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MULTIPLE POSITIVE SOLUTIONS FOR QUASILINEAR
ELLIPTIC EQUATIONS OF p(x)-LAPLACIAN TYPE WITH

SIGN-CHANGING NONLINEARITY

KY HO, CHAN-GYUN KIM, INBO SIM

Abstract. We establish sufficient conditions for the existence of multiple

positive solutions to nonautonomous quasilinear elliptic equations with p(x)-
Laplacian and sign-changing nonlinearity. For solving the Dirichlet boundary-

value problem we use variational and topological methods. The nonexistence

of positive solutions is also studied.

1. Introduction

We are concerned with the existence of multiple positive solutions for the problem

−∆p(x)u = λf(x, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.1)

where ∆p(x)u := div(|∇u|p(x)−2∇u) (is called p(x)-Laplacian), Ω ⊂ RN a bounded
domain with smooth boundary ∂Ω for N ≥ 1, p ∈ C1(Ω) with p(x) > 1 for all
x ∈ Ω, f ∈ C(Ω× R,R), and λ is a positive parameter.

The problems related to the p(x)-Laplacian have been intensively studied. We
refer the reader to [15] for motivations from electrorheological fluids, and to [3, 4,
5, 6, 7, 8, 9, 12] for basic definitions, properties, and standard results associated
with the p(x)-Laplacian and the variable exponent Lebesgue-Sobolev space. As far
as the authors know, most studies are related to the positive nonlinearity f(x, u),
and very few are related to the existence of positive solutions for the sign-changing
nonlinearity.

Throughout this article, unless otherwise stated, we assume that for k, l,m ∈ N
and m ≥ 2. We use the following assumptions:

(F1) f(x, 0) ≥ 0 for all x ∈ Ω;
(F2) there exist ak, bl ∈ C(Ω) and positive constants cl, where 1 ≤ k ≤ m, 1 ≤

l ≤ m− 1 such that

0 ≤ a1(x) < c1 ≤ b1(x) < a2(x) < c2 ≤ b2(x) < · · · < cm−1 ≤ bm−1(x) < am(x),
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and for all k ∈ {1, 2, . . . ,m− 1},

f(x, s)

{
≤ 0, for all x ∈ Ω and all s ∈ [ak(x), bk(x)] ∪ [am(x), cm],
≥ 0, for all x ∈ Ω and all s ∈ [bk(x), ak+1(x)]

where cm := maxx∈Ω am(x);
(F3) there exists a nonnegative constant d such that f(x, s) ≥ −dsp(x)−1 for all

x ∈ Ω and all s ∈ [0, δ] for some δ > 0;
(F4k) k ∈ {2, . . . ,m}, ak ∈ C1(Ω),

∫
Ω
αk(x) dx > 0, where

αk(x) := F (x, ak(x))−max{F (x, s) : 0 ≤ s ≤ ak−1(x), x ∈ Ω},

where F (x, s) :=
∫ s

0
f(x, τ)dτ for (x, s) ∈ Ω× R.

In spite of the fact that (F3) implies (F1), the reason we assumed (F1) is to
compare the conditions which the researchers mentioned below used. Indeed let
us briefly review the previous conditions and results which are related to (1.1).
When p(x) ≡ 2, that is, for the Laplacian case, Hess [10] initiated the study about
sufficient conditions for sign-changing nonlinearity to get at least 2m − 1 positive
solutions for sufficiently large λ. Actually, his conditions was f(x, u) = f(u) and
f ∈ C1([0,∞),R) with f(0) > 0 and (F2) and (F4k) with ak, bl constants. It is
worth noting that if f ∈ C1([0,∞),R) and f(0) > 0 then (F3) holds automatically.
The p-Laplacian version was established by Loc-Schmitt [13] with f(0) ≥ 0 (not
f(0) > 0), Hess’ assumptions, and some different condition from (F4k). They only
showed the existence of at least m−1 non-negative solutions but also discussed the
necessary conditions. We emphasize that non-negativity of solutions comes from
f(0) ≥ 0 (see, Proposition 2.3 and Remark 5.1). Let us note that in the above two
papers the nonlinearity was autonomous.

For the nonautonomous case, when p(x) ≡ p,m = 2, Kim-Shi [11] showed that
(1.1) has at least two positive solutions for sufficiently large λ, under the assump-
tions f(x, a1(x)) = 0, (F2), (F3) and a condition weaker than (F4k), with k = 2,

(F5) there exists an open ball B1 of Ω such that a2 ∈ C1(B1) and

F (x, a2(x)) > 0, x ∈ B1.

They also showed the nonexistence of positive solutions of (1.1) for sufficiently small
λ.

