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VALUE DISTRIBUTION OF THE q-DIFFERENCE PRODUCT OF
ENTIRE FUNCTIONS

NA XU, TING-BIN CAO, CHUN-PING ZHONG

Abstract. For a complex value q 6= 0, 1, and a transcendental entire function

f(z) with order 0 < σ(f) <∞, we study the value distribution of q-difference

product f(z)f(qz) and fn(z)(f(qz)− f(z)). Properties of entire solution of a
certain q-difference linear equation are also considered.

1. Introduction and main results

A meromorphic function f(z) means meromorphic in the complex plane C. If no
poles occur, then f(z) reduces to an entire function. For every real number x ≥ 0,
we define log+ x := max{0, log x}. Assume that n(r, f) counts the number of the
poles of f in |z| ≤ r, each pole according to its multiplicity, and that n(r, f) counts
the number of the distinct poles of f in |z| ≤ r, ignoring the multiplicity. The
characteristic function of f is defined by

T (r, f) := m(r, f) +N(r, f),

where

N(r, f) :=
∫ r

0

n(t, f)− n(0, f)
t

dt+ n(0, f) log r,

m(r, f) :=
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ.

The notation N(r, f) is similarly defined with n(r, f) instead of n(r, f). For more
notations and definitions of the Nevanlinna’s value distribution theory of meromor-
phic functions, refer to [9, 13].

A meromorphic function α(z) is called a small function with respect to f(z), if
T (r, α) = S(r, f), where S(r, f) denotes any quantity satisfying S(r, f) = o(T (r, f))
as r −→ ∞ outside a possible exceptional set E of logarithmic density 0. The
order and the exponent of convergence of zeros of meromorphic function f(z) is
respectively defined as

σ(f) = lim sup
r→∞

log T (r, f)
log r

,
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λ(f) = lim sup
r→∞

logN(r, 1
f )

log r
.

The reduced deficiency of a with respect to f(z) is defined by

Θ(a, f) = 1− lim sup
r→∞

N(r, 1
f−a )

T (r, f)
.

The difference operators for a meromorphic function f are defined as

4cf(z) = f(z + c)− f(z) (c 6= 0),

∇qf(z) = f(qz)− f(z) (q 6= 0, 1).

A Borel exceptional value of f(z) is any value a satisfying λ(f − a) < σ(f).
Recently, the difference variant of the Nevanlinna theory has been established

independently in [2, 6, 7, 8]. Using these theories, value distributions of difference
polynomials have been studied by many papers. For example, Laine and Yang
[10] proved if f(z) is a transcendental entire function of finite order, c is a nonzero
complex constant and n ≥ 2, then fn(z)f(z+c) takes every nonzero value infinitely
often. Liu and Yang [11] proved the following theorem.

Theorem 1.1 ([11, Theorem 1.4]). Let f(z) be a transcendental entire function of
finite order, and c be a nonzero complex constant, 4cf(z) = f(z + c) − f(z) 6≡ 0.
Then for n ≥ 2, fn(z)4cf(z)− p(z) has infinitely many zeros, where p(z) 6≡ 0 is a
polynomial in z.

The following theorems discussed the case n ≥ 2. For the case n = 1, Chen [3],
Chen-Huang-Zheng [5] considered value distributions of f(z)f(z + c), f(z)∆cf(z).

Theorem 1.2 ([5, Corollary 1.3]). Let f(z) be a transcendental entire function of
finite order, and c be a nonzero complex constant. If f(z) has the Borel exceptional
value 0, then H(z) = f(z)f(z+ c) takes every nonzero value a ∈ C infinitely often.

Theorem 1.3 ([3, Theorem 2]). Let f(z) be a finite order transcendental entire
function with a finite Borel exceptional value d, and let c ∈ C \ {0} be a constant
satisfying f(z+c) 6≡ f(z). Set H(z) = f(z)∆cf(z) where 4cf(z) = f(z+c)−f(z).
Then the following statements hold:

(1) H(z) takes every nonzero value a ∈ C infinitely often and satisfies λ(H −
a) = σ(f).

(2) If d 6= 0, then H(z) has no any finite Borel exceptional value.
(3) If d = 0, then 0 is also the Borel exceptional value of H(z). So that H(z)

has no nonzero finite Borel exceptional value.

