
Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 230, pp. 1–18.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

EXISTENCE OF INFINITELY MANY RADIAL SOLUTIONS FOR
QUASILINEAR SCHRÖDINGER EQUATIONS

GUI BAO, ZHI-QING HAN

Abstract. In this article we prove the existence of radial solutions with ar-

bitrarily many sign changes for quasilinear Schrödinger equation

−
NX

i,j=1

∂j(aij(u)∂iu) +
1

2

NX
i,j=1

a′ij(u)∂iu∂ju + V (x)u = |u|p−1u, x ∈ RN ,

where N ≥ 3, p ∈ (1, 3N+2
N−2

). The proof is accomplished by using minimization

under a constraint.

1. Introduction

We consider the quasilinear elliptic problem

−
N∑

i,j=1

∂j(aij(u)∂iu) +
1
2

N∑
i,j=1

a′ij(u)∂iu∂ju+ V (x)u = |u|p−1u, x ∈ RN , (1.1)

where N ≥ 3, 1 < p < 2(2∗)−1 = 3N+2
N−2 , 2∗ = 2N

N−2 is the critical Sobolev constant,
aij ∈ C1,α(R) is a symmetric matrix function, α ∈ (0, 1) and a′ij(u) = d

duaij(u).
For aij(u) = (1 + u2)δij , Equation (1.1) is reduced to the well known Modified

Nonlinear Schrödinger Equation

−∆u+ V (x)u− 1
2
u∆(u2) = |u|p−1u, x ∈ RN . (1.2)

This type of equations arise from the study of steady states and standing wave
solutions of time-dependent nonlinear Schrödinger equations, and are derived as
models in various branches of mathematical physics; see [3, 5, 6, 8, 13, 16, 17, 19, 22].

In the literature several papers have considered problem (1.2). For example,
the existence of positive ground state solution of (1.2) was proved by Poppenberg,
Schmitt and Wang [20] by using a constrained minimization argument. Liu et al
[15], by a change of variables, transformed the quasilinear problem into a semilinear
one, and used an Orlicz space was the working space. The authors proved the
existence of soliton solutions of (1.2) for a Lagrange multiplier λ > 0. Colin and
Jeanjean [10] also used the change variables but work in the Sobolev space H1(RN ),
they proved the existence of positive solution for (1.2) with a Lagrange multiplier
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appears in the equation. The same method of changing variables was also used
recently to obtain the existence of infinitely many solutions of problem (1.2) in
[12]. See also [4] for the existence of positive solutions of problem (1.2) for the case
of critical growth.

The main mathematical difficulties with problem (1.2) are caused by the term∫
RN u2|∇u|2 dx which is not convex. A further problem is caused by usual lack of

compactness since these problems are dealt with in the whole RN .
In this article, we consider a general problem (1.1). Under a certain con-

straint, we prove that (1.1) possess infinitely many sign-changing solutions for
p ∈ (1, 3N+2

N−2 ). As far as we know, besides [14], there are very few results for
the existence of sign-changing solutions for (1.1). However, we point out that in
[14], solutions are founded in the case p ≥ 3.

Throughout this article, we denote the positive constants (possibly different) by
C,C1, C2, . . . . First we state the following assumptions.

(V1) V (x) ∈ Cα(RN) is a radially symmetric function and satisfies

0 < V0 ≤ V (x) ≤ lim
|x|→+∞

V (x) = V∞ < +∞, ∀x ∈ RN .

(V2) The function x 7−→ x · ∇V (x) belongs to L∞(RN ) and ‖x · ∇V (x)‖∞ ≤
C0 < (p− 1)V0.

(V3) The map s 7−→ sN+2V (sx) is concave for any x ∈ RN , s ∈ R.
(A1) There exist constants C1 > 0, C2 > 0, such that for all ξ ∈ RN and s ∈ R,

C1(1 + s2)|ξ|2 ≤
N∑

i,j=1

aij(s)ξiξj ≤ C2(1 + s2)|ξ|2.

(A2) There exists constant b > 0 such that for all ξ ∈ RN and s ∈ R such that

(b− 2)
N∑

i,j=1

aij(s)ξiξj ≤ s
N∑

i,j=1

a′ij(s)ξiξj ≤ (p− 1)
N∑

i,j=1

aij(s)ξiξj − b|ξ|2.

(A3) |s|N−1
∑N
i,j=1(aij(s) + 1

N sa
′
ij(s))ξiξj is decreasing in s ∈ (0,+∞) and in-

creasing in s ∈ (−∞, 0).

Here is our main result.