Motivated by the above results, we shall consider the case of p(x)-Laplacian, m ≥
2 and sign-changing nonautonomous nonlinearity which are weaker than conditions
of Hess, Loc-Schmitt and Kim-Shi and obtain some results which contain their
results as a special case in a unified way.

2. Preliminaries

In this section we establish a basic setup and some preliminary results concerning
the p(x)-Laplacian problems.

Let C+(Ω) := {h ∈ C(Ω) : h(x) > 1 for all x ∈ Ω}, and for h ∈ C+(Ω), we
denote h+ = maxΩ h(x) and h− = minΩ h(x). For any p ∈ C+(Ω), we define the
variable exponent Lebesgue space by Lp(x)(Ω) := {u : u is a measurable real valued
function,

∫
Ω
|u(x)|p(x) dx <∞} with the norm

‖u‖p(x) = inf
{
λ > 0 :

∫
Ω

|u(x)
λ
|p(x) dx ≤ 1

}
.
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The space (Lp(x)(Ω), ‖ · ‖p(x)) is a separable, uniformly convex Banach space, and
its conjugate space is Lq(x)(Ω), where 1/p(x) + 1/q(x) = 1 for all x ∈ Ω.

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}
with the norm

‖u‖1 = ‖u‖p(x) + ‖|∇u|‖p(x).

We denote by W 1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(x)(Ω). Then W 1,p(x)(Ω) and

W
1,p(x)
0 (Ω) are separable reflexive Banach spaces. Moreover, we have the compact

imbedding W 1,p(x)(Ω) ↪→↪→ Lq(x)(Ω) if q ∈ C+(Ω) with q(x) < p∗(x) for all x ∈ Ω,
where

p∗(x) =

{
Np(x)
N−p(x) , p(x) < N,

∞, p(x) ≥ N,
(see, e.g., [3, 4, 5]).

By Poincaré type inequality [5, Theorem 2.7], we can define a norm

‖u‖ = ‖|∇u|‖p(x)

which is equivalent to the norm ‖ · ‖1 on W
1,p(x)
0 (Ω). In what follows, we will use

‖ · ‖ instead of ‖ · ‖1 on W
1,p(x)
0 (Ω).

Definition 2.1. A function u ∈W 1,p(x)
0 (Ω) is called a (weak) solution to (1.1) if∫

Ω

|∇u|p(x)−2∇u · ∇ϕdx = λ

∫
Ω

f(x, u)ϕdx for all ϕ ∈W 1,p(x)
0 (Ω).

The next two propositions have a key role in the proofs of the main results.

Proposition 2.2 ([8, 9]). For each h ∈ L∞(Ω) the problem{
−∆p(x)u = h, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω

has a unique solution u := K(h) ∈ W
1,p(x)
0 (Ω). Moreover the mapping K :

L∞(Ω) → C1,α(Ω) is bounded for some α ∈ (0, 1), and hence the mapping K :
L∞(Ω)→ C1(Ω) is completely continuous.

Proposition 2.3 ([7, 9]). Suppose that u ∈ W 1,p(x)(Ω), u ≥ 0 and u 6≡ 0 in Ω. If
−∆p(x)u + d(x)uq(x)−1 ≥ 0 in Ω, where d ∈ L∞(Ω), d ≥ 0, p(x) ≤ q(x) ≤ p∗(x),
then u > 0 in Ω, and when u ∈ C1(Ω), ∂u/∂ν < 0 on ∂Ω where ν is the outward
unit normal on ∂Ω.

The following lemma gives estimates for a solution of p(x)-Laplacian which has
a cut-off type nonlinear term.

Lemma 2.4. Let g : Ω×R→ R be a continuous function such that there exists s̄ > 0
such that g(x, s) ≥ 0 if (x, s) ∈ Ω× (−∞, 0] and g(x, s) ≤ 0 if (x, s) ∈ Ω× [s̄,∞).
If u is a weak solution to problem

−∆p(x)u = g(x, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

then 0 ≤ u(x) ≤ s̄ for almost all x ∈ Ω.



4 K. HO, C.-G. KIM, I. SIM EJDE-2014/237

Proof. Putting φ = (u− s̄)+ = max{u− s̄, 0} ∈W 1,p(x)
0 (Ω), we have∫

Ω

|∇u|p(x)−2∇u · ∇φdx =
∫
{u(x)>s̄}

g(x, u(x))φdx ≤ 0.