Theorem 1.4 ([3, Theorem 3]). Let f(z) be a transcendental entire function of
finite order and let c ∈ C \ {0} be a constant satisfying f(z + c) 6≡ f(z). Set
H(z) = f(z)∆cf(z) where 4cf(z) = f(z + c) − f(z). If f(z) has infinitely many
multi-order zeros, then H(z) takes every value a ∈ C infinitely often.

Chen [3] also considered zeros of difference product Hn(z) = fn(z)∆cf(z) and
gave some conditions guarantee Hn(z) has finitely many zeros or infinitely many
zeros.

Theorem 1.5 ([3, Theorem 1]). Let f(z) be a transcendental entire function of
finite order and c ∈ C \ {0} be a constant satisfying f(z + c) 6≡ f(z). Set Hn(z) =
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fn(z)4cf(z) where 4cf(z) = f(z + c) − f(z), n ≥ 2 is an integer. Then the
following statements hold:

(1) If f(z) satisfies σ(f) 6= 1, or has infinitely many zeros, then Hn(z) has
infinitely many zeros.

(2) If f(z) has only finitely many zeros and σ(f) = 1, then Hn(z) has only
finitely many zeros.

The Nevanlinna theory for the q-difference operator plays an important part
in considering value distributions of q-difference polynomials. Since q-difference
logarithmic derivative lemma is only use for meromorphic functions of zero order,
most papers only consider meromorphic functions of zero order. For example,
Zhang and Korhonen [15] proved that for a transcendental entire function f(z) of
zero order and a nonzero complex constant q and n ≥ 2, fn(z)f(qz) assumes every
nonzero value a ∈ C infinitely often. Recently, Liu-Liu-Cao [12] extended this to
consider zero distributions of q-difference products fn(z)(fm(z)− a)f(qz + c) and
fn(z)(fm(z)− a)[f(qz + c)− f(z)] for meromorphic function f with order zero.

It is natural to ask how about value distribution of q-difference products for func-
tions with positive order? The main purpose of this paper is to consider a transcen-
dental entire function f with positive and finite order, and obtain some results on
the value distributions of q-difference products f(z)f(qz) and fn(z)(f(qz)− f(z)).
However, in this case, we have to add the condition that f has finitely many zeros,
or something like that. The first main theorem is as follows.

Theorem 1.6. Let f(z) be a transcendental entire function of finite and positive
order σ(f), q ∈ C \ {0} be a constant satisfying qσ(f) 6= −1. Set H(z) = f(z)f(qz).
If f(z) has finitely many zeros, then H(z)− α(z) has infinitely many zeros, where
α(z) is a nonzero small entire function with respect to f(z).

If replacing by the condition that f(z) has infinitely many multi-order zeros and
considering any value a which can be zero, then we have another theorem.

Theorem 1.7. Let f(z) be a transcendental entire function of finite and positive
order σ(f), q ∈ C \ {0} be a constant. Set H(z) = f(z)f(qz). If f(z) has infinitely
many multi-order zeros, then H(z) takes every value a ∈ C infinitely often.

For the q-difference product f(z)(f(qz)− f(z)) we have the following main the-
orem.

Theorem 1.8. Let f(z) be a transcendental entire function of finite and positive
order σ(f), q ∈ C \ {0, 1} be a constant satisfying qσ(f) 6= ±1 and f(z) 6≡ f(qz), set
H(z) = f(z)∇qf(z). If f(z) has finitely many zeros, then H(z)−α(z) has infinitely
many zeros, where α(z) is a small entire function with respect to f(z).

By the definition of Borel exceptional value and the proof of Theorem 1.8, the
following result is immediately true.

Corollary 1.9. Let f(z) be a transcendental entire function of finite and positive
order σ(f), q ∈ C \ {0, 1} be a constant satisfying qσ(f) 6= ±1 and f(z) 6≡ f(qz), set
H(z) = f(z)∇qf(z). If f(z) has finitely many zeros, then H(z) has no any finite
Borel exceptional value.

If replacing by the condition that f(z) has infinitely many multi-order zeros, we
also have the following theorem.



