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PRICING ASIAN OPTIONS IN FINANCIAL MARKETS USING
MELLIN TRANSFORMS

INDRANIL SENGUPTA

Abstract. We derived an expression for the floating strike put arithmetic
asian options in financial market when the asset is driven by the generalized

Barndorff-Nielsen and Shephard model with stochastic volatility. A solution

procedure for the resulting partial differential equation is provided using the
technique of Mellin transforms.

1. Introduction

Asian options are fully path-dependent exotic options that have payoffs which
depend on the history of the random walk of the asset price via some sort of
average. These options were first successfully priced in 1987 by David Spaughton
and Mark Standish of Bankers Trust. Their payoff is typically based on arithmetic
or geometric average of underlying asset prices at monitoring dates before maturity.
Pricing Asian options of arithmetic type is difficult even for the simplest asset price
model, as the arithmetic average of a set of lognormal random variables is not
lognormally distributed. For simple asset price model when the price is driven by
a Brownian motion, different methods are implemented to obtain pricing formula
for arithmetic Asian options (see [6, 11, 15]). For Asian options payoff depends on
the average value of the underlying asset and hence volatility in the average value
tends to be smoother and lower than that of the plain vanilla options. The average
is less exposed to sudden crashes or rallies in stock price and over time is harder
to manipulate than a single stock price. Thus the Asian options are less expensive
than comparable plain vanilla options.

For arithmetic Asian options the prices are usually approximated numerically.
In [11] the computation of the price of an Asian option is obtained in two different
ways. Firstly, exploiting a scaling property the problem is reduced to the problem of
solving a parabolic partial differential equation (PDE) in two variables. Secondly, a
reasonable lower bound is provided which is an approximation of the true price. In
[7] using simple probabilistic methods the moments of all orders of an Asian option
is obtained. Formulas obtained in that paper has an interesting resemblance with
the Black-Scholes formula, even though the comparison cannot be carried too far.
In [15] it is shown that for arithmetic Asian options, the governing PDE can not
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martingale; Mellin transform.
c©2014 Texas State University - San Marcos.

Submitted July 22, 2013. Published November 3, 2014.
1



2 I. SENGUPTA EJDE-2014/234

be transformed into a heat equation with constant coefficients, therefore does not
have a closed-form solution of Black-Scholes type, i.e., in terms of cumulative normal
distribution function. An analytical solution in obtained in a series form. Numerical
results show that the series converges very fast and gives a good approximate value.
For pricing Asian options Monte Carlo methods are applied in [8], and advanced
pricing methods based on a recursive integration procedure are used in [2, 16]. An
efficient partial differential equation (PDE) technique for Asian option is used in
[14] where it is observed that the Asian option is a special case of the option on
a traded account. The price of the Asian option is characterized by a simple one-
dimensional PDE which could be applied to both continuous and discrete average
Asian option.

In modern asset price models, stochastic volatility plays a crucial role in order to
explain a number of stylized facts of returns. Stochastic volatility significantly in-
creases the complexity of the problem. However, models with stochastic volatility
are not well studied or understood for Asian options. In this paper we incor-
porate stochastic volatility for the option pricing of Asian options. We consider
a generalized Barndorff-Nielsen and Shephard (BN-S) asset modeling which ad-
mits Ornstein-Uhlenbeck type stochastic volatility modeling. The objective of the
present paper is to use such generalized BN-S model for the option pricing for arith-
metic Asian options. Then we derive a partial differential equation that represents
the arbitrage-free price of floating strike put arithmetic Asian option.

In Section 2 we present the set up of the generalized BN-S model. Main result
is presented in Section 3. A very brief conclusion is provided in the last section.