Since ∫
Ω

|∇u|p(x)−2∇u · ∇φdx =
∫

Ω

|∇(u− s̄)+|p(x) dx ≥ 0,

∇(u − s̄)+ = 0 a.e. in Ω, and thus u ≤ s̄. In a similar manner, taking φ =
max{−u, 0} ∈W 1,p(x)

0 (Ω), we have u ≥ 0 almost all x ∈ Ω. The proof is complete.
�

3. Main results

In this section, we state the main theorems and compare the conditions and
results in [10, 13, 11]. First, for any λ ≥ 0, we define the functional I(λ, ·) :
W

1,p(x)
0 (Ω)→ R by

I(λ, u) :=
∫

Ω

1
p(x)
|∇u(x)|p(x) dx− λ

∫
Ω

F (x, u(x)) dx, u ∈W 1,p(x)
0 (Ω).

Theorem 3.1. Assume that (F2), (F3), (F4k) (with k = 2, . . . ,m) hold. Then, for
sufficiently large λ > 0, (1.1) has at least m solutions u1(λ), . . . , um(λ) in which
u1(λ) is a non-negative solution and u2(λ), . . . , um(λ) are positive solutions such
that 0 ≤ ‖u1(λ)‖∞ ≤ c1 < ‖u2(λ)‖∞ ≤ c2 < · · · < cm−1 < ‖um(λ)‖∞ ≤ cm and
I(λ, um(λ)) < · · · < I(λ, u2(λ)) < I(λ, u1(λ)) ≤ 0. Moreover, if f(x, 0) 6≡ 0 then
u1 is also a positive solution.

To obtain more positive solutions, we need to assume:
(F6) p(x) ≤ 2 for all x ∈ Ω and there exists a positive constant L such that

f(x, s) + Ls is nondecreasing in s ∈ [0, cm].

Theorem 3.2. Assume that (F2), (F3), (F4k) (with k = 2, . . . ,m), (F6) hold.
Then, for sufficiently large λ > 0, equation (1.1) has other m− 1 positive solutions
û2(λ), . . . , ûm(λ) such that ‖ûk(λ)‖∞ ∈ (ck−1, ck) and ûk(λ) 6= uk(λ) for k =
2, . . . ,m.

Remark 3.3. Since the existence of L in (F6) is guaranteed, when f ∈ C1, Theo-
rem 3.2 is just Hess’ conclusion.

We have a similar result even in the case that we replace (F4k), with k = 2, by
the weaker condition (F5).

Theorem 3.4. Assume that (F2), (F3), (F5) for m = 2, or (F2), (F3), (F5), (F4k)
(with k = 3, . . . ,m), for m ≥ 3 hold. Then, for sufficiently large λ > 0, (1.1) has
at least m − 1 positive solutions u2(λ), . . . , um(λ) such that ‖uk(λ)‖∞ ∈ (ck−1, ck]
and I(λ, um(λ)) < · · · < I(λ, u2(λ)) < 0. Moreover, if we also assume that (F6)
holds, then there exists other m − 2 positive solutions û3(λ), . . . , ûm(λ) such that
‖ûk(λ)‖∞ ∈ (ck−1, ck) and ûk(λ) 6= uk(λ) for k = 3, . . . ,m.

When a1(x) ≡ 0 in Ω, f(x, 0) ≡ 0 in Ω, and we can show that problem (1.1) has
a positive Mountain pass type solution under the additional assumption:

(F7) a1(x) ≡ 0, and p+ < p∗(x) for all x ∈ Ω.
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Theorem 3.5. Assume that (F2), (F3), (F5), (F7) hold. Then (1.1) has a positive
solution û1(λ), which is different from u2(λ), . . . , um(λ), û3(λ), . . . , ûm(λ) obtained
in Theorem 3.4 such that ‖û1(λ)‖∞ < c2 and I(λ, û1(λ)) > 0 for sufficiently large
λ > 0.

Remark 3.6. This theorem extends Kim-Shi’s result of p-Laplacian into the case
of p(x)-Laplacian with more humps (for this terminology, see [10]).

For the nonexistence result we need only a simple assumption.

Theorem 3.7. Assume that there exists positive constants C1 and C2 such that
f(x, s) ≤ 0 for all (x, s) ∈ Ω × ((0, C1) ∪ (C2,∞)). Then (1.1) has no positive
solutions for small λ > 0.

Remark 3.8. The property of the first eigenvalue of p-Laplacian problem and
Picone’s identity were used in [11], but both are not expected in p(x)-Laplacian
problem.

By Theorems 3.4, 3.5 and 3.7, we have the following corollary.

Corollary 3.9. Assume that (F2), (F3), (F5), (F7) for m = 2, or (F2), (F3), (F5),
(F4k) (with k = 3, . . . ,m), (F7) for m ≥ 3 hold. If f(x, s) satisfies f(x, s) ≤ 0
for (x, s) ∈ Ω × [cm,∞), then problem (1.1) has at least m positive solutions for
sufficiently large λ, and it has no positive solutions for small λ > 0. Moreover, if
we also assume that (F6) holds, then problem (1.1) has at least 2m − 2 positive
solutions for sufficiently large λ.

