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ENTIRE SOLUTIONS FOR A MONO-STABLE DELAY
POPULATION MODEL IN A 2D LATTICE STRIP

HAI-QIN ZHAO, SAN-YANG LIU

Abstract. This article concerns the entire solutions of a mono-stable age-
structured population model in a 2D lattice strip. In a previous publication,

we established the existence of entire solutions related to traveling wave so-

lutions with speeds larger than the minimal wave speed cmin. However, the
existence of entire solutions related to the minimal wave fronts remains open

open question. In this article, we first establish a new comparison theorem.
Then, applying the theorem we obtain the existence of entire solutions by

mixing any finite number of traveling wave fronts with speeds c ≥ cmin, and

a solution without the j variable. In particular, we show the relationship
between the entire solution and the traveling wave fronts that they originate.

1. Introduction

In this article, which may be regarded as a sequel to [13], we consider the entire
solutions of the following age-structured population model in a 2-dimensional (2D)
lattice strip with Neumann boundary conditions [8, 13],

dui,j(t)
dt

= Dm∆ui,j(t)− dmui,j(t)

+ µ

N∑
i1=1

+∞∑
j1=−∞

G(i, i1, j, j1, α)b
(
ui1,j1(t− τ)

)
,

u0,j(t) = u1,j(t), uN,j(t) = uN+1,j(t),

(1.1)

where i ∈ [1, N ]Z := {1, . . . , N}, j ∈ Z, t ∈ R, N is a positive integer,

∆ui,j(t) = ui+1,j(t) + ui−1,j(t) + ui,j+1(t) + ui,j−1(t)− 4ui,j(t); (1.2)

ui,j(t) is the density of the mature population of the species at position (i, j) and
time t; τ > 0 is the maturation time; Dm, dm > 0 are the diffusion and death
rates of mature individuals, respectively; b(·) is the birth function which satisfies
the following assumption:

(A1) b ∈ C2([0,K],R), b(0) = µb(K)− dmK = 0, µb(u) > dmu and b′(u) ≤ b′(0)
for u ∈ (0,K), where K > 0 is a constant,

(A2) b′(u) ≥ 0 for all u ∈ [0,K].
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Assume that there is a single species divided into juveniles and adults, which
is distributed on the patches in a 2D lattice strip domain Ω := [1, N ]Z × Z with
the patches located at the integer nodes (i, j) ∈ Ω. The above model is derived to
express the dynamics for the mature population of the single species by Weng [8]
with the following coefficients:

µ = exp
{
−
∫ τ

0

d(z)dz
}
, α =

∫ τ

0

D(z)dz,

G(i, i1, j, j1, t) = G1(i, i1, t)βt(j − j1), βt(k) =
1

2π

∫ π

−π
ekωi−4t sin2(ω/2) dω,

where i is the imaginary unit; D(a) and d(a) are the diffusion and death rates of
the juvenile population at age a, 0 < a < τ , respectively, and G1(i, i1, t) is the
Green function of the boundary-value problem

dUi(t)
dt

= Ui+1(t) + Ui−1(t)− 2Ui(t), i ∈ [1, N ]Z, t > 0,

U0(t) = U1(t), UN (t) = UN+1(t), t ≥ 0.
(1.3)

Assuming mono-stable and quasi-monotone conditions, Weng [8] obtained the
spreading speed and its coincidence with the minimal speed of monotone traveling
waves by employing the theory of spreading speed and traveling waves for mono-
tone semiflows developed by Liang and Zhao [3]. The study of the traveling wave
solutions and spreading speed are important in population dynamics. They can de-
scribe certain dynamical behavior of the studied problem such as (1.1). However,
the dynamics of delayed lattice differential equations is so rich that there might be
other interesting patterns. Recently, quite a few entire solutions have been found
in many problems, see e.g. [1, 2, 4, 5, 7, 11, 10, 12, 9]. Here an entire solution
is meant by a classical solution defined for all space and time. It is obvious that
traveling wave solutions are special examples of the entire solutions.