4 N. XU, T.-B. CAO, C.-P. ZHONG EJDE-2014/233

Theorem 1.10. Let f(z) be a transcendental entire function of finite and positive
order σ(f), q ∈ C \ {0, 1} be a constant satisfying qσ(f) 6= ±1 and f(z) 6≡ f(qz),
set H(z) = f(z)∇qf(z). If f(z) has infinitely many multi-order zeros, then H(z)
takes every value a ∈ C infinitely often.

If considering zero distribution of q-difference product fn(z)∇qf(z), we have the
following result whether f has finitely many zeros or not.

Theorem 1.11. Let f(z) be a transcendental entire function of finite and positive
order σ(f), q ∈ C \ {0, 1} be a constant satisfying qσ(f) 6= 1 and f(z) 6≡ f(qz). Set
Hn(z) = fn(z)∇qf(z), n ≥ 1 is an integer. Then Hn(z) has infinitely many zeros.

Chen [4] considered complex linear difference equations and obtained that the
relation between λ(g) and σ(g) of entire solutions to nonhomogeneous linear differ-
ence equations is better than that of homogeneous equations. Next, we will consider
a special q-difference linear equation and obtain the following result.

Theorem 1.12. Let F (z) and hj(z)(j = 1, . . . , n) be entire functions with orders all
less than one, such that at least one of hj(z) 6≡ 0, and let qj(j = 1, . . . , n) ∈ C\{0, 1}
be constants satisfying ( qs

qt
)σ(f) 6= 1 for any s 6= t. Suppose that f(z) is a finite and

positive order transcendental entire solution of linear q-difference equation

hn(z)f(qnz) + . . .+ h1(z)f(q1z) = F (z). (1.1)
Then f(z) has infinitely many zeros.

There exist many solutions which satisfy the functional equation (1.1). For
example:

Example 1.13. It is known that the transcendental entire function f(z) = z +
cos z3 with order three has infinitely many zeros. Let h1(z) = z5 = −h2(z), and let
q2 = 2, q1 = −2. Obviously, ( q2q1 )σ(f) = (−1)3 6= 1. Then the function f(z) satisfies
the non-homogeneous linear q-difference equation

h2(z)f(q2z) + h1(z)f(q1z) = −4z6.

The following example shows that the condition ( qs

qt
)σ(f) 6= 1 for any s 6= t in

Theorem 1.12 is necessary.

Example 1.14. Let h1(z) = −h2(z) 6≡ 0, q2 = q1 = q 6= 0, 1. Then the function
f(z) = ez with order one satisfies the homogeneous linear q-difference equation

h2(z)f(q2z) + h1(z)f(q1z) = 0.

Here, ( q2q1 )σ(f) = 1, and but f(z) = ez has no zeros.

2. Lemmas

To prove our results, we need some lemmas. The first one is the well-known
Weierstrass factorization theorem and Hadamard factorization theorem.

Lemma 2.1 ([1]). If an entire function f has a finite exponent of convergence λ(f)
for its zero-sequence, then f has a representation in the form

f(z) = Q(z)eg(z),

satisfying λ(Q) = σ(Q) = λ(f). Further, if f is of finite order, then g in the above
form is a polynomial of degree less or equal to the order of f .
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Lemma 2.2 ([14]). Suppose that f1(z), f2(z), . . . , fn(z), (n ≥ 2) are meromorphic
functions and g1(z), g2(z), . . . , gn(z) are entire functions satisfying the following
conditions

(1)
∑n
j=1 fj(z)e

gj(z) ≡ 0;
(2) gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n;
(3) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T (r, fj) = o(T (r, egh−gk)) (r →∞, r 6∈ E).

Then fj(z) ≡ 0(j = 1, 2, . . . , n).

Lemma 2.3. Let f(z) be a transcendental entire function of finite and positive
order σ(f), q ∈ C \ {0} be a constant satisfying qσ(f) 6= −1. Set H(z) = f(z)f(qz).
If f(z) has finitely many zeros, then H(z) is a transcendental entire function and
σ(H) = σ(f).

