dx — 33/ (k(2)s)k(x)p2v? dt da dx
Q Q

+ s /Q(S% + @) (k(x)py) v dt da dz

+ s/ k(2)ve (k(2)0r)zav + (k(2)0z)2Vz) dt da dx
Q

—|—83/(k2 3)ev? dt da dx — s* /(k(x)((pa—i-got)gpgc)chthdadx
Q Q

2
—|—§/(<Pat+<ptt)u2 dtdadas—s—/(gpi)tk(a})u2 dtda dx
2 Jg 2 Jo
2
+§/(@at+§0aa)y2 dt da dx — i/(@i)ak(x)l/2 dt da dx,
2 Jg 2 Jo

and

A T
Sy = / / [k (2)veva)p dt da +/ / T)vpvg dt da
+s / / (Pa: Pa + (Pt) dt da — s / / k2 dt da
/ / 2 vy (k(2) s )]s dt da — 5/ / @5 dt da.

Proof. We have

A T
In:/(k‘(x)ugg)xutdtdadxz/ / [k(x)vart]n dtda—/ / dadm.
Q 0o Jo

By the definition of v, one has

111—/ / Z/th dtda,

112:/(k(x)yw)muadtdadx
Q

A T
:/ / [k(sr:)z/wua](l)dtda—/ k(2)VypVzq dt da dx
o Jo Q

_ /OA /()T[k(x)yxya](l)dt da,
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I3 = / —28k(x)@ave (k(2)vy) . dt da dx
Q
= / —50a((k(x)v,)?), dt da dx
Q

= —s/ / dtda+s/ (k(2)v2)? 00 dt da dz.
Q

B = [ (=slk(@)ea)or)(kla)v. ). de dads
Q
A T
= —s/ / [k(2)vev(k(x)0s) )5 dt da
o Jo
+ s/ k(2)ve(v(k(2)pz) e + Ve (k(2) 0z )s) dt dadz.
Q
Iy = —s/ (o + pi)vvdt dade = %5/ (o + @1)(V?)¢ dt dadx
Q Q
:f/(gom—kcptt)yzdtdadw,
2 Jq
Iyy = —s/ (o + @t)vv, dt dadx = _78/ (0a + 1) (V?)q dt da dx
Q Q
= f/(gpanrgpm)l/thdadx,
2Jq
123:/(23k(x)<p$1/1)(s(<pa+<pt)u) dt da dx
Q
—- / 22 k() (pa + ¢1)e)e dt dad
+s / / )(Pa + pi)par?]y dt da.
= [ (sl + 000 (s(K(@)pa)o) di dad
Q
:/ 52(¢q + 1) (k(2)py)? dt da da.
Q
I3 :/ s202k(x)vy, dt da dx

2
/ / — 2k dadm—g/(gpik(x))tuz dt da dx
Q

= — [ (@2k(x))? dt dade,
2 Q

2
I3 = 52/ O2k(x)vv, dt dadx = %/((pik(l‘))al/z dt da dz.
Q Q
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I3 = / (—2sk(x).v) (502 k(z)v) dt da dx
Q

:/ $3k2 (2)p3 (V?), dt da dx

f—s/ / [k (x 16 dt da + s* /(kz2(x)goi)xuzdtdadfc.
Q

I3y = / —(5(k(2)@s) V) (8202 k(z)v) dt da dx
Q
=5 / (k(x) @) k() @2v? dt da da.
Q
By adding all these identities, the result follows. (Il

Back to the proof of Proposition[3.1} Now, using the definitions of ¢ and ¢ given
in (3.3]), the Dirichlet boundary conditions satisfied by v and the assumption k(0) =
0, the expressions of S7 and S, stated in the previous lemma can be simplified
follows,

S1=5 [ (us+ @i dndidats | Ot dtdads
Q Q

2
(O4 + O)* dt da dx

—l—scl/ O(2k(x) — xk/(x))v2 dt da dx — 282/ Oc? ’
Q @ k(2

3 33 (—L V2 (2k(x) — 2k ()12 dt da da
+s/@@cl(k(x))(2k() K (2))02 dt da da,

and

A T 23
Sy = —sc1k(1 / / Ov2(a,t,1)dtda + 2s® / / 03¢} [ —1v?] =0 dt da.
0 k()

From the third condition in assumptions (2.1]), we deduce that the function z +— ﬁ;)
is nondecreasing in (0, 1], and then, 0 < ﬁi) <z (1), 0< kgfl)z/ < (1)1/ x € (0,1].