Recently, in [13], we constructed some new types of entire solutions which are
different from traveling wave fronts for (1.1) by considering a combination of trav-
eling wave fronts coming from opposite sides of the j-axis with speeds c > cmin and
a solution of (1.1) without j variable. The basic idea in [13], similar to [2], is to
use traveling wave fronts and their exponential decay at −∞ to build subsolutions
and upper estimates, respectively, and then prove the existence results by employ-
ing comparison principle. However, the issue of the existence of entire solution for
(1.1) connecting traveling wave fronts with minimal wave speed cmin is still open.
Resolving this issue represents a main contribution of our current study.

More precisely, in this paper, we continue to consider the entire solutions of (1.1).
Since the decay of the minimal wave front at −∞ is not exponential, we can not
apply directly the method in [2, 13] to construct appropriate upper estimates. To
overcome this difficulty, we first establish a new comparison theorem (see Lemma
3.1) based on a concavity assumption of the birth function b. Then, applying the
comparison theorem, we establish an appropriate upper estimate (supersolution)
(see Lemma 3.2) and construct some new types of entire solutions by mixing any
number of traveling wave fronts coming from opposite sides of the j-axis with speeds
c ≥ cmin and a solution of (1.1) without j variable (see Theorem 3.3). Various
qualitative features of the entire solutions are also investigated (see Theorem 3.4).
In particular, we show the relationship between the entire solution and the traveling
wave fronts which they originated.
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It should be mention that, in [13], we also established the existence of entire
solutions of (1.1) connecting the traveling wave solutions with speeds c > cmin

when the quasi-monotone condition does not hold. The main idea is to introduce
two auxiliary quasi-monotone equations and establish a comparison argument for
the Cauchy problems of the three systems. For the case where the quasi-monotone
condition does not hold, we can apply the similar argument as in the proof of
Theorem 3.3 to obtain the existence of entire solutions of (1.1) connecting traveling
wave solutions with speeds c ≥ cmin. We leave the details to the readers.

The rest of the paper is organized as follows. In Section 2, we give some prelim-
inaries. In Section 3, we establish the existence of entire solutions of (1.1). Various
qualitative features of the entire solutions are also investigated.

2. Preliminaries

We first recall some known results on traveling wave fronts and solutions of (1.1)
without j variable. Then, we state the well-posedness of initial value problem of
(1.1), and establish some comparison theorems.

A traveling wave solution of (1.1) refers to a solution with the form ui,j(t) =
Φc(i, j + ct), where c > 0 is the wave speed. Letting ξ = j + ct, then the profile
function of traveling wave solution satisfies the equation

c
d

dξ
Φc(i, ξ) = Dm[Φc(i+ 1, ξ) + Φc(i− 1, ξ)− 2Φc(i, ξ)]

+Dm[Φc(i, ξ + 1) + Φc(i, ξ − 1)− 2Φc(i, ξ)]− dmΦc(i, ξ)

+ µ

N∑
i1=1

+∞∑
j1=−∞

G1(i, i1, α)βα(j1)b
(
Φc(i1, ξ − j1 − cτ)

)
,

Φc(0, ξ) = Φc(1, ξ), Φc(N, ξ) = Φc(N + 1, ξ),

(2.1)

where i ∈ [1, N ]Z and ξ ∈ R. The characteristic problem for (2.1) with respect to
the trivial equilibrium is

M(λ)vi = Dm[vi+1 + vi−1 − 2vi] + [2Dm(coshλ− 1)− dm]vi

+ µb′(0)e−M(λ)τe2α(coshλ−1)
N∑
i1=1

G1(i, i1, α)vi1 ,

i ∈ [1, N ]Z, λ ∈ R,
v0 = v1, vN = vN+1.