4. Lemmas

For each k = 1, 2, . . . ,m, let us consider the truncation of the nonlinearity f(x, s)
as follows;

fk(x, s) :=


f(x, 0), (x, s) ∈ Ω× (−∞, 0],
f(x, s), (x, s) ∈ Ω× (0, ck],
f(x, ck), (x, s) ∈ Ω× (ck,∞).

Then fk(x, s) ≥ 0 for (x, s) ∈ Ω× (−∞, 0] and fk(x, s) ≤ 0 for (x, s) ∈ Ω× [ck,∞).
For any λ ≥ 0, we define the functional Ik(λ, ·) : W 1,p(x)

0 (Ω)→ R by

Ik(λ, u) :=
∫

Ω

1
p(x)
|∇u(x)|p(x) dx− λ

∫
Ω

Fk(x, u(x)) dx, u ∈W 1,p(x)
0 (Ω),

where Fk(x, s) :=
∫ s

0
fk(x, τ)dτ for (x, s) ∈ Ω× R.

Lemma 4.1. Assume that f ∈ C(Ω×R,R). Then Ik(λ, ·) is continuously Fréchet
differentiable on W 1,p(x)

0 (Ω), and I ′k(λ, ·) is of (S+) type operator. Moreover Ik(λ, ·)
is sequentially weakly lower-semicontinuous, coercive on W

1,p(x)
0 (Ω) and satisfies

the Palais-Smale condition.

Proof. Let Ik(λ, ·) = J − λJk, where J(u) =
∫

Ω
1

p(x) |∇u(x)|p(x) dx and Jk(u) =∫
Ω
Fk(x, u(x)) dx. Since fk(x, s) is bounded, it is well known that Ik(λ, ·) is contin-

uously Fréchet differentiable, sequentially weakly lower-semicontinuous and coer-
cive on W

1,p(x)
0 (Ω) (see, e.g., [6]). The (S+)-property of I ′k(λ, ·) comes from (S+)-

property of J ′ (see [6]) and the sequentially weak continuity of J ′k. Since I ′k(λ, ·)
is of (S+) type operator, to show that Ik(λ, ·) satisfies (PS) condition it is enough
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to show every (PS) sequence is bounded. Let {un}∞n=1 be any (PS) sequence of
Ik(λ, ·) in W 1,p(x)

0 (Ω); i.e., there exists a constant M > 0 such that |Ik(λ, un)| ≤M ,
for all n and I ′k(λ, un) → 0 as n → ∞. It follows from the boundedness of fk and
the relation between modular and norm (see [5, Theorem 1.3]) that for n large, we
have

M + ‖un‖ ≥ Ik(λ, un)− 1
2p+

I ′k(λ, un)un

≥ 1
2p+

(
‖un‖p

−
− 1
)
− C

∫
Ω

|un| dx

≥ 1
2p+
‖un‖p

−
− CC1‖un‖ −

1
2p+

,

where C is some positive constant and C1 is the imbedding constant for ‖un‖L1(Ω) ≤
C1‖un‖. Thus {un}∞n=1 is bounded in W

1,p(x)
0 (Ω) since p− > 1. �

Lemma 4.2. Assume that (F1), (F2) hold. Let u be any critical point of Ik(λ, ·) for
some k ∈ {1, 2, . . . ,m}. Then u ∈ C1,α

0 (Ω) for some α ∈ (0, 1) and 0 ≤ u(x) ≤ ck
for all x ∈ Ω. Assume in addition that (F3) holds, then u > 0 in Ω and ∂u/∂ν < 0
on ∂Ω if u 6≡ 0 in Ω, where ν is the outward unit normal on ∂Ω.

Proof. Let u be any critical point of Ik(λ, ·). By Lemma 2.4, 0 ≤ u(x) ≤ ck for
a.e x ∈ Ω. Since u is a nonnegative bounded solution of (1.1), u ∈ C1,α

0 (Ω) for
some α ∈ (0, 1) in view of C1,α-regularity result in the Proposition 2.2. Hence,
0 ≤ u(x) ≤ ck for all x ∈ Ω. Assume in addition that (F3) is satisfied, it follows
from Proposition 2.3 that u > 0 in Ω and ∂u/∂ν < 0 on ∂Ω if u 6≡ 0 in Ω. �

Fix k ∈ {1, . . . ,m} and denote by Ck(λ) the set of critical points of Ik(λ, ·). Note
that u ∈ Ck(λ) if and only if u is a solution of

−∆p(x)u = λfk(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω.