Hence, lim,_,o+ %VQ = 0. Accordingly,

(v, Lo
-2 / (Oua + O )0 dt dad + s / Ot dt da d
Q Q

2
+ sc1 / O(2k(x) — xk/(x))v? dt da dx — 282/ @c?lf—
Q Q

@ (O4 + O;)v? dt da dx

+ 33/ @%i’(i)Q(Qk(x) — xk/(x))v? dt da da

— scrk(1 / / @1/ (a,t,1)dt da.
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Thanks to the third assumption in (2.1]), we have

S > %/ (Oua + O )y dt da dz + s/ Ot/ dt da dz
Q

2

@ (O4 + 0,2 dt da dx (3.8)

—|—801/ Ok(x)v; 2 dt da dx — 25> / @clk
22
+ s / 033 —1/ 2 dt da dzx.
Now, using the |©(0, + 0;)| < c©3, we infer for s quite large that
2 o @’ 2
| —2s ; @clm(@a + O4)v° dtda dx|
z? c3 x?
< 2s clc/ — 0% dtdadz < —153/ — 0% dtdadz.
On the other hand, we have

C
|<>|—|cll<>—c1(:2|<cl\/k i+ s a0

2—=7)k(1)

and this yields

|§ / (Oua + O )yv? dt dadz + s/ Oratpv? dt da dz|
Q Q

C1 C_')aa ®tt 2
< —_— + _ +
- S((Q —7)k(1) ClcQ) /Q ( 2 |@m|)y dt da dz (3.11)
€1 3/2, 2
< —_ .
Ms((Z—*y)k(l)—'_ClQ)/Q@ vedtdadx

By Holder, Young and Hardy-Poincaré inequalities (see [6]) and the fact that
dM; >0 such that ©2 < M,03, (3.12)

we conclude that
L \/E x
@‘3/21/2dx:/ ey Ov——
/0 (o) er T
1/2 72 1/2
2 2.2
<C/@k da:) (/@ k( )dx>
/ Ok(x 2dm+—/ 93 z

By this and (3.11]), we infer that

|§/(@aa+@tt)¢y2 dtdadz+s/ O 0pv? dt da dz|
Q

i .2 (3.13)
§sclc’e/ Ok(z)2 dtdads + —==2 | 0> ——1?dtdadx.
0 4 € Jo  k(x)
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Taking e small enough and s quite large, we conclude that

5 / (Oua + O )2da dt da + s / Oratpr? dt da da|

2
scl/@k V2 dtdadm+—/@3 z

This involves, combining with the inequalities (3.8) and . ) that

(3.14)
V2 dt da dz.

Sy > K133/ o3& 2 dtdadx+K25/ Ok(z)1?2 dt da dx.
@ k) Q
Therefore,

2
2(LTv, L v) 2m(s3/ G)Sx—Vthdadx—i—s/ Ok(x)v? dtdadm)
Q k@) Q

A T
— 2sc1k(1) / / Ov2(a,t,1)dt da.
0o Jo

Hence, we obtain the following Carleman estimate for (3.7))

2
53/ @3$V2dﬁdad.ﬁ+8/ Ok(x)v? dt da dx
Q

gc(/h2 25¢ gt da da + sk(1 / / ov2( atl)dtda)
Q

To return to system (3.4)), we use the function change v(t, a, z) := e5¥E>®)w(t, a, ).
This implies that