(2.2)

From Weng [8], we see that: (i) (2.2) has a positive principal eigenvalue M(λ) with
strictly positive eigenfunction v(λ) = {vi(λ)}i∈[1,N ]Z ; (ii) there exist cmin > 0 and
λ∗ > 0 such that

cmin =
M(λ∗)
λ∗

= inf
λ>0

M(λ)
λ

,

and for any c > cmin, there exists a unique λ1 := λ1(c) ∈ (0, λ∗) such that M(λ1) =
cλ1, and M(λ) < cλ for any λ ∈ (λ1, λ∗). Moreover, the following result holds, see
[13, Proposition 3.1].

Proposition 2.1. Assume (A1)–(A2) hold. For each c ≥ cmin, system (1.1) has a
non-decreasing traveling wave solution Φc(i, j + ct) which satisfies Φc(i,−∞) = 0
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and Φc(i,+∞) = K. Moreover, if c > cmin, then

Φ′c(i, ξ) > 0, lim
ξ→−∞

Φc(i, ξ)e−λ1(c)ξ = vi(λ1(c)), Φc(i, ξ) ≤ eλ1(c)ξvi(λ1(c))

for all i ∈ [1, N ]Z and ξ ∈ R.

Next, we consider the existence and asymptotic behavior of solutions of (1.1)
without j variable; that is, solutions of the problem

dΓi(t)
dt

= Dm[Γi+1(t) + Γi−1(t)− 2Γi(t)]− dmΓi(t)

+ µ

N∑
i1=1

G1(i, i1, α)b
(
Γi1(t− τ)

)
, i ∈ [1, N ]Z, t ∈ R,

Γ0(t) = Γ1(t), ΓN (t) = ΓN+1(t), t ∈ R.

(2.3)

The characteristic problem for (2.3) with respect to the trivial equilibrium is

ςvi = Dm[vi+1 + vi−1 − 2vi]− dmvi

+ µb′(0)e−ςτ
N∑
i1=1

G1(i, i1, α)vi1 , i ∈ [1, N ]Z,

v0 = v1, vN = vN+1.

(2.4)

Following [8, 13], Equation (2.4) has a positive principal eigenvalue λ∗ with strictly
positive eigenfunction v∗ = {v∗i }i∈[1,N ]Z and the following result holds.

Proposition 2.2. Assume (A1), (A2) hold. Then there exists a solution Γ(t) =
{Γi(t)}i∈[1,N ]Z of (2.3) such that Γi(−∞) = 0 and Γi(+∞) = K for i ∈ [1, N ]Z.
Moreover

lim
t→−∞

Γi(t)e−λ
∗t = v∗i , Γ′i(t) > 0, Γi(t) ≤ eλ

∗tv∗i , for i ∈ [1, N ]Z, t ∈ R.

We now consider the initial value problem of (1.1) with initial condition

ui,j(s) = ϕi,j(s), (i, j) ∈ Ω, s ∈ [r − τ, r], (2.5)

where r ∈ R is an any given constant. For convenience, we introduce some notation.
(1) Let X :=

{
φ : Ω → R : {φi,j}(i,j)∈Ω is bounded

}
, X+ :=

{
φ ∈ X : φi,j ≥

0 for (i, j) ∈ Ω
}

and X[0,K] :=
{
φ ∈ X : φi,j ∈ [0,K] for (i, j) ∈ Ω

}
. It is obvious

that X+ is a closed cone of X under the partial ordering induced by X+. Moreover,
we denote

T (t)[φ](i, j) := e−dmt
N∑
i1=1

+∞∑
j1=−∞

G(i, i1, j, j1, Dmt)φi1,j1 , ∀φ ∈ X, t > 0.

We equip X+ with a compact open topology and define the norm

‖φ‖X =
∞∑
k=0

maxi∈[1,N ]Z,|j|≤k |φi,j |
2k

.