(4.1)

Since Ik(λ, ·) is sequentially weakly lower-semicontinuous and coercive on the space
W

1,p(x)
0 (Ω), it follows that Ik(λ, ·) has a global minimizer uk(λ) ∈ Ck(λ) for any

λ > 0.

Lemma 4.3. Assume that (F1), (F2), (F5) hold. Then there exists λ2 > 0 such
that for all λ > λ2,

I(λ, u2(λ)) < 0.

Proof. We shall show that, for large λ, there exists v ∈ W
1,p(x)
0 (Ω) such that

0 ≤ v(x) ≤ a2(x) for all x ∈ Ω and I(λ, v) < 0 = I(λ, 0), which implies that
I(λ, u2(λ)) < 0.

Let us define vε(x) for small ε > 0 and B1 in (F5) as follows:

vε(x) :=


0, x ∈ Ω \Bε1
aε2(x), x ∈ Bε1 \B1

a2(x), x ∈ B1,

where Bε1 := {x ∈ Ω : dist(x,B1) ≤ ε}, a2(x) is the function in (F2) and aε2(x) is
an appropriate function such that 0 ≤ vε(x) ≤ a2(x), x ∈ Ω and vε ∈ C1

0 (Ω). Then
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F2(x, vε(x)) = F (x, vε(x)), x ∈ Ω and

I(λ, vε)

=
∫

Ω

1
p(x)
|∇vε(x)|p(x) dx− λ

∫
Ω

F (x, vε(x)) dx

=
∫

Ω

1
p(x)
|∇vε(x)|p(x) dx− λ

∫
B1

F (x, a2(x)) dx− λ
∫
Bε1\B1

F (x, aε2(x)) dx

≤
∫

Ω

1
p(x)
|∇vε(x)|p(x) dx− λ

∫
B1

F (x, a2(x)) dx+ λM |Bε1 \B1|,

(4.2)

where M := max{|F (x, u)| : 0 ≤ u ≤ a2(x), x ∈ Ω}. By (F5),
∫
B1
F (x, a2(x)) dx >

0, and we can choose a sufficiently small constant ε0 > 0 so that

0 < M |Bε01 \B1| ≤
1
2

∫
B1

F (x, a2(x)) dx.

From (4.2), we infer

I(λ, vε0) ≤
∫

Ω

1
p(x)
|∇vε0(x)|p(x) dx− λ

∫
B1

F (x, a2(x)) dx+ λM |Bε01 \B1|

≤
∫

Ω

1
p(x)
|∇vε0(x)|p(x) dx− λ

2

∫
B1

F (x, a2(x)) dx,

which implies that I(λ, vε0) < 0 for sufficiently large λ. Consequently, I(λ, u2(λ)) <
0 for all large λ. This completes the proof. �

Lemma 4.4. Fix k in {2, . . . ,m} and assume that (F1), (F2) and (F4k) hold. Then
there exists λk > 0 such that for all λ > λk, uk(λ) 6∈ Ck−1(λ) and I(λ, uk(λ)) <
I(λ, uk−1(λ)).

Proof. It is sufficient to show that there exist λk > 0 and wk ∈ W 1,p(x)
0 (Ω) such

that wk ≥ 0, ‖wk‖∞ ≤ ck and

I(λ,wk) < I(λ, uk−1) for all λ > λk, (4.3)

to complete the proof. We first show that for all x ∈ Ω,

F (x, uk−1(x)) ≤ max{F (x, s) : 0 ≤ s ≤ ak−1(x), x ∈ Ω}.

The assertion is obvious if uk−1(x) ≤ ak−1(x). For the case ak−1(x) ≤ uk−1(x) ≤
ck−1, we obtain that f(x, uk−1(x)) ≤ 0 and

F (x, uk−1(x)) =
∫ ak−1(x)

0

f(x, s)ds+
∫ uk−1(x)

ak−1(x)

f(x, s)ds

≤
∫ ak−1(x)

0

f(x, s)ds

= F (x, ak−1(x))

≤ max{F (x, s) : 0 ≤ s ≤ ak−1(x), x ∈ Ω}.