Theorem 1.1. Assume (V1)–(V3), (A1)–(A3). Then for any k ∈ {0, 1, 2, . . . },
there exists a pair of radial solutions u±k of (1.1) with the following properties:

(i) u−k (0) < 0 < u+
k (0);

(ii) u±k possess exactly k nodes rl with 0 < r1 < r2 < · · · < rk < +∞, and
u±k (x)||x|=rl

= 0, l = 1, 2, . . . , k.

We shall prove Theorem 1.1 under a convenient constraint, which is not of
Nehari-type; instead, we use a Pohozaev identity. This kind of argument can be
found in [23], see also [1, 24, 25] for different applications. Moreover, the main idea
to prove Theorem 1.1 can be found in [11], see also [2, 9]. However, since we deal
with a more general case and p ∈ (1, 3N+2

N−2 ), there are more difficulties.
This article is organized as follows: Section 2 is devoted to establish some pre-

liminary results and useful lemmas. Theorem 1.1 will be proved in Section 3.



EJDE-2014/230 EXISTENCE OF INFINITELY MANY RADIAL SOLUTIONS 3

2. Preliminary lemmas

Set H1
r (RN ) = {u ∈ H1(RN ) : u(x) = u(|x|)}, and X = {u ∈ H1

r (RN ) :∫
RN |∇u|2|u|2 dx < +∞}, where H1(RN ) is the usual Sobolev space and ‖u‖2H1 =∫
RN (|∇u|2 + V |u|2) dx. X is a complete metric space with distance:

dX(u, v) = ‖u− v‖H1 + ‖∇u2 −∇v2‖L2 .

Then, u ∈ X is a weak solution of (1.1) if for all φ ∈ C∞0 (RN ),∫
RN

( N∑
i,j=1

aij(u)∂iu∂jφ+
1
2

N∑
i,j=1

a′ij(u)∂iu∂juφ+ V (x)uφ− |u|p−1uφ
)

dx = 0.

(2.1)
The corresponding functional is

I(u) =
1
2

∫
RN

( N∑
i,j=1

aij(u)∂iu∂ju+ V (x)u2
)

dx− 1
p+ 1

∫
RN

|u|p+1 dx.

Given u ∈ X and φ ∈ C∞0 (RN ), the Gâteaux derivative of I in the direction φ at
u, denoted by 〈I ′(u), φ〉 is defined as limt→0+

I(u+tφ)−I(u)
t . It is easy to check that

〈I ′(u), φ〉

=
∫

RN

( N∑
i,j=1

aij(u)∂iu∂jφ+
1
2

N∑
i,j=1

a′ij(u)∂iu∂juφ+ V (x)uφ− |u|p−1uφ
)

dx.

Hence, u is a weak solution of problem (1.1) if this derivative is zero in every
direction φ ∈ C∞0 (RN ).

From [20], we have the following two lemmas.

Lemma 2.1. For N ≥ 2, there is a constant C = C(N) > 0 such that

|u(x)| ≤ C|x|
1−N

2 ‖u‖H1 ,

for any |x| ≥ 1 and u ∈ H1
r (RN ).

Lemma 2.2. Let {un} ⊂ H1
r (RN ) satisfy un ⇀ u in H1(RN ). Then

lim inf
n

∫
RN

|∇un|2|un|2 dx ≥
∫

RN

|∇u|2|u|2 dx.

Lemma 2.3 ([26]). Let N ≥ 2 and 2 < q < 2∗. Then the imbedding

H1
r (RN ) ↪→ Lq(RN )

is compact.

Lemma 2.4. (Brézis-Lieb lemma [7]) Let {un} ⊂ Lq(RN ) be a bounded sequence,
where 1 ≤ q < +∞, such that un → u almost everywhere in RN . Then

lim
n→+∞

(|un|qq − |un − u|qq) = |u|qq.

Lemma 2.5 ([14]). Let u be a weak solution of (1.1). Then u and ∇u are bounded.
Moreover, u satisfies the following exponential decay at infinity

|u(x)| ≤ Ce−δR, |x| = R,

∫
RN\BR

(|∇u|2 + |u|2) dx ≤ Ce−δR,

for some positive constants C, δ.
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Let Ω be one of the following three types of domains:

{x ∈ RN ||x| < R1},
{x ∈ RN |0 < R2 ≤ |x| < R3 < +∞},

{x ∈ RN ||x| ≥ R4 > 0}.
(2.2)

Set

H1
0,r(Ω) = {u ∈ H1

0 (Ω)|u(x) = u(|x|)},

X(Ω) = {u ∈ H1
0,r(Ω)|

∫
Ω

|∇u|2u2 dx < +∞}.