It is clear that (X, ‖ · ‖X) is a normed space. Let d(·, ·) be the metric on X induced
by the norm ‖ · ‖X . Then X is a Banach lattice, and T (t) : X → X is a linear
C0-semigroup with T (t)X+ ⊆ X+ for t > 0.
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(2) Let C := C([−τ, 0], X) be the Banach space of continuous functions from
[−τ, 0] into X with the supremum norm and C+ := {φ ∈ C : φ(s) ∈ X+, s ∈ [−τ, 0]}.
Then C+ is a closed (positive) cone of C. Moreover, we denote

C[0,K] := {ϕ ∈ C : ϕi,j(s) ∈ [0,K],∀(i, j) ∈ Ω, s ∈ [−τ, 0]}.

As usual, we identify an element ϕ ∈ C as a function from Ω× [−τ, 0] into R defined
by ϕ(i, j, s) = ϕi,j(s). For any continuous function w : [−τ, b) → X, b > 0, we
define wt ∈ C, t ∈ [0, b) by wt(s) = w(t + s), s ∈ [−τ, 0]. Then t → wt is a
continuous function from [0, b) to C. For any ϕ ∈ C[0,K], define

F (ϕ)(i, j) := µ

N∑
i1=1

+∞∑
j1=−∞

G(i, i1, j, j1, α)b
(
ϕi1,j1(−τ)

)
.

Then F (ϕ) ∈ X and F : C[0,K] → X is globally Lipschitz continuous.
The definitions of supersolution and subsolution are given as follows.

Definition 2.3. A continuous function v : [−τ, b)→ X, b > 0, is called a superso-
lution (or subsolution) of (1.1) on [0, b) if for all 0 ≤ s < t < b,

v(t) ≥ (or ≤)T (t− s)[v(s)] +
∫ t

s

T (t− θ)[F (vθ)]dθ. (2.6)

The following results follow from [8, Lemmas 3.1 and 3.3] and [13, Lemma 3.5].

Proposition 2.4. Assume (A1)–(A2) hold. Then the following statements hold.
(1) For any ϕ ∈ C[0,K], there exists a unique solution u(t;ϕ) =

{
ui,j(t;ϕ)

}
(i,j)∈Ω

of (1.1) on [r,+∞) such that ui,j(s;ϕ) = ϕi,j(s) and 0 ≤ ui,j(t;ϕ) ≤ K for
(i, j) ∈ Ω, s ∈ [r − τ, r] and t ≥ r. Moreover, there exists a positive constant M ,
independent of ϕ and r, such that∣∣u′i,j(t;ϕ)

∣∣ ≤M,
∣∣u′′i,j(t;ϕ)

∣∣ ≤M for any (i, j) ∈ Ω, t > r + τ.

(2) Let
{
u+
i,j(t)

}
(i,j)∈Ω

and
{
u−i,j(t)

}
(i,j)∈Ω

be a supersolution and subsolution of

(1.1) on [r,+∞) respectively. If u+
i,j(s) ≥ u−i,j(s) for (i, j) ∈ Ω and s ∈ [r − τ, r],

then u+
i,j(t) ≥ u

−
i,j(t) for (i, j) ∈ Ω and t ≥ r. If, in addition, u+

i,j(0) 6≡ u−i,j(0), then
u+
i,j(t) > u−i,j(t) for (i, j) ∈ Ω and t > r.

3. Existence of entire solutions

In this section, we establish the existence of entire solutions by mixing any finite
number of traveling wave fronts with speeds c ≥ cmin and a solution without j
variable. In particular, we show the relationship between the entire solution and
the traveling wave fronts which they originated.

We first establish a comparison theorem. For this, we need the concavity as-
sumption of the function b:

(A3) b′′(u) ≤ 0 for u ∈ [0,K].