Ve = spze’fw + e’ wy, 625“”105 < 2(1/ + s2<p21/2)

Then, inequality follows immediately for every solution of system . To
show this inequality for the solutions of , we apply the last inequality for the
function h = h + pw. Hence, there are two positive constants C' and sq such that,
for all s > sg, the following inequality holds

2
83/ @3ﬁw262w dtdadaH—S/ Ok(x)w2e*? dt da dx
Q (3.15)
go(/ | T2 |2 €25 dt da dz + sk(1 / / Ow(t,a,1)e2?t5D) dt da).
On the other hand, we have

/ | B |? €% dt dadx < 2(/ |h|2e?% dt da dx + ||u||go/ |w|?e?5? dtdadm).
Q Q Q

Now, applying Hardy-Poincaré inequality to the function v := e*?w, we obtain
1 k
/ |w|?e?$% dt da dx / (§)|w|262w dt da dx
x

=%
c

) /Q k(x)v; dtdadx

Q 5 202 T 5 / 25, 2
k(l)(/QS 10 k'(sc)y + Qk(az)e wwdtdadx).

IN

IA
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Thus,

- C z?
2 2sp <9 2 2sp 2 2. 202 2
/Q|h 2% dt dade < [/Q|h| e dtdadm+||u||ook(1)(/Qs 40"

+ / k(x)e**?w? dt da dm)} .
Q
This implies, using again (3.12)) and taking s quite large, that

2
53/ @3x—w2625“"dtdadx+s/ @k(z)wfcezwdtdadx
o klx) Q

A T
< D(/ |h|?e?*% dt da dx + sk(1) / / Ow?(t, a,1)e?*?Ha1) dt dq
Q o Jo

2
+/ s2c20? T2 dtdadx—F/ k(x)e*?w? dt da dx)
Q k() Q

A 4T
< C(/ |h[2€25% dt da dz + sk(l)/ / Ow(t, a,1)e2(tal) dtda).
Q o Jo
This completes the proof. ([

Now, we can provide the main result of this section, namely an w-Carleman
estimate of the model (3.2)).

Theorem 3.3. Assume that k satisfies hypotheses (2.1) and let A >0 and T > 0
be given. Then there exist two positive constants C and sg, such that every solution

w of (3.2)) satisfies, for all s > sg, the inequality
2 A 4T
/ (sOkw? + s°0* ——w?)e**¢ dt da dx < C’/ / / w? dt da dz. (3.16)
Q k wJo Jo

Proof. Let us introduce the smooth cut-off function £ : R — R defined as follows

0<¢(x) <1, VzeR,

. 1 + 229
g(x) - 07 T e [Tv 1}7 (3.17)
2I1 —+ 2o

&x)=1, =ze€]o, 3 ].

We define the function v := w, where w is the solution of the system . Using
the Carleman estimate obtained for the model and Caccioppoli’s inequality
stated in Lemma [5.1] one can prove the existence of C' > 0 such the following
estimate holds

1 A 4T 22 A T
/ / / (sOkv2 + 503 ——v?)e?*? dt dadr < C’/ / / w? dt dadz. (3.18)
o Jo Jo k wJo Jo

In (z1,1), let us consider the function z := nw with n = 1 —¢&. Since z is supported
by [0, T] %[0, A] x[z1, 1] and in this interval the equation is uniformly parabolic,
then we can replace the function k by a positive function belonging to C*([0, 1]) and
which coincides with k on (z1,1) denoted also by k and this implies that is
nondegenerate. Moreover, we can prove in a similar manner as in [2] the following
result.
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Proposition 3.4. Let z be the solution of

— + % + (k(x)zg)e — c(t,a,2)z =h in Qp,
z(t,a,1) = 2(t,a,0) =0 on (0,T) x (0, A),

(3.19)

with h € L*(Q) and k € C*([0,1)) is a positive function. Then, there exist two
positive constants ¢ and sg, such that for any s > sg, z satisfies the estimate