Proof. Since f(z) is a transcendental entire function of finite order and has finitely
many zeros, by Lemma 2.1, f(z) can be written as

f(z) = g(z)eh(z),

where g(z)( 6≡ 0), h(z) are polynomials. Set

h(z) = akz
k + . . .+ a0,

where ak, . . . , a0 are constants, ak 6= 0. Since σ(f) 6= 0, it follows that σ(f) =
deg(h(z)) = k ≥ 1. So

H(z) = f(z)f(qz) = g(z)g(qz)e(ak+akq
k)zk+...+2a0 .

Since g(z)( 6≡ 0) is a polynomial, qσ(f) = qk 6= −1, it follows that H(z) is a tran-
scendental entire function and σ(H) = σ(f) = k. �

3. Proofs of main results

3.1. Proof of Theorem 1.6. Since f(z) is a transcendental entire function of
finite order and has finitely many zeros, by Lemma 2.1, f(z) can be written as

f(z) = g(z)eh(z),

where g(z)( 6≡ 0), h(z) are polynomials. Set

h(z) = akz
k + . . .+ a0,

where ak, . . . , a0 are constants, ak 6= 0. Since σ(f) 6= 0, it follows that σ(f) =
deg(h(z)) = k ≥ 1. So

H(z) = f(z)f(qz) = g(z)g(qz)p(z)e(1+q
k)akz

k

, (3.1)

where p(z) = e(1+q
k−1)ak−1z

k−1+...+2a0 , σ(p) ≤ k − 1 < k.
Suppose H(z)−α(z) has finitely many zeros, by Lemma 2.3, σ(H−α) = σ(H) =

σ(f), then H(z)− α(z) can be written as

H(z)− α(z) = s(z)etz
k

, (3.2)

where s(z) is an entire function with σ(s) < k, t 6= 0 is a constant. By (3.1) and
(3.2), we obtain

g(z)g(qz)p(z)e(1+q
k)akz

k

− s(z)etz
k

− α(z) = 0. (3.3)
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Case 1: (1+qk)ak 6= t. Since σ(p) < k, σ(s) < k, g(z) and g(qz) are polynomials,
by Lemma 2.2, we obtain

g(z)g(qz)p(z) ≡ 0, s(z) ≡ 0, α(z) ≡ 0.

Which is a contradiction.
Case 2: (1 + qk)ak = t. Then, (3.3) can be written as

g(z)g(qz)p(z)− s(z) = α(z)e−tz
k

.

Since σ(g(z)g(qz)p(z)−s(z)) < k, while σ(α(z)e−tz
k

) = k, which is a contradiction.
Therefore, H(z)− α(z) has infinitely many zeros.

3.2. Proof of Theorem 1.7. If a = 0, then H(z) has obviously infinitely many
zeros since f(z) has infinitely many zeros.

Now we consider a 6= 0. Suppose H(z) − a has finitely many zeros, by Lemma
2.1, H(z)− a can be rewritten as

H(z)− a = f(z)f(qz)− a = g(z)eh(z), (3.4)

where g(z)( 6≡ 0), h(z) are polynomials, deg(h(z)) ≥ 1. Differentiating (3.4) and
eliminating eh(z), we obtain

(f(z)f(qz))′

f(z)f(qz)
=
g′(z) + g(z)h′(z)

g(z)
− ag

′(z) + g(z)h′(z)
g(z)

1
f(z)f(qz)

. (3.5)

Since g(z)( 6≡ 0), h(z) are polynomials and deg(h(z)) ≥ 1, it follows that g′(z) +
g(z)h′(z) 6≡ 0. As f(z) has infinitely many multi-order zeros, there is a multi-order
zero z0, such that | z0 | is sufficiently large and g(z0) 6= 0, g′(z0) + g(z0)h′(z0) 6= 0.
Thus the right side of (3.5) has a multi-order pole at z0, but the left side of (3.5)
has only a simple pole at z0, which is a contradiction.

Hence H(z) takes every value a ∈ C infinitely often.

3.3. Proof of Theorem 1.8. Since f(z) is a transcendental entire function of
finite order and has finitely many zeros, by Lemma 2.1, f(z) can be written as

f(z) = g(z)eh(z),

where g(z)( 6≡ 0), h(z) are polynomials, set

h(z) = akz
k + . . .+ a0,

where ak, . . . , a0 are constants, ak 6= 0. Since σ(f) 6= 0, it follows that σ(f) =
deg(h(z)) = k ≥ 1.