Lemma 3.1. Assume (A1)–(A3). Let ϕ(k), ϕ ∈ C[0,K], k = 1, . . . ,m, be m + 1
given functions with

ϕi,j(s) ≤
m∑
k=1

ϕ
(k)
i,j (s) for (i, j) ∈ Ω, s ∈ [−τ, 0].
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Let u(k) and u be the solutions of Cauchy problems of (1.1) with the initial values:

u
(k)
i,j (s) = ϕ

(k)
i,j (s) ui,j(s) = ϕi,j(s), (i, j) ∈ Ω, s ∈ [−τ, 0], (3.1)

respectively. Then

0 ≤ ui,j(t) ≤ min
{
K,

m∑
k=1

u
(k)
i,j (t)

}
for all (i, j) ∈ Ω and t ≥ 0.

Proof. Set Π(t) = {Πi,j(t)}(i,j)∈Ω and Z(t) = {Zi,j(t)}(i,j)∈Ω, where

Πi,j(t) =
m∑
k=1

u
(k)
i,j (t), Zi,j(t) := min

{
K,Πi,j(t)

}
for (i, j) ∈ Ω, t ≥ −τ . Then ui,j(s) ≤ Zi,j(s) for (i, j) ∈ Ω and s ∈ [−τ, 0]. By
Proposition 2.4, it suffices to show that Z(t) is a supersolution of (1.1), i.e.

Z(t) ≥ T (t− s)[Z(s)] +
∫ t

s

T (t− r)[F (Zr)]dr for any 0 ≤ s < t < +∞. (3.2)

Since b′(u) ≥ 0 for u ∈ [0,K], it is easy to see that

T (t− s)[Z(s)] +
∫ t

s

T (t− r)[F (Zr)]dr ≤ K for 0 ≤ s < t < +∞. (3.3)

Now, we show that

T (t− s)[Z(s)] +
∫ t

s

T (t− r)[F (Zr)]dr ≤ Π(t) for 0 ≤ s < t < +∞. (3.4)

First, we show that for any uk ∈ (0,K], k = 1, . . . ,m,

b(min{K,u1 + · · ·+ um}) ≤ b(u1) + · · ·+ b(um). (3.5)

For m = 1, (3.5) holds obviously. For m = 2, we consider the following two cases:
(i) u1 + u2 > K and (ii) u1 + u2 ≤ K.

For case (i), using the concavity of the function b again, we obtain

b(K)− b(u1)
K − u1

≤ b(u1)
u1

,
b(K)− b(u2)
K − u2

≤ b(u2)
u2

,

which implies that u1b(K) ≤ Kb(u1) and u2b(K) ≤ Kb(u2). Thus, we have

(u1 + u2)b(K) ≤ K(b(u1) + b(u2)) ≤ (u1 + u2)(b(u1) + b(u2))

and hence,
b(min{K,u1 + u2}) = b(K) ≤ b(u1) + b(u2).

The case (ii) can be considered similarly. Using mathematical induction, we can
show that (3.5) holds. By (3.5), it is easy to verify that (3.4) holds. Therefore, Z(t)
is a supersolution of (1.1) and the assertion of this lemma follows from Proposition
2.4. �

For any m,n ∈ N∪{0}, θ1, . . . , θm, θ
′
1, . . . , θ

′
n, θ ∈ R, c1, . . . , cm, c′1, . . . , c

′
n ≥ cmin

and χ ∈ {0, 1} with m+ n+ χ ≥ 2, we denote

ϕni,j(s) := max
{

max
1≤l≤m

Φcl
(i, j + cls+ θl

)
, max
1≤k≤n

Φc′k(i,−j + c′ks+ θ′k
)
,

χΓi(s+ θ)
}
,
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ui,j(t) := max
{

max
1≤l≤m

Φcl
(i, j + clt+ θl

)
, max
1≤k≤n

Φc′k(i,−j + c′kt+ θ′k
)
,

χΓi(t+ θ)
}
,

where (i, j) ∈ Ω, s ∈ [−n− τ,−n] and t > −n. Let Un(t) = {Uni,j(t)}(i,j)∈Ω be the
unique solution of (1.1) with the initial data

Uni,j(s) = ϕni,j(s), (i, j) ∈ Ω, s ∈ [−n− τ,−n]. (3.6)

By Proposition 2.4, we have

ui,j(t) ≤ Uni,j(t) ≤ K for all (i, j) ∈ Ω, t ≥ −n.
Applying the comparison lemma 3.1, we obtain the following result which pro-

vides the appropriate upper estimate of Un(t).