/ (830322 + 5¢22)e**? dt da dx
Q

A 4T
gc(/ h2e?s?® dtdadx+// / $3¢322e%5? dtdadm),
Q w JO 0

where @ := (0,T) x (0, A) x (0,1), the functions ¢ and ® are defined as follows

1
(T —t)*at’ (3.21)
D(a,t,z) = O(t,a)¥(z), W(zx)=e® —2nlolle

(3.20)

o(t,a,x) = @(t,a)e'w(m), O(t,a) =

(t,a,2) € Q, k >0, o is a function satisfying
o€ C*[0,1]), o(z)>0 in(0,1), o(0)=o0c(1)=0,
ox(x) #0 in[0,1\wo,
where wy € w is an open subset.

The existence of the function o is proved in [12]. Hence, applying Proposition
to the function z and h = (kn,w), + kn,w,, using the definitions of 7, o, ¢ and
® and thanks again to the Caccioppoli’s inequality we obtain the estimate

A T
/ (83327 + 5622)e**® dt dadx < C’/ / / w?dt da dz. (3.23)
Q wJo Jo
Taking into account that w = v + z and using the inequality (3.18)), we obtain

2
/ (sOkw? + 83@3%11)2)628“’ dt da dx
Q

2
< 2/ (s°@3 R sOk(z)22)e**% dt da dx
? K@) (3.24)

2
+ 2/ (s°@3 k?x) V% + 5Ok(z)v2)e*? dt da dx

Q
A T xg
S C// / u}2 dtdadl‘—l—?/ (83@3 2:2 +s®k(x)zi)62.sgp dtdadx
wJo /0 Q k(x)

On the other hand, by the definition of ¢, taking
HO)(@ — )7 ~ 1)
ORI

one can prove the existence of ¢ > 0, such that, for all (¢, a,x) € [0, T]x[0, A] x[z1, 1],
we have

2
Gk(x)e&stp < §¢€25<I>7®3 erga < ((;53626@.

k(x)
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Using this and the relation (3.23) it follows that

/( 33 5272)2 + 5Ok(z)22)e**% dt da dx

[ ] e
Sg// / (80322 + 5622)e**® dt da dx
Xy 0 0
A T
ScC// / w? dt da dz.
wJo Jo

Finally, using the last inequality and (3.24)) we obtain the Carleman estimate (3.16]).
O

z + 50Ok(x)22)e**? dt da dx

3.2. An observability inequality result. This paragraph is devoted to the ob-
servability inequality of the system (3.2)). This inequality is obtained by using our
Carleman estimate (3.16) and Hardy-Poincaré inequality, see [6].

Proposition 3.5. Assume that k satisfies the hypotheses (2.1)). Let A >0, T >0
and 0 < § < min(T, A). Take wr such that

wr(a,z) =0 a.e. in (0,9) x (0,1). (3.25)
Then, there is Cs > 0 such that every solution w of (3.2) satisfies the observability

inequality
// tOxdtdw+// Oaacdadx
<C5// / taa:dtdada:

For the proof, we need to show a crucial technical result. For this, consider the
following wholes, see [17],

Ny ={(t,a) € (0,T) x (0, A);t > a+ T — ¢},
No ={(t,a) € (0,T) x (0, A);t <a+d— A},

(3.26)

T-3 5
D1={(t,a)e(0,T)><(o,A)t<_A 2047~ 5}, .
_ _
2

D3 = (0,T) x (0,A) — (D1 UDy), Dy = {(t,a) € Ds; (a, t) ¢ N; U N}
See Figure
Lemma 3.6. Suppose that holds. Then all solutions of satisfy
w(t,a,x) =0, a.e. in (N;UN3) x (0,1).