2. Generalized BN-S Model

The pricing of arithmetic Asian options has been the subject of extensive research
in last couple of decades. In this paper, we consider a frictionless financial market
where a riskless asset with constant return rate r and a stock are traded up to a
fixed horizon date T . Barndorff-Nielsen and Shephard (see [1]) assumed that the
price process of the stock S = (St)t≥0 is defined on some filtered probability space
(Ω,F , (Ft)0≤t≤T , P ) and is given by:

St = S0 exp(Xt), (2.1)

dXt = (µ+ bVt) dt+
√
Vt dWt + ρ dZλt, (2.2)

dVt = −λVt dt+ dZλt, V0 > 0, (2.3)

where Vt is the square of the volatility at time t, the parameters µ, b, ρ, λ ∈ R with
λ > 0 and ρ ≤ 0. W = (Wt) is Brownian motion and the process Z = (Zλt)
is a subordinator. Barndorff-Nielsen and Shephard refer to Z as the background
driving Lévy process (BDLP). Also W and Z are assumed to be independent and
(Ft) is assumed to be the usual augmentation of the filtration generated by the
pair (W,Z). This model is known in literature as Barndorff-Nielsen and Shephard
model (BN-S model).

A major disadvantage of the classical BN-S model is the inclusion of single BDLP
for both the log-return and volatility. In this classical model they become com-
pletely dependent. Such dependence significantly reduces the flexibility to appro-
priately model the volatility. Moreover, such absolute correlation is not supported
by empirical observations of the implied volatility. One possible alternative is to
drive the log-return and volatility by correlated (not absolutely correlated) Lévy
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processes. We show in this paper that this generalized model has the liberty to
fit the option price and volatility in a correlated but different way, which is not
possible for the case of classical BN-S model.

In this section we present a generalized version of the Barndorff-Nielsen and
Shephard model. Let Zλt and Z∗λt be two independent Lévy subordinators with
same (finite) variance. Then

dZ̃λt = ρ′ dZλt +
√

1− ρ′2 dZ∗λt, (2.4)

is also a Lévy subordinator provided 0 < ρ′ ≤ 1. Thus Z and Z̃ are positively cor-
related (with correlation coefficient ρ′) Lévy subordinators. Here the independence
of the Lévy processes Z are Z∗ understood in the sense of [3, Proposition 5.3].

Suppose the dynamics of St is given by (2.1), (2.2) where Vt is given by

dVt = −λVt dt+ dZ̃λt, V0 > 0, (2.5)

where Z̃ = (Z̃λt) is a subordinator independent of W but has a positive correlation
with Z as described above. For this paper we assume that the dynamics of S = (St)
is given by (2.1), (2.2) and (2.5) and these will be referred to as generalized BN-
S model. For simplicity of notation denote the probability space of S = (St) by
(Ω,F , (Ft)0≤t≤T , P ), where (Ft) is assumed to be the usual augmentation of the
filtration generated by the pair (W,Z, Z̃). When the parameter ρ < 0 a leverage
effect is incorporated in the model given by (2.2) and (2.5), due to the positive
correlation between Z and Z̃. Empirically observed fact suggests that for most eq-
uities a fall in price is associated with an increase in volatility. The proposed model
is in agreement with this fact. However this model suggests a richer structure for
volatility than classical BN-S model due to the presence of Z∗ which is independent
of Z. This will give some additional flexibility in calibration of volatility structure.

In this work we assume that Z and Z∗ have no deterministic drift (so Z̃ has no
Brownian component).

If the Lévy measures of Z and Z∗ are ν and ν∗ respectively, then by assumption
and [3] (Theorem 4.1), the characteristic triplet of Z̃ is given by (Ã, γ̃, ν̃), where
Ã = 0, ν̃(B) = ν

(
B
ρ′

)
+ ν∗

(
B√

1−ρ′2
)
, for B ∈ B(R) and

γ̃ = ρ′γ +
√

1− ρ′2γ∗ −
∫

R
y(1|y|≤1(y)− 1S1(y))ν̃(dy)

= ρ′γ +
√

1− ρ′2γ∗,
(2.6)

where S1 is given by

S1 = {ρ′x1 +
√

1− ρ′2x2 : x2
1 + x2

2 ≤ 1, x1, x2 ∈ R}.