From this inequality and (F4k) it follows that

F (x, ak(x)) ≥ F (x, uk−1(x)) + αk(x),∀x ∈ Ω,
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and hence, ∫
Ω

F (x, ak(x)) dx ≥
∫

Ω

F (x, uk−1(x)) dx+
∫

Ω

αk(x) dx. (4.4)

For δ > 0, let Ωδ := {x ∈ Ω : dist(x, ∂Ω) < δ}. Then |Ωδ| → 0 as δ → 0. For each
small δ > 0, there exists wδ ∈ W 1,p(x)

0 (Ω) such that wδ(x) = ak(x) for x ∈ Ω\Ωδ
and 0 ≤ wδ(x) ≤ ak(x) for x ∈ Ω. Thus∫

Ω

F (x,wδ(x)) dx =
∫

Ω\Ωδ
F (x, ak(x)) dx+

∫
Ωδ

F (x,wδ(x)) dx

=
∫

Ω

F (x, ak(x)) dx−
∫

Ωδ

[F (x, ak(x))− F (x,wδ(x))] dx

≥
∫

Ω

F (x, ak(x)) dx− Ck|Ωδ|,

where Ck := 2 max{|F (x, s)| : 0 ≤ s ≤ ak(x), x ∈ Ω}. By (4.4),∫
Ω

F (x,wδ(x)) dx ≥
∫

Ω

F (x, uk−1(x)) dx+
∫

Ω

αk(x) dx− Ck|Ωδ|.

Fixing δ > 0 such that

η :=
∫

Ω

αk(x) dx− Ck|Ωδ| > 0,

and setting wk := wδ, we obtain

I(λ,wk)− I(λ, uk−1)

=
∫

Ω

1
p(x)

(
|∇wk|p(x) − |∇u|p(x)

)
dx− λ

∫
Ω

(F (x,wk(x))− F (x, uk−1(x))) dx

≤
∫

Ω

1
p(x)
|∇wk|p(x) dx− λη,

which implies that there exists λk > 0 such that (4.3) is satisfied. �

Next we shall give some results by using the degree theory for (S+) type maps in
the Banach space. For the basic properties of the degree of (S+) type maps, we refer
to [2, 14]. For each k ∈ {1, 2, . . . ,m} and ε > 0, let Uε(Ck(λ)) be the ε-neighborhood
of Ck(λ) in W

1,p(x)
0 (Ω). For m ≥ 2, Ck−1(λ) ( Ck(λ) for each k ∈ {2, . . . ,m}. By

Proposition 2.2, Ck(λ) is a compact set in W
1,p(x)
0 (Ω).

Let BR(0) denote the open ball in W
1,p(x)
0 (Ω) with radius R > 0 and center

at the origin. By the boundedness of fk, for sufficiently large R = R(λ) > 0,
I ′k(λ, u)u > 0 for any u ∈ ∂BR(0). Thus, by the property for the degree of (S+)
type operator, we have

deg(I ′k(λ, ·), BR(0), 0) = 1. (4.5)

By the modified arguments which were used in [10, Lemma 3] for the Hilbert
space, we have the following lemma.

Lemma 4.5. Fix k ∈ {2, . . . ,m} and assume that (F1), (F2), (F6), (F4k) hold.
Then there exists εk = εk(λ) > 0 such that for any ε ∈ (0, εk),

deg(I ′k(λ, ·),Uε(Ck−1(λ)), 0) = 1. (4.6)
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Proof. By (4.5) and the excision property of the degree, for any ε > 0,

deg(I ′k−1(λ, ·),Uε(Ck−1(λ)), 0) = 1.

We claim that there exists εk−1 > 0 such that, for all ε ∈ (0, εk−1) and all µ ∈ [0, 1],

µI ′k−1(λ, v) + (1− µ)I ′k(λ, v) 6= 0 for v ∈ ∂Uε(Ck−1(λ)).

Indeed, if the assertion were false then there are a sequences of positive numbers
δn approaching 0, and sequences {µn}∞n=1 ⊂ [0, 1] and {vn}∞n=1 ⊂ W

1,p(x)
0 (Ω) such

that
dist(vn, Ck−1(λ)) = δn, (4.7)

and
µnI

′
k−1(λ, vn) + (1− µn)I ′k(λ, vn) = 0.

Thus vn satisfies

−∆p(x)vn = λ(µnfk−1(x, vn) + (1− µn)fk(x, vn)), x ∈ Ω,

vn(x) = 0, x ∈ ∂Ω.

Since

µnfk−1(x, s) + (1− µn)fk(x, s)

=


f(x, 0), (x, s) ∈ Ω× (−∞, 0],
f(x, s), (x, s) ∈ Ω× (0, ck−1],
µnf(x, ck−1) + (1− µn)f(x, ck), (x, s) ∈ Ω× (ck,∞),

by Lemma 2.4, 0 ≤ vn(x) ≤ ck for a.e x ∈ Ω and all n ∈ N, and thus by Proposi-
tion 2.2, {vn}∞n=1 is relatively compact in C1(Ω). Then, there exist a subsequence
of {vn}∞n=1, still denote by {vn}∞n=1, and v ∈ C1(Ω) such that vn → v in C1(Ω). It
follows from (4.7) that v ∈ Ck−1(λ). Hence, by Lemma 4.2, 0 ≤ v(x) ≤ ck−1 for all
x ∈ Ω.