Lemma 3.2. Assume (A1)–(A3). The function Un(t) = {Uni,j(t)}(i,j)∈Ω satisfies

Uni,j(t) ≤ U i,j(t) := min
{
K,Π(i, j, t)

}
for any (i, j) ∈ Ω and t ≥ −n, where

Π(i, j, t) =
m∑
l=1

Φcl
(i, j + clt+ θl

)
+

n∑
k=1

Φc′k(i,−j + c′kt+ θ′k
)

+ χΓi(t+ θ).

Proof. It is clear that Uni,j(s) = ϕni,j(s) ≤ Π(i, j, s) for (i, j) ∈ Ω, s ∈ [−n − τ,−n],
and the assertion of this lemma follows directly from Lemma 3.1. �

Following the priori estimate of Proposition 2.4 and upper estimates of Lemma
3.2, we can obtain the following existence result. In the next theorems, we say that
a sequence of functions Ψp(t) = {Ψi,j;p(t)}(i,j)∈Ω converges to a function Ψp0(t) =
{Ψi,j;p0(t)}(i,j)∈Ω in the sense of topology T if, for any compact set S ⊂ Ω×R, the
functions Ψi,j;p(t) and Ψ′i,j;p(t) converge uniformly in S to Ψi,j;p0(t) and Ψ′i,j;p0(t)
respectively as p tends to p0.

Theorem 3.3. Assume (A1), (A2) hold. For any m,n ∈ N ∪ {0}, θ1, . . . , θm,
θ′1, . . . , θ

′
n, θ ∈ R, c1, . . . , cm, c′1, . . . , c

′
n ≥ cmin and χ ∈ {0, 1} with m+ n+ χ ≥ 2,

there exists an entire solution Up(t) =
{
Ui,j;p(t)

}
(i,j)∈Ω

of (1.1) such that

ui,j(t) ≤ Ui,j;p(t) ≤ K for all (i, j, t) ∈ Ω× R, (3.7)

where p := pm,n,χ =
(
c1, θ1, . . . , cm, θm, c

′
1, θ
′
1, . . . , c

′
n, θ
′
n, χθ

)
. Furthermore, the

following properties hold.
(i) 0 < Ui,j;p(t) < K and d

dtUi,j;p(t) > 0 for any (i, j, t) ∈ Ω× R.
(ii) If (A3) holds, then Ui,j;p(x, t) ≤ U i,j(t) for any (i, j, t) ∈ Ω× R.
(iii) For any γ ∈ R, Ui,j;pm,n,1(t) converges to Ui,j;pm,n,0(t) as θ → −∞ in T ,

and uniformly on (i, j, t) ∈ Tγ = [1, N ]Z × Z× (−∞, γ].

Proof. By Proposition 2.4, we have

ui,j(t) ≤ Uni,j(t) ≤ Un+1
i,j (t) ≤ K for all (i, j) ∈ Ω and t ≥ −n. (3.8)

Thus, from the priori estimate of Proposition 2.4, there exists a function Up(t) ={
Ui,j;p(t)

}
(i,j)∈Ω

such that limn→+∞ Uni,j(t) = Ui,j;p(t). It is clear that Up(t) is an
entire solution of (1.1). Also, (3.7) follows from (3.8). Moreover, by Lemma 3.2,
the assertion of part (ii) holds. The proof of assertion of part (i) is similar to that
of [13, Theorem 3.9] and is omitted. We only prove the assertion of part (iii).
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(iii) For χ = 0, we denote

ϕn(s) = {ϕni,j(s)}(i,j)∈Ω by ϕnpm,n,0
(s) = {ϕni,j;pm,n,0

(s)}(i,j)∈Ω,

Un(t) = {Uni,j(t)}n∈Z by Unpm,n,0
(t) = {Uni,j;pm,n,0

(t)}(i,j)∈Ω.