Proof. Let (tg,a0) € Ny. Then, we have tg = ag+T—0+d with 0 < d < 4. Therefore
ap <6—d. Let Sqg={(to+r,a0+7r),r € (0,0 —d—ag)} be a characteristic line in
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N

Dy

D,

N

—
a

A-4§ A
FIGURE 1. Decomposition of the region (0,7 x (0, A)

N;. Setting w(r,z) = w(to + r,ap +r,x) and p(r,x) = u(to +r,ag + r,x), where w
is the solution of (3.2] . Then, w solves

Jw ~ .
(‘31: + (k(2)Wys), — p(r,z)w =0, in (0,6 —d—ag) x (0,1),
m(rv 1) = w(ﬁ 0) = O, on (O7 6—d— ao), (328>
w(d —d—ag,x) =w(T,d —d,x) =wr(d —d,z), in (0,1).
Hence, w is given by
w(r,:) = L6 —d—ag—r)w(d—d-—ag,-), (3.29)
where (L());>0 is the semigroup generated by the operator Cw = (kw,), — pw.
Therefore, (3.25) and (3.29) lead to W = 0. Thus, for a. e. d € (0,9), w =0 on Sy.
Subsequently, w = 0 in N7 x (0,1). Arguing in the same way for Ny and the fact

that w(t, A,2) = 0in (0,7) x (0,1), we can show that w = 0 in N3 x (0,1) and this
achieves the proof. O

Proof of Proposition[3.5, Consider a smooth cut-off function p; € C§°(R?,[0,1])
stated as follows p1(t,a) = 1,(t,a) € D1,p1(t,a) = 0,(t,a) € Da,p1 > 0,(t,a) €
Dj3. The function w = pyw satisfies the system
ow = Ow 0 0
£+%+( ( )wm)x u(t,a x)w (%—i—%)w in Q,
w(T,a,x) =0 in QA,
ﬁ(t,A, Jf) =0 in QT-
Multiplying (3.30) by w, integrating over @, using the definition of p; and Lemma
[3:6] we obtain

1 (A=S R
/ / w?(0,a, ) dadm—l—/ / w?(t,0,2) dt dx
o Jo 0o Jo
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S—Q/(%—i—%) w? dt da dz

<M5// w? dt da dz.
Dy

Thanks to Hardy-Poincaré inequality we conclude that

1 rA-S 1 T-46
/ / w*(0,a,z) da dx —|—/ / w?(t,0, ) dt dx
0o Jo o Jo

1 (3.31)
< d(;/ / k(z)w? dt da dz,
0o JD,
with ds = CM‘5 . Observe that © is bounded in D, to infer that
// Oaa:dadm—l—// tOxdtdm
(3.32)

< Cg/ Ok(x)w2e?? dt da dz.
0 Jp,

Taking s large and thanks to the Carleman inequality stated in Theorem [3.3] we
obtain the observability inequality of system (3.2)). |

3.3. Null controllability of the intermediate system. This paragraph is de-
voted to study the null controllability of system (3.1). For this, let ¢ > 0 and
consider the following cost function

1
Je( / / (T,a,z)dadx + = /192(t,a,:c)dtdadx.
T 2 2

q

We can prove that J. is continuous, convex and coercive. Then, it admits at least
one minimizer ¥, and, arguing as in [5] or [7, Chapter 5], we have

Fe = —we(t,a,x)xw(z) in Q, (3.33)
with we is a solution of the following system
owe Owe B .
B + %a + (k(2)(we)g)e — n(t,a,x)w. =0 in Q,

we(t,a, 1) = ’LUE(t,a,O) =0 on (O’T) X (O’A)’ (334)

1 .
we(T,a,z) = Eye(T,a,x)X(&A)(a) in Qja,
we(t,A,z) =0 in Qr,

and y. is the solution of system (3.1 associated to the control ¥..