Next, we show that ‖v‖∞ < ck−1. Indeed, by (F6),

−∆p(x)(ck−1) + Lck−1 ≥ f(x, ck−1) + Lck−1 ≥ f(x, v) + Lv = −∆p(x)v + Lv,

and
−∆p(x)(ck−1 − v) + L(ck−1 − v) ≥ 0. (4.8)

Since v = 0 on ∂Ω, ck−1 − v 6≡ 0 in Ω. Applying Proposition 2.3 with q(x) ≡ 2, it
follows from (4.8) that v(x) < ck−1 for all x ∈ Ω and hence ‖v‖∞ < ck−1. Since
vn 6∈ Ck−1(λ) and ‖vn‖∞ > ck−1, letting n → ∞, we get a contradiction. Thus
(4.6) holds by the homotopy invariance property of the degree. �

5. Proofs of main results and an example

Now we give the proofs of Theorems 3.1, 3.2, 3.4, 3.5 and 3.7.

Proof of Theorem 3.1. Fix λ > max{λk : k = 2, . . . ,m}, where λk are taken as in
Lemma 4.4. Also as in Lemma 4.4, denote by uk(λ) the global minimizer of Ik(λ, ·).
Then, by Lemma 4.2 and Lemma 4.4, we have 0 ≤ uk(λ) ≤ ck and

0 ≤ ‖u1(λ)‖∞ ≤ c1 < ‖u2(λ)‖ ≤ c2 < · · · < cm−1 < ‖um(λ)‖∞ ≤ cm,
I(λ, um(λ)) < · · · < I(λ, u2(λ)) < I(λ, u1(λ)) ≤ 0 = I(λ, 0).
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By Proposition 2.3, we deduce u2(λ), . . . , um(λ) are m − 1 positive solutions of
problem (1.1). Once again, by Proposition 2.3, if f(x, 0) 6≡ 0, then u1 is also a
positive solution. �

Proof of Theorem 3.2. First, by Lemma 4.4, uk 6∈ Ck−1(λ). If uk is not an isolated
critical point of Ik(λ, ·), then there are infinitely many positive solutions in Ck(λ) \
Ck−1(λ), the proof is complete. Otherwise, uk is an isolated critical point of Ik(λ, ·)
and it follows from [2, Theorem 1.8] that

deg(I ′k(λ, ·), Bε(uk), 0) = 1, (5.1)

where ε is so small that

Uε(Ck−1(λ)) ∩Bε(uk) = ∅.

By the additivity property of the degree, (4.5), (4.6) and (5.1),

deg(I ′k(λ, ·), BR(0) \ (Uε(Ck−1(λ)) ∪Bε(uk)), 0) = −1.

Consequently, there exists ûk ∈ Ck(λ) \ Ck−1(λ) such that ûk 6= uk. By (F6), using
the same argument as in the proof of Lemma 4.5, we conclude that ‖uk‖∞, ‖ûk‖∞
∈ (ck−1, ck). �

Proof of Theorem 3.4. In the case m = 2, by Lemma 4.3, I2(λ, u2(λ)) < 0 for
λ > λ2, and u2(λ) 6≡ 0. Hence, u2(λ) is positive by Proposition 2.3. In the case
m ≥ 3, fix λ > max{λk : k = 2, . . . ,m}, where λ2 is taken as in Lemma 4.3 whereas
λk (k = 3, . . . ,m) are taken as in Lemma 4.4. Using the same argument as in the
proof of Theorem 3.1 with noting that I2(λ, u2(λ)) < 0, it follows that problem
(1.1) has m−1 positive solutions u2(λ), . . . , um(λ) such that ‖uk(λ)‖∞ ∈ (ck−1, ck]
and I(λ, uk(λ)) < 0 for k ∈ {2, . . . ,m}. If we assume in addition that (F6) holds,
then by the same argument as in the proof of Theorem 3.2, there exists other
m − 2 positive solutions û3(λ), . . . , ûm(λ) such that ‖ûk(λ)‖∞ ∈ (ck−1, ck) and
ûk(λ) 6= uk(λ) for k ∈ {3, . . . ,m}. �

Proof of Theorem 3.5. Since p+ < p∗(x) for all x ∈ Ω, we can choose a constant q
such that q ∈ (p+, p∗(x)) for all x ∈ Ω. From the fact that a1(x) = 0 for all x ∈ Ω,
there exists a constant C(q) > 0 such that

f2(x, s) ≤ C(q)|s|q−1, (x, s) ∈ Ω× R,

F2(x, s) ≤ C(q)
|s|q

q
, (x, s) ∈ Ω× R.