Therefore in general Z̃ has a drift component. However, if both Z and Z∗ are
processes of finite variation and γ =

∫
|x|≤1

xν(dx) and γ∗ =
∫
|x|≤1

xν∗(dx), then
γ̃ =

∫
|x|≤1

xν̃(dx) and hence the deterministing drift (in the sense of Corollary 3.1

in [3]) for Z, Z∗ and Z̃ are zero.
For the rest of this article we assume S0 = 1. The risk-neutral dynamics of

St = eXt , where Xt is governed by (2.2) and (2.5), is given by dSt = St−(r dt +√
Vt dWt + dMt), where M = (Mt)t≥0 is the martingale Lévy process given by
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Mt =
∑

0<s≤t
(
eρ∆Zλs − 1

)
− λκ(ρ)t. Thus

dSt = St−

(
r dt+

√
Vt dWt +

∫
R
(eρx − 1)J̃Z(dt, dx)

)
, (2.7)

where J̃Z is the compensated random measure describing jumps of Z (or X) and
the compensator is νZ(dt, dx) = νZ(dx)dt = λw(x)dxdt, where w(x) is the Lévy
density for Z. Similarly, if JZ̃ is the random measure describing jumps of Z̃ then

dVt = −λVt dt+
∫

R
λyJZ̃(dt, dy). (2.8)

We will later use a compensator νZ̃(dt, dy) = νZ̃(dy)dt = λw̃(y)dydt related to the
jumps in Vt, with w̃(y) being the Lévy density for Z̃.

It is shown in [13] that with proper choice of parameters for the Lévy processes Z
and Z̃, different error estimates for market data calibration and accuracy of implied
volatility fitting can be improved significantly. With proper choice of parameters the
generalized BN-S model can produce better calibration than other known models
(even with more calibration parameters) such as CGMY-CIR, CGMY-Gamma-OU,
CGMY-IG-OU, Meixner-IG-OU, NIG-IG-OU or GH-IG-OU.

3. Option pricing equation

In this section we present the main theorems related to the pricing of arithmetic
Asian options. Let At =

∫ t
0
Su du. Then A is an increasing continuous process and

thus has no Brownian component.
There are four different types of arithmetic Asian options according to the payoff

function. For fixed strike (E) call and put Asian options payoffs are given by
( 1
T AT − E)+ and (E − 1

T AT )+ respectively. For floating strike call and put Asian
options the payoffs are given by (ST − 1

T AT )+ and ( 1
T AT − ST )+ respectively. In

this section we develop a technique for pricing floating strike put Asian options.
Option pricing for other Asian options can be done with very similar procedures.

Assumption 3.1. We assume the Lévy measure ν satisfies∫
y>1

e2yν(dy) <∞.

Also, assume when Vt = 0, there exist ζ ∈ (0, 2) such that

lim inf
ε→0

ε−ζ
∫ ε

0

x2ν(dx) > 0.

Assumption 3.2. At the final time T , there exist a constant that β > 0 that de-
pends on the market, so that 1

T AT −ST ≤ β in the market. Let P (T, ST , VT , AT ) =
0, if 1

T AT − ST > β.

We note that Assumption 3.1 implies that Xt in has a smooth C2 density with
derivatives vanishing at infinity (see [12, Proposition 28.3]). Based on these two
assumptions we state the following option pricing equation. The solution of this
equation gives the price of Asian floating put options.

Theorem 3.3. Consider the generalized BN-S model given by (2.1), (2.2) and
(2.5). Then for 0 ≤ t < T , the price of Asian floating put option P (t, St, At, Vt) is
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given by

∂P

∂t
+

1
2
V S2 ∂

2P

∂S2
+ S

∂P

∂A
+ rS

∂P

∂S
− λV ∂P

∂V
− rP

+
∫

R

(
P (t, Sex, V, A)− P (t, S, V,A)− S(eρx − 1)

∂P

∂S

)
νZ(dx)

+
∫

R
(P (t, S, V + y,A)− P (t, S, V,A)) νZ̃(dy) = 0,

(3.1)

with final condition

P (T, ST , AT , VT ) =
(AT
T
− ST

)+
. (3.2)

Proof. Suppose P̂ (t, St, Vt, At) = er(T−t)P (t, St, Vt, At). Then under the equivalent
martingale measure

P̂t = E[(
AT
T
− ST )+|Ft].