Now we consider the following equation on Ω:

−
N∑

i,j=1

∂j(aij(u)∂iu) +
1
2

N∑
i,j=1

a′ij(u)∂iu∂ju+ V (x)u = |u|p−1u, x ∈ Ω,

u|∂Ω = 0.

(2.3)

The corresponding functional is

IΩ(u) =
1
2

∫
Ω

( N∑
i,j=1

aij(u)∂iu∂ju+ V (x)u2
)

dx− 1
p+ 1

∫
Ω

|u|p+1 dx.

Similarly we can define the Gâteaux derivative of IΩ at u ∈ X(Ω) and weak solution
of problem (2.3).

We extend any u ∈ X(Ω) to X by setting u ≡ 0 on x ∈ RN\Ω. Hereafter denote
by ut the map:

R+ 3 t 7→ ut ∈ X, ut(x) = tu(t−1x),

and consider

fu(t) := I(ut) =
tN

2

∫
RN

N∑
i,j=1

aij(tu)∂iu∂judx

+
tN+2

2

∫
RN

V (tx)u2 dx− tN+p+1

p+ 1

∫
RN

|u|p+1 dx.

By conditions (V1) and (A1), and the fact that p + 1 > 2, it is easy to see that
fu(t) is positive for small t and tends to −∞ if t → +∞. This implies that fu(t)
attains its maximum. Moreover, thanks to (V2), fu : R+ → R is C1, and

f ′u(t) =
N

2
tN−1

∫
RN

N∑
i,j=1

aij(tu)∂iu∂judx+
tN

2

∫
RN

u

N∑
i,j=1

a′ij(tu)∂iu∂judx

+
N + 2

2
tN+1

∫
RN

V (tx)u2 dx+
tN+2

2

∫
RN

∇V (tx) · xu2 dx

− N + p+ 1
p+ 1

tN+p

∫
RN

|u|p+1 dx.

Let
M(Ω) = {u ∈ X(Ω) \ {0} : JΩ(u) = 0},
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where JΩ : X(Ω)→ R is defined as

JΩ(u) =
N

2

∫
Ω

N∑
i,j=1

aij(u)∂iu∂judx+
1
2

∫
Ω

u

N∑
i,j=1

a′ij(u)∂iu∂judx

+
N + 2

2

∫
Ω

V (x)u2 dx+
1
2

∫
Ω

∇V (x) · xu2 dx− N + p+ 1
p+ 1

∫
Ω

|u|p+1 dx.

In other words, M(Ω) is the set of functions u ∈ X(Ω) such that f ′u(1) = 0.
Moreover, M(Ω) 6= ∅ (actually, given any u 6= 0, there exists t > 0 such that
ut ∈M(Ω) (cf. [23])).

In the appendix of [14], by using Moser and De Giorgi iterations, the authors
proved that weak solutions of (1.1) are bounded in L∞(RN ). Their arguments work
also for p ∈ (1, 3). A density argument show that weak formulation (2.1) holds also
for test functions in H1(RN ) ∩ L∞(RN ). By [18, theorems 5.2 and 6.2 in chapter
4] it follows that u ∈ C1,α. From Schauder theory we conclude that u ∈ C2,α is
a classical solution of (1.1). Moreover, if u ∈ X is a solution, u,Du,D2u have an
exponential decay as |x| → +∞ (see [14]). By [21], assume that u ∈ X is a C2

solution of (1.1). Then, for all a ∈ R, we have the identity

(
N − 2

2
− a)

∫
RN

N∑
i,j=1

aij(u)∂iu∂judx− a

2

∫
RN

u

N∑
i,j=1

a′ij(u)∂iu∂judx

+ (
N

2
− a)

∫
RN

V (x)u2 dx+
1
2

∫
RN

∇V (x) · xu2 dx

+ (a− N

p+ 1
)
∫

RN

|u|p+1 dx = 0.

(2.4)

Observe also that M(Ω) is nothing but the set of functions u ∈ X(Ω) such that the
identity (2.4) holds for a = −1. Then, all solutions belong to M(Ω).

Lemma 2.6. For any u ∈ X(Ω), the map fu attains its maximum at exactly one
point tu. Moreover, fu is positive and increasing for t ∈ [0, tu] and decreasing for
t > tu. Also,

c := inf
M(Ω)

IΩ = inf
u∈X(Ω),u6=0

max
t>0

I(ut).