Let 0 < δ < min{1, 1/Cq}, where Cq is the imbedding constant such that ‖u‖q ≤
Cq‖u‖ for u ∈W 1,p(x)

0 (Ω). For ‖u‖ < δ, we estimate

I2(λ, u) ≥
∫

Ω

1
p(x)
|∇u(x)|p(x) dx− λC(q)

q

∫
Ω

|u(x)|q dx

≥
[ 1
p+
− λ

C(q)Cqq
q
‖u‖q−p

+]
‖u‖p

+
.

Thus, for each λ > 0, there exists ρ ∈ (0, δ) such that I2(λ, u) > 0 = I2(λ, 0) if
0 < ‖u‖ ≤ ρ. Fix λ > 0 such that I2(λ, u2(λ)) < 0. It follows from Mountain pass
Theorem that I2(λ, ·) has another critical point û1 such that

I2(λ, û1(λ)) > 0 > I2(λ, u2(λ)),
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and thus, for sufficiently large λ, problem (1.1) has other positive solution û1(λ),
which is different from 2m− 3 positive solutions u2, . . . , um, û3, . . . , ûm obtained in
Theorem 3.4, satisfying ‖û1(λ)‖∞ < c2 and I(λ, û1(λ)) > 0. �

Remark 5.1. If we replace (F3) by (F1) as in Loc-Schmitt’s work [13], the con-
clusions of Theorems 3.1, 3.2, 3.4, 3.5, and Corollary 3.9 remain valid with the
non-negativity of solutions not the positivity.

Proof of Theorem 3.7. By contradiction, assume that {(λn, un)}∞n=1 is a sequence
such that un is a positive solution of (1.1) with λ = λn for each n ∈ N, and λn → 0
as n → ∞. Then ‖un‖∞ > C1 for all n ∈ N, since f(x, s) ≤ 0 for all x ∈ Ω and
0 ≤ s ≤ C1. Indeed, assume on the contrary that ‖un‖∞ ≤ C1 for some n ∈ N.
It follows from the comparison principle [9, Proposition 2.3] that un ≤ 0, which
contradicts the fact that un is a positive solution of problem (1.1) with λ = λn.
By Lemma 2.4, ‖un‖∞ ≤ C2 for all n ∈ N. Let hn = λnf(·, un), then hn → 0 as
n → ∞ in L∞(Ω). By Proposition 2.2, un := K(hn) → 0 as n → ∞ in C1(Ω)
which contradicts the fact that ‖un‖∞ > C1 for all n ∈ N. �

Example 5.2. To illustrate Corollary 3.9 in the case m = 2, let us consider the
nonautonomous cubic nonlinearity

f(x, s) = sp(x)−1(s− b(x))(c(x)− s),
where p ∈ C1(Ω) with p+ < p∗(x) for all x ∈ Ω, and b, c ∈ C(Ω) such that
0 < b(x) < c(x) < 1 for any x ∈ Ω. If we assume that there exists an open ball
B1 ⊆ Ω such that c(x) ∈ C1(B1) and

0 <
(

1 +
2
p+

)
b(x) < c(x) in B1,

it is easy to verify that all assumptions of Corollary 3.9 are satisfied. Thus, problem
(1.1) has at least two positive solutions for large λ > 0, and it has no positive
solutions for small λ > 0.
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[4] D. Edmunds, J. Răkosnik; Sobolev embeddings with variable exponent II, Math. Nachr., no.

246-247 (2002), 53–67.

[5] X. L. Fan, D. Zhao; On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263
(2001), 424–446.

[6] X. L. Fan, Q. H. Zhang; Existence of solutions for p(x)-Laplacian Dirichlet problems, Non-
linear Anal. 52 (2003), 1843–1852.

[7] X. L. Fan, Y. Z. Zhao, Q. H. Zhang; A strong maximum principle for p(x)-Laplace equations,

Chinese J. Contemp. Math. 24 (3) (2003), 277–282.
[8] X. L. Fan; Global C1,α regularity for variable exponent elliptic equations in divergence form,

J. Differential Equations, 235 (2007), 397–417.



12 K. HO, C.-G. KIM, I. SIM EJDE-2014/237

[9] X. L. Fan; On the sub-supersolution method for p(x)-Laplacian equations, J. Math. Anal.

Appl., 330 (2007), 665–682.

[10] P. Hess; On multiple positive solutions of nonlinear elliptic eigenvalue problems, Comm.
Partial Differential Equations, 6 (1981), 951–961.

[11] C.-G. Kim, J. Shi; Existence and multiplicity of positive solutions to a quasilinear elliptic

equation with strong Allee effect growth rate, Results Math. 64 (2013), 165–173.
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