Multiplying (3.34)) by y., integrating over @, using (3.33) and Young inequality
we obtain that

7/ / y*(T, a, ) dad;v+/19§(t,a,x)dxdtda
€Jo Js q

= b(t, x)w,(t,0,z) dt dz —|—/ yo(a, x)w(0, a, x) da dx
Qr Qa

11 Q ‘ /() ‘
< ’LU6 t,O,I dt dLE W, O,CL,IE dadz
Cts ( / T ( ) A ) ( ) )
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—|—C'5( b2 (t, ) dtdx—|—/ va(a, ) dadx),

Qr A

with Cjs is the constant given in Proposition [3.5] Hence, by the observability in-
equality (3.26)), we conclude that

1 [l oA
f/ / y?(ﬂa,x)dadm—i—/ﬁf(t,a,x)dtdadm
€Jo Js q
1
< f/w?(t,a,x)dtdadx—kag(/ b2(t,x)dtdx+/
4 q T Qa
Hence, (3.33)) yields
I 3
7/ / yf(T,a,x)dada:Jrf/ﬂf(t,a,x)dtdadx
€Jo Js 4Jq

SC(;(/ b2(t,$)dtdac—|—/ yg(a,x)dadm),

va(a, ) da dx).

(3.35)

and this yields

1 pA
/ / v (T, a,z)drda < Cgé(/ V2 (t, x) dx dt + / ya(a, ) da da),
0 Js Qr Qa

/ﬁf(t,a,x) dt da dz < %( b2(t, z) dtd:v+/
q Qr Qa
Then, we can extract two subsequences of y. and 1. denoted also by ¥, and y.
that converge weakly towards ¥ and y in L?*(g) and L*((0,7) x (0, A4); HL(0,1))
respectively. Furthermore, y is the unique solution of that satisfies (1.2). In
summary, we showed the following proposition.

(3.36)
va(a,z)da dm) .

Proposition 3.7. For any § > 0 assumed to be small enough, for all yo € L*(Q4),
there exists a control ¥ € L*(q) such that the associated solution of system (3.1)

verifies .

4. MAIN NULL CONTROLLABILITY RESULT

Now, after establishing the null controllability of system (3.1) we are ready to
provide the one of the model (|1.1)). More precisely, we have the following theorem.

Theorem 4.1. For any § > 0 assumed to be small enough, for all yo € L*(Q4),
there exists a control ¥ € L?(q) such that the associated solution of system ([1.1))

verifies .

To prove this result, let X be a positive constant. A more precise restriction will
be given later. Put § = e~ *y. Then ¥ solves

oy oy _ D T
5 9~ R@)e + (0, 2) =y in Q,

y(t,a,1) =y(t,a,0) =0 on (0,T) x (0,4),
ﬂ(O,a,x) = yo(a,x) in QAa

A
ﬂ(t,&m)z/o B(t,a,z)y(t,a,x)da in Qr,

(4.1)
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with 9 = e~ and p; = u + A. Now, consider the system

05 07 . .- o
5 T 5y~ F@)e +m(t e, 2)y=0x nQ,
g(tv a, 1) = g(tv a, 0) =0 on (O? T) x (07 A)7 (42)

7(0,a,z) = yo(a,z) in Qa,
y(t,0,2) = b(t,xz) in Qr,

with b € L?(Qr). Thus, showing Theorem is equivalent to show the null
controllability of system (4.1)). For this, we consider the following multi-valued

mapping
As - L*(Qr) — P(L*(Qr))
defined, for every small § > 0 and R € L?(Qr), by

A
As(R) = {/ Byda : g satisfies (1.2) and (4.2)) for b = R, and ¢ satisfies }
0

To prove that model is null controllable, it is sufficient to prove that the
multivalued mapping admits a fixed point and this by using a generalization of the
Leray-Schauder fixed point theorem stated in [8]. To use this generalization, we
introduce the set

Ns ={R e L*(Qr):3p € (0,1),R € pAs(R)}. (4.3)

The existence of a fixed point of the multi-valued mapping As is an immediate
consequence of the following proposition.

Proposition 4.2. (i) for all R € L*(Qr), As(R) is a closed and convex set.
(i) As is upper semi-continuous on L*(Qr).
((iii) As: L2(Qr) — P(L*(Qr)) is a compact multivalued mapping.
(iv) Ns is bounded in L*(Qr).