H(z) = f(z)∇qf(z) = g(z)g(qz)p1(z)e(1+q
k)akz

k

− g2(z)p2(z)e2akz
k

, (3.6)

where

p1(z) = e(1+q
k−1)ak−1z

k−1+...+2a0 , σ(p1) ≤ k − 1 < k;

p2(z) = e2ak−1z
k−1+...+2a0 , σ(p2) ≤ k − 1 < k.

Since g(z)( 6≡ 0) is a polynomial, qσ(f) = qk 6= ±1, σ(p1) < k, σ(p2) < k, it follows
H(z) is a transcendental entire function and σ(H) = σ(f) = k.

Suppose H(z) − α(z) has finitely many zeros, then λ(H − α) < σ(H) = σ(f),
H(z)− α(z) can be written as

H(z)− α(z) = s(z)etz
k

, (3.7)
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where s(z) is an entire function with σ(s) < k, t 6= 0 is a constant. By (3.6) and
(3.7), we obtain

g(z)g(qz)p1(z)e(1+q
k)akz

k

− g2(z)p2(z)e2akz
k

− s(z)etz
k

− α(z) = 0. (3.8)

Since qσ(f) = qk 6= 1, it follows that (1 + qk)ak 6= 2ak.
Case 1: (1 + qk)ak 6= t, 2ak 6= t. By Lemma 2.2, we obtain

g(z)g(qz)p1(z) ≡ 0, g2(z)p2(z) ≡ 0, s(z) ≡ 0, α(z) ≡ 0.

This is a contradiction.
Case 2: (1 + qk)ak = t. Then (3.8) can be written as

(g(z)g(qz)p1(z)− s(z))e(1+q
k)akz

k

− g2(z)p2(z)e2akz
k

− α(z) = 0.

By Lemma 2.2, we obtain

g(z)g(qz)p1(z)− s(z) ≡ 0, g2(z)p2(z) ≡ 0, α(z) ≡ 0,

which is a contradiction.
Case 3: 2ak = t. Then using the same method as above, we also obtain a

contradiction.
Hence H(z)− α(z) has infinitely many zeros.

3.4. Proof of Theorem 1.10. If a = 0, then H(z) has obviously infinitely many
zeros as f(z) has infinitely many zeros and f(qz)− f(z) 6≡ 0.

Now we consider a 6= 0. Suppose H(z) − a has finitely many zeros, from the
proof of Theorem 1.8, H(z) is a transcendental entire function and σ(H) = σ(f).
So by Lemma 2.1, H(z)− a can be rewritten as

H(z)− a = f(z)f(qz)− f2(z)− a = g(z)eh(z), (3.9)

where g(z)(6≡ 0), h(z) are polynomials, deg(h(z)) ≥ 1. Differentiating (3.9)and
eliminating eh(z), we obtain

(f(z)f(qz))′

f(z)f(qz)
− 2f ′(z)
f(qz)

=
g′(z) + g(z)h′(z)

g(z)
[1− f(z)

f(qz)
− a

f(z)f(qz)
]. (3.10)

Since g(z)( 6≡ 0), h(z) are polynomials and deg(h(z)) ≥ 1, it follows that g′(z) +
g(z)h′(z) 6≡ 0. As f(z) has infinitely many multi-order zeros, there is a multi-
order zero z0 of multiplicity k ≥ 2, such that |z0| is sufficiently large and g(z0) 6=
0, g′(z0) + g(z0)h′(z0) 6= 0.

If f(qz) has zero at z0 of multiplicity s ≥ 1, then (f(z)f(qz))′

f(z)f(qz) has a simple pole at

z0; − 2f ′(z)
f(qz) has pole at z0 of multiplicity s−k+1; f(z)

f(qz) has pole at z0 of multiplicity
s− k; but a

f(z)f(qz) has pole at z0 of multiplicity s+ k. This is a contradiction.

If f(qz0) 6= 0, then (f(z)f(qz))′

f(z)f(qz) has a simple pole at z0; f(z0)
f(qz0)

= 0; − 2f ′(z0)
f(qz0)

= 0;
but a

f(z)f(qz) has pole at z0 of multiplicity k ≥ 2. We also have a contradiction.
Hence H(z) takes every value a ∈ C infinitely often.