Clearly this is a martingale. Denote the continuous part of the stochastic processes
S, V and A by Sc, V c and Ac respectively. Applying the Itô formula to P̂t and
observing the quadratic variations

d[Sc, Sc] = S2V dt

and
d[V c, V c] = d[Ac, Ac] = d[V c, Ac] = d[Sc, Ac] = d[V c, Ac] = 0,

we obtain
dP̂t = a(t) dt+ dRt,

where

a(t) = er(T−t)[
∂P

∂t
+

1
2
V S2 ∂

2P

∂S2
+ S

∂P

∂A
+ rS

∂P

∂S
− λV ∂P

∂V
− rP

+
∫

R

(
P (t, Sex, V, A)− P (t, S, V,A)− S(eρx − 1)

∂P

∂S

)
νZ(dx)

+
∫

R
(P (t, S, V + y,A)− P (t, S, V,A)) νZ̃(dy)],

and

dRt = er(T−t)[S
√
V dWt +

∫
R

(P (t, Sex, V, A)− P (t, S, V,A)) J̃Z(dt, dx)

+
∫

R
(P (t, S, V + y,A)− P (t, S, V,A)) J̃Z̃(dy)].

With Assumption 3.1 and procedures in [4] it can shown that Rt is a martingale.
Therefore P̂t−Rt is a (square integrable) martingale. But P̂t−Rt =

∫ t
0
a(u) du is a

continuous process with finite variation. Hence a(t) = 0 almost surely with respect
to the equivalent martingale measure. This gives the required result. �

We now find a solution of (3.1) with final condition (3.2). We show that the
application of Mellin transform and a proper form of solution reduce the complexity
of this problem. For the rest of the paper we assume for simplicity ρ′ = 1. In other
words, we consider the classical BN-S model for which Z = Z̃.
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If f is an integrable complex valued function defined over the positive real num-
bers, then its Mellin transform (if exists) is defined by

M(f)(η) =
∫ ∞

0

f(s)ηs−1 ds, η ∈ C.

IfM(f)(η) exists for a < Re(η) < b, then the latter is called the fundamental strip.
We use the following three properties of Mellin transform for the proof of the next
theorem. For proofs of these properties see [5].

(1) (Scaling property) M(f(as)) = a−ηF (η), where a > 0.
(2) M(sf ′(s)) = −ηF (η).
(3) M(s2f ′′(s)) = η(η + 1)F (η).

In the next theorem, we provide an integral representation of the floating strike
put Asian option price P in Theorem 3.3. In [9] the authors derive an expression
for pricing perpetual options using Mellin transform. In [10] integral equation
representations for the price of European and American basket put options have
been derived using Mellin transform techniques. We denote the indicator function
of a set B by χB .

The Mellin transform defined in the following theorem exists for η ∈ C such that
Re(η) < 0 and Re(η) 6= −1. The region −1 < Re(η) < 0 may be taken as the
fundamental strip.

Theorem 3.4. There exists a solution of (3.1) with final condition (3.2) of the
form

P (t, St, Vt, At) = g(t, Vt,
1
T
At − St).

For fixed m > T , on the hyper-plane St = At
m+t , g(t, Vt, 1

T At − St) = g (t, Vt, κtSt),
where κt = (m+t

T − 1) is given by

g(t, Vt, κtSt) =
1

2πi

∫ c∗+i∞

c∗−i∞
(κtSt)−η exp [q(t, η)Vt]H(t, η) dη, (3.3)

where
q(t, η) =

1
2λ
η(η + 1)[1− e−λ(T−t)], (3.4)

and H(t, η) is given by

H(t, η) =
βη+1

η + 1
exp

(∫ T

t

L(t, η) dt
)
, (3.5)

where
L(t, η) = −(r − 1

T
)η − r +

∫
R

(
χx∈(−∞,ln(m+t

T ))αt
−η − 1

+ (eρx − 1)η
)
νZ(dx) +

∫
R

(eq(t,η)y − 1)νZ(dy),
(3.6)

with

αt =
( m+t

T − ex
m+t
T − 1

)
,

and β is obtained from market by Assumption 3.2.
Once g(t, Vt, κtSt) is known for the hyper-plane St = At

m+t , the solution is ex-
tended to other points in the S > 0, A > 0 region by g(t, Vt, 1

T At − St). On the
other hand, if At

T ≤ St, P (t, St, Vt, At) = 0.
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The quantity c∗ in the right hand side of (3.3) appears due to the inverse Mellin
transform. It is any real value so that the integrand in (3.3) is analytic in a neigh-
borhood of c∗ and the integrand tends to zero uniformly along c∗ ± i∞.