Similarly, for χ = 1, we denote ϕn(s) by ϕnpm,n,1
(s) and Un(t) by Unpm,n,1

(t). Let

Wn(t) = {Wn
i,j(t)}n∈Z := Unpm,n,1

(t)− Unpm,n,0
(t), (i, j) ∈ Ω, t ≥ −n− τ.

Then 0 ≤Wn
i,j(t) ≤ K for all (i, j, t) ∈ Ω× [−n,+∞). Moreover, by the assumption

b′(u) ≤ b′(0) for u ∈ [0,K], we have

dWn
i,j(t)
dt

≤ Dm∆Wn
i,j(t)− dmWn

i,j(t)

+ µb′(0)
N∑
i1=1

+∞∑
j1=−∞

G(i, i1, j, j1, α)Wn
i1,j1(t− τ), (i, j) ∈ Ω, t > −n,

Wn
0,j(t) = Wn

1,j(t), Wn
N,j(t) = Wn

N+1,j(t), j ∈ Z, t ≥ −n.
Let us define the function

Ŵ (t) =
{
Ŵi,j(t)

}
(i,j)∈Ω

=
{
eλ
∗(t+θ)v∗i

}
(i,j)∈Ω

.

By Proposition 2.2, we have

Wn
i,j(s) = ϕni,j;pm,n,1

(s)− ϕni,j;pm,n,0
(s) ≤ Γi(s+ θ) ≤ eλ

∗(s+θ)v∗i = Ŵi,j(s)

for (i, j) ∈ Ω, s ∈ [−n − τ,−n]. Moreover, it is easy to verify that Ŵ (t) satisfies
the linear system

dŴi,j(t)
dt

= Dm∆Ŵi,j(t)− dmŴi,j(t)

+ µb′(0)
N∑
i1=1

+∞∑
j1=−∞

G(i, i1, j, j1, α)Ŵi1,j1(t− τ), (i, j) ∈ Ω, t > −n,

Ŵ0,j(t) = Ŵ1,j(t), ŴN,j(t) = ŴN+1,j(t), j ∈ Z, t ≥ −n.
It then follows from Proposition 2.4 that

0 ≤Wn
i,j(t) ≤ eλ

∗(t+θ)v∗i for all (i, j, t) ∈ Ω× [−n,+∞).

Since limn→+∞ Uni,j;pm,n,k
(t) = Ui,j;pm,n,k

(t), k = 0, 1, we obtain

0 ≤ Ui,j;pm,n,1(t)− Ui,j;pm,n,0(t) ≤ eλ
∗(t+θ)v∗i ≤ eλ

∗(t+θ) max
i∈[1,N ]Z

v∗i

for all (i, j, t) ∈ Ω × R, which implies that Upm,n,1(t) converges to Upm,n,0(t) as
θ → −∞ uniformly on (i, j, t) ∈ Tγ for any γ ∈ R.

For any sequence θ` with θ` → −∞ as `→ +∞, the functions Up`
m,n,1

(t) (where
p`m,n,1 := (c1, θ1, . . . , cm, θm, c

′
1, θ
′
1, . . . , c

′
n, θ
′
n, θ

`)) converge to a solution of (1.1)
(up to extraction of some subsequence) in the sense of topology T , which turns out
to be Upm,n,0(t). The limit does not depend on the sequence θ`, whence all of the
functions Upm,n,1(t) converge to Upm,n,0(t) in the sense of topology T as θ → −∞.
The proof is complete. �

In the following theorem, we show the relationship between the entire solution
Up(t) and the traveling wave fronts which they originate.
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Theorem 3.4. Let (A1), (A2) hold and Up(t) be the entire solution of (1.1) stated
in Theorem 3.3. Then for any c ≥ cmin, the following properties hold:

(i) (a) if (A3) holds and there exists l0 ∈ {1, . . . ,m} such that cl0 = c and
cl > c for any l 6= l0, then Ui,j−ct;p(t) → Φcl0

(
i, j + θl0

)
as t → −∞

with j − ct ∈ Z;
(b) if (A3) holds and there exists k0 ∈ {1, . . . , n} such that c′k0 = c and

c′k > c for any k 6= k0, then Ui,j+ct;p(t)→ Φc′k0

(
i, j + θ′k0

)
as t→ −∞

with j + ct ∈ Z;
(c) if (A3) holds and cl > c for all l ∈ {1, . . . ,m}, then Ui,j−ct;p(t) → 0

as t→ −∞ with j − ct ∈ Z; and if c′k > c for all k ∈ {1, . . . , n}, then
Ui,j+ct;p(t)→ 0 as t→ −∞ with j + ct ∈ Z;

(d) if there exists l0 ∈ {1, . . . ,m} such that cl0 < c, then Ui,j−ct;p(t)→ K
as t → −∞ with j − ct ∈ Z; and if there exists k0 ∈ {1, . . . , n} such
that c′k0 < c, then Ui,j+ct;p(t)→ K as t→ −∞ with j + ct ∈ Z.

(ii) if there exists l0 ∈ {1, . . . ,m} such that cl0 > c, then Ui,j−ct;p(t) → K as
t → +∞ with j − ct ∈ Z; and if there exists k0 ∈ {1, . . . , n} such that
c′k0 > c, then Ui,j+ct;p(t)→ K as t→ +∞ with j + ct ∈ Z.

All the above convergence hold in T .

Proof. (i) We only prove the statements (a) and (d), since the others can be proved
similarly. From (3.7) and assertion (ii) of Theorem 3.3, we have

0 ≤ Ui,j−cl0 t;p
(t)− Φcl0

(
i, j + θl0

)
≤

∑
1≤l≤m,l 6=l0

Φcl

(
i, j + (cl − cl0)t+ θl

)
+

n∑
k=1

Φck
(i,−j + (c′k + cl0)t+ θ′k

)
+ χΓi(t+ θ),

for all (i, j, t) ∈ Ω × R with j − cl0t ∈ Z. By our assumption, we conclude that
Ui,j−cl0 t;p

(t)→ Φcl0

(
i, j+ θl0

)
locally in j as t→ −∞ with j− cl0t ∈ Z. Moreover,

by Proposition 2.4, the convergence also takes place in T .
Now, we prove the statement (d). Suppose that there exists l0 ∈ {1, . . . ,m} such

that cl0 < c. Using (3.7), we obtain

Φcl0

(
i, j + (cl0 − c)t+ θl0

)
≤ Ui,j−ct;p(t) ≤ K. (3.9)

Noting that Φc(i,+∞) = K, we conclude that Ui,j−ct;p(t) → K as t → −∞ with
j− ct ∈ Z. By Proposition 2.4, the convergence also takes place in T . Similarly, we
can show that if there exists k0 ∈ {1, . . . , n} such that c′k0 < c, then Ui,j+ct;p(t)→ K
as t→ −∞ with j + ct ∈ Z.

(ii) Suppose that there exists l0 ∈ {1, . . . ,m} such that cl0 > c. By (3.9), it is
easy to see that Ui,j−ct;p(t) → K as t → +∞ with j − ct ∈ Z. Similarly, we can
prove the second conclusion of this statement. This completes the proof. �

Remark 3.5. Roughly speaking, the statement (a) of part (i) of Theorem 3.4 mean
that only some fronts, those with small speeds, can be “viewed” as t → −∞, the
other ones being “hidden”. However, it seems impossible to view any fronts as
t→ +∞.
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