Proof. The proofs of (i) and (ii) are similar to the ones of (ii) and (iv) in [I7],
with R (respectively R,,) instead of e *!F(e*!R) (respectively e 2! F(e*!R,,))
and the convergence space of the subsequence of 4, is L?((0, A) x (0,T), H}(0,1))
instead of the space L%((0, A) x (0,T), H}(0,1)).

Now, we address the proof of (iii). Let R € L*(Qr) such that ||R||p2q.) <
K, K > 0. We have to prove that any sequence of elements of As(R) admits a
convergent subsequence. Let (pp,)n, C As(R). From the definition of Ag, for all n
there exists (U, ) € L2(q) x L2(Q) such that p, = fOA Binda, 9, verifies (B.36)
and y,, the associated solution of verifies . Then, by we have

m@mmm+/

~ 4
/19721(t,a7x)dtdadx < ﬁ(/
a 3 Ve Qa

4Cs 2 2
< — .
< (K —|—/ yo(a, ) da dsc)

A

y2(a, ) da dx)

T

(4.4)

Hence, 571 is bounded in L?(q). Thus, there exists a subsequence of 571 denoted
by ¥,, that converges weakly towards ¥ in L?(q). On the other hand, multiplying
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(4.2) by ¥, integrating over @, using Young inequality, we infer that
/ k(z)(7,)2 dtdadx-l—)\/ dt da dx

< —/192 t,a,z)dtdadxr + = / dt da dz (4.5)

—|—2(/Q va(a, a:)dada:+/ R*(t, x)dadx)

This implies

/ k(x)(Fn)? dt da dz + A / 7 dt da dx
Q (4.6)

2 2 2
< 2)\/19 (t,a, a:)dtdadx—i—z(/ yO(a,m)dadaﬁ—i—/ R (t,x)dadm).

A T

Taking A > 2 and using , . ) becomes

/ k(x)(Un)2 dtdadx—l—/ y* dtdadx < (1+C6> (K2+/ ya(a, ) dadw). (4.7
Q Q 2 3

A

Therefore, 3, is bounded in L((0,T) x (0, A), H}(0,1)). Hence, we can extract a
subsequence of y,, denoted by yn, that converges weakly toward y in L?((0,T) x

(0,A), H;(0,1)). Now, we consider p,, = fOA Bn,, da the subsequence of p,, asso-
ciated to Yy, . Using (2.2)), we conclude that p,, satisfies the system

Opny, .
ot - (k( )(p"kl 6,ulynk da = Nk, 1mn QT;

Pry, (t,1) = Pry, (t> 0)=0 on(0,7), (4.8)

A
e (0,2) = / 5(0,a, 2)yo(a,x)da in (0,1),

with,

A A
Zng, :/ ﬁgnklxwda"’/ (ﬁt +ﬁa>gn,€1da
0 ) 0 .,
- (A k(x)ﬁﬁ(gnkl)xda+/o ( ( )ﬂcynkl) da)

Taking into account the assumptions on k, using Hardy-Poincaré and Minkowski’s
inequalities and exploiting the inequalities (4.4)) and (4.7) for 9, and yn, respec-
tively, we deduce that

||an1 ||%2(QT) S D(g(K2 -+ yg(a7.’I]> da d.’L') (49)
Q
A

Now, multiplying the first equation of system (4.8) by Pny, » integrating over Qr
and using Young inequality, we obtain

k(x)(pns, )2 dt dx + %/ pikl dt dx
Qr

< — Z. dt d.’L' + —_— a,xr d(l d.’]?.
T2\ g, ™ 2 Jo Yo(, )