3.5. Proof of Theorem 1.11. If f(z) has infinitely many zeros, then Hn(z) has
infinitely many zeros since f(qz)− f(z) 6≡ 0.

Now we consider f(z) has finitely many zeros, suppose Hn(z) has only finitely
many zeros. Since f(z) is a transcendental entire function of finite order and has
finitely many zeros, by Lemma 2.1, f(z) can be written as

f(z) = g(z)eh(z),
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where g(z)( 6≡ 0), h(z) are polynomials. Set

h(z) = akz
k + . . .+ a0,

where ak, . . . , a0 are constants, ak 6= 0. Since σ(f) 6= 0, it follows that σ(f) =
deg(h(z)) = k ≥ 1. So

Hn(z) = fn(z)∇qf(z) = gn(z)g(qz)enh(z)+h(qz) − gn+1(z)e(n+1)h(z) (3.11)

and

(n+1)h(z)−(nh(z)+h(qz)) = (1−qk)akzk+(1−qk−1)ak−1z
k−1 + . . .+(1−q)a1z.

Since qσ(f) = qk 6= 1, it follows that (n+ 1)h(z)− (nh(z) +h(qz)) is not a constant.
So Hn(z) is a transcendental entire function, by Lemma 2.1, Hn(z) can be written
as

Hn(z) = g1(z)eh1(z), (3.12)

where g1(z)( 6≡ 0), h1(z) are polynomials. By (3.11) and (3.12), we obtain

gn(z)g(qz)enh(z)+h(qz) − gn+1(z)e(n+1)h(z) − g1(z)eh1(z) = 0. (3.13)

Note that (n+ 1)h(z)− (nh(z) +h(qz)) is not a constant and g(z) and g1(z) are
polynomials. If (nh(z) + h(qz))− h1(z) and (n+ 1)h(z)− h1(z) are not constants,
then by (3.13) and Lemma 2.2, we obtain

gn(z)g(qz) ≡ 0, gn+1(z) ≡ 0, g1(z) ≡ 0.

This is a contradiction.
If (nh(z) + h(qz))− h1(z) = c, where c is a constant, then (3.13) can be written

as
(gn(z)g(qz)− e−cg1(z))enh(z)+h(qz) − gn+1(z)e(n+1)h(z) = 0. (3.14)

By (3.14) and Lemma 2.2, we obtain

gn(z)g(qz)− e−cg1(z) ≡ 0, gn+1(z) ≡ 0,

Which is a contradiction.
If (n+ 1)h(z)−h1(z) = c, where c is a constant, then using the same method as

above, we also obtain a contradiction.
Hence Hn(z) has infinitely many zeros.

3.6. Proof of Theorem 1.12. Suppose f(z) has finitely many zeros, since f(z)
is a transcendental entire function of finite and positive order, it follows by Lemma
2.1, that f(z) can be written as

f(z) = g(z)eh(z), (3.15)

where g(z)( 6≡ 0), h(z) are polynomials. Set

h(z) = akz
k + . . .+ a0,

where ak, . . . , a0 are constants, ak 6= 0. Since σ(f) 6= 0, it follows that σ(f) =
deg(h(z)) = k ≥ 1. Substituting (3.15)into (1.1), we obtain

hn(z)g(qnz)eh(qnz) + . . .+ h1(z)g(q1z)eh(q1z) = F (z) (3.16)

and

h(qsz)− h(qtz) = ak(qks − qkt )zk + ak−1(qk−1
s − qk−1

t )zk−1 + . . .+ a1(qs − qt)z,
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where s 6= t. Since qj(j = 1, . . . , n) ∈ C\{0, 1} and ( qs

qt
)σ(f) 6= 1 for s 6= t, it follows

that
qks 6= qkt ,deg(h(qsz)− h(qtz)) = k, σ(eh(qsz)−h(qtz)) = k.

Since σ(hj(z)g(qjz)) < 1 < k for j = 1, . . . , n, σ(F ) < 1 < k, by (3.16) and Lemma
2.2, we obtain

hn(z)g(qnz) ≡ 0, . . . , h1(z)g(q1z) ≡ 0, F (z) ≡ 0.

We get a contradiction. Hence f(z) has infinitely many zeros.
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