Proof. We fix a calibration parameter m > T . At time t = 0, consider the following
straight line in the stock-price (S) and average price (A) hyper-space:

A = mS. (3.7)

Since for a fixed S, A = A0 + St, therefore the nature of (3.7) at time t will be
given by

At = (m+ t)St. (3.8)

Notice that since m > T therefore for any t, (3.8) always remain in the side for
which A

T − S > 0.
We look for a solution of (3.1) the form P (t, St, Vt, At) = g(t, Vt, 1

T At − St).
This solution will be referred to as traveling wave solution with respect to S and A
variable. Then (3.1) gives

∂g

∂t
+

1
2
V S2 ∂

2g

∂S2
+ (r − 1

T
)S
∂g

∂S
− λV ∂g

∂V
− rg

+
∫

R

(
g(t, V,

1
T
A− Sex)− g(t, V,

1
T
A− S)− S(eρx − 1)

∂g

∂S

)
νZ(dx)

+
∫

R

(
g(t, V + y,

1
T
A− S)− g(t, V,

1
T
A− S)

)
νZ(dy) = 0.

(3.9)

Since the solution (for a given t and V ) is of nature of a traveling wave in S and
A plane, it is sufficient to determine g for some line in S and A plane which is not
parallel to St − At

T = 0, for 0 ≤ t ≤ T . Once g(t, Vt, 1
T At − St) is known on that

line the solution is extended to the S > 0 and A > 0 region.
For this end, let us consider that at time t, S and A are related by (3.8). In this

case, suppose g(t, Vt, 1
T At − St) = g(t, Vt, κtSt), where κt = (m+t

T − 1).
Denote the Mellin transform of g (t, Vt, St) with respect to St by g̃(t, Vt, η). We

have the following relations from the property of Mellin transformation (with re-
spect to S):

M
(
S
∂g(t, Vt, κtSt)

∂S

)
= −ηκ−ηt g̃(t, Vt, η),

M
(
S2 ∂

2g(t, Vt, κtSt)
∂S2

)
= η(η + 1)κ−ηt g̃(t, Vt, η).

(3.10)

Observe that g(t, V, 1
T A − Se

x) = 0 when 1
T A − Se

x ≤ 0. On the hyper-plane
S = 1

m+tA, 1
T A − Se

x = (m+t
T − ex)S. Thus on this hyper-plane the first term

of the first integral term in (3.9) is zero when x > ln(m+t
T ). Thus, for this case,

taking Mellin transform with respect to S for (3.9) and using (3.10) we obtain (after
dividing by κ−ηt and writing g̃ for g̃(t, Vt, η))

∂g̃

∂t
+

1
2
V η(η + 1)g̃ − (r − 1

T
)ηg̃ − λV ∂g̃

∂V
− rg̃

+ g̃

∫
R

(
χx∈(−∞,ln(m+t

T ))

( m+t
T − ex

κt

)−η
− 1 + (eρx − 1)η

)
νZ(dx)

+
∫

R
(g̃(t, V + y, η)− g̃(t, V, η))νZ(dy) = 0.
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Letting g̃(t, Vt, η) = exp[q(t, η)Vt]H(t, η), where q(t, η) is given by (3.4) and H is a
function of t and η, we obtain

∂H(t, η)
∂t

+ L(t, η)H(t, η) = 0, (3.11)

where L(t, η) is given by (3.6). With the use of Assumption 3.2 and the observation
that q(T, η) = 0, the final condition will be transformed to

g̃(T, VT , η) = H(T, η) =
βη+1

η + 1
.

Note that this is in agreement with the fact that the final condition is independent
of VT (however, the option price is dependent on the volatility).

Thus (3.5) follows from (3.11). Hence (3.3) is obtained by inverse Mellin trans-
form of g̃(t, Vt, η). �

Conclusion. Generalized Barndorff-Nielsen and Shephard model with stochastic
volatility is becoming increasingly popular model in literature and in this paper,
we have derived the pricing expression for the floating strike put arithmetic Asian
options in financial market driven by such model. It is worth noting that such
model can be easily generalized to floating strike put Asian options. Thus the main
theorem presented in this paper gives a concrete algorithmic method for solving
these pricing problems. We will demonstrate the evidence of good numerical accu-
racy and stability of this proposed solution technique in a longer research article
which will be a sequel of this paper.
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