@r (4.10)
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Taking again A > 2 in (4.10)), we conclude by (4.9) that Pny, is bounded in

a n
L%((0,T); HE(0,1)). Now, thanks to Propositionﬁwe infer that patkl is bounded
in L2((0,7); H, '(0,1)). Since H}(0,1) is compactly embedded in L2(0,1)(see [6]),
we conclude by Aubin-Lions lemma the existence of a subsequence of p,, denoted

by pn; that converges strongly towards p in L?(Q7). This implies that Pn; converges
weakly towards p in L?(Qr). Thus,

/ 9pn; dt dz — gpdtdr, Vg€ L*(Qr). (4.11)
T Qr

On the other hand, 7, converges weakly to g in L*((0,T)x (0, A), H;(0,1)). Then,
Un,,, converges weakly toward 7 in L*(Q) (because L*((0,T) x (0, A), H;(0,1)) C
L?(Q)). Subsequently, Yn, the subsequence of y,, —associated to p,; converges
weakly towards 7 as well. The fact that g8 € L?(Q), for all g € L?*(Qr), implies

that
A
/ 9, d dt — g< / ﬂgda) dz dt. (4.12)
Qr Qr 0
Accordingly, by and , we infer that
A
/ g(/ Bijda — p) da dt = 0,Yg € L2(Qr). (4.13)
Qr 0
Therefore,
A
p(t, ) :/ Byda ae. (t,z) € Qr. (4.14)
0

Furthermore, we can check by a standard argument that y satisfies (1.2)) and solves

([@.2) with R instead of b and 0 € L2(q) verifies (3.36) and this completes the proof
of (iii). The rest follows as in [17]. O

5. APPENDIX

As is mentioned in the introduction, this section is devoted to a Caccioppoli’s
type inequality which played a crucial role to establish the Carleman estimate
(3.16]). This inequality is stated in the following lemma.

Lemma 5.1. There exists a positive constant C' such that

A T
/ / / w2e?® dt da dx < C’(/s2@)2w2625“” dtdadax+/h2e2w dtdada:),
w’ JO 0

! ! (5.1)
where w' = (22 D14222) gnd  is the solution of (3.4).
Proof. Define the smooth cut-off function ( : R — R by
0<(¢(z)<1, ifzeR,
C(x)=0, ifz<x;and x> xa,
(5.2)

((z)=1, ifzeuw,
C(xz) >0, ifx>2z and x < xs.
For the solution w of (3.4), we have

T d 1 A
0= / —[ / / C2e®%w? da da | dt
o dtl)y Jo
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1 A T 1 A T
= 23/ / / Cow?e®? dt dads + 2/ / / CCwwe® dt da dx
o Jo Jo o Jo Jo
1 A T
=2s / / / Cow?e®? dt dadx

+2// / Cw(—(kwy) s — we + b+ pw)e?? dt da da.

Integrating by parts, we obtain
2 /Q k¢?e* ¢ w? dt da dx

=25 / Cwh(O4 + 0,)e**? dt da dx — 2 / CPwhe?s? dt da dx
Q Q

— 2/ Craw?es? dt da dx + / (k(C%e*%),) pw? dt da dx.
Q Q

On the other hand, by the definitions of {, ¢ and O, using Young inequality and
taking s quite large there is a constant ¢ such that

/ kC?e 28“"w dtdadx>2m1nk // / QS‘pdtdadm7
Q

/(k(C262w)z)zw2dtdad$SC/ / / $20%w?e?*¢ dt da dz,
Q w Jo Jo

A T
—25/ Cw?h(O4 4 0,)e**% dt da dx < c/ / / s20%w?e**? dt da dx,
w Jo Jo

-2 / CCwhe*s? dt da dx

A T
<c/// s20%? detdadwr// / h2625“’dtdadm>,
w Jo Jo
A T
—2/§2uw2625¢dtdadac§c// / s20%w?e?*? dt da dx.
Q w’ JO 0

This all together imply that there is C' > 0 such that

A T
/ / / w2e?*? dt da da < C( / $202w2e2% dt da da + / h2e?s% dtdadm).
w’ JO 0

q q
Thus, the proof is complete. O
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