Proof. We employ a similar argument as in [23, Lemma 3.1]. Set

g(t) =
tN

2

∫
RN

N∑
i,j=1

aij(tu)∂iu∂judx− tN+p+1

p+ 1

∫
RN

|u|p+1 dx.

Let t1 ∈ R+, t2 ∈ R+, t1 6= t2, then we have

g′(t1)− g′(t2) =
N

2

∫
RN

tN−1
1

( N∑
i,j=1

aij(t1u) +
1
N
t1u

N∑
i,j=1

a′ij(t1u)
)
∂iu∂judx

− N

2

∫
RN

tN−1
2

( N∑
i,j=1

aij(t2u) +
1
N
t2u

N∑
i,j=1

a′ij(t2u)
)
∂iu∂judx

− N + p+ 1
p+ 1

(tN+p
1 − tN+p

2 )
∫

RN

|u|p+1 dx.
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By using (A3) we obtain

(g′(t1)− g′(t2))(t1 − t2) ≤ 0.

This implies that g(t) is a concave function. Then by assumption (V3),

fu(t) = g(t) +
tN+2

2

∫
RN

V (tx)u2 dx

is a concave function. We already know that it attains its maximum. Let tu be
the unique point at which this maximum is achieved. Then tu is the unique critical
point of fu and fu is positive and increasing for 0 < t < tu and decreasing for
t > tu.

In particular, for any u ∈ X(Ω) \ {0}, tu ∈ R is the unique value such that utu
belongs to M(Ω), and I(ut) reaches a global maximum for t = tu. �

Similar to [23, Proposition 3.3], we can prove the coercivity of IΩ |M(Ω).

Proposition 2.7. There exists C > 0 such that for any u ∈M(Ω),

IΩ(u) ≥ C
∫

Ω

(u2 + |∇u|2 + u2|∇u|2) dx.

Proof. Take u ∈ M(Ω) and extend u to X by setting u ≡ 0 on RN \ Ω. Choose
t ∈ (0, 1), then

I(ut)− tN+p+1I(u) =
∫

RN

N∑
i,j=1

( tN
2
aij(tu)∂iu∂ju−

tN+p+1

2
aij(u)∂iu∂ju

)
dx

+
∫

RN

( tN+2

2
V (tx)− tN+p+1

2
V (x)

)
u2 dx.

Observe that V (tx) ≥ V0 ≥ δV∞ ≥ δV (x), for some positive δ ∈ (0, 1) depending
only on V0 and V∞. By choosing a smaller t, if necessary, we obtain

tN+2

2
V (tx)− tN+p+1

2
V (x) ≥

(
δ
tN+2

2
− tN+p+1

2

)
V (x) ≥ γ0,

for a fixed constant γ0 > 0. Since u ∈ M(Ω), from Lemma 2.6 we obtain that
I(ut) ≤ I(u). By choosing t ∈

(
0, (C1

C2
)

1
p−1

)
small enough, from (A1) we have

(1− tN+p+1)I(u)

≥ I(ut)− tN+p+1I(u)

≥
∫

RN

( tN
2
C1(1 + (tu)2)|∇u|2 − tN+p+1

2
C2(1 + u2)|∇u|2

)
dx+ γ0

∫
RN

u2 dx

=
tN

2

∫
RN

(
(C1 − tp+1C2) +

(
C1 − C2t

p−1
)
(tu)2

)
|∇u|2 dx+ γ0

∫
RN

u2 dx

≥ tN

2
(C1 − C2t

p−1)
∫

RN

(1 + t2u2)|∇u|2 dx+ γ0

∫
RN

u2 dx

≥ tN+2

2
(C1 − C2t

p−1)
∫

RN

(1 + u2)|∇u|2 dx+ γ0

∫
RN

u2 dx.

Note that u ≡ 0 on RN \ Ω, we conclude by defining

C = min
{C1t

N+2 − C2t
N+p+1

2(1− tN+p+1)
γ0

1− tN+p+1

}
.
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�

Lemma 2.8. Suppose that the domain Ω is one of the forms of (2.2). Then
c = infM(Ω) IΩ(u) can be achieved by some positive function u which is a solution
of problem (2.3). Moreover,

∫
Ω
u2|∇φ|2 dx < +∞,

∫
Ω
φ2|∇u|2 dx < +∞.

Proof. We divide the proof into three steps.
Step 1. c is attained. By the definition of c, there exists a sequence {un} ⊂M(Ω)
such that

IΩ(un) = c+ o(1), JΩ(un) = 0.

By Proposition 2.7, {un} is bounded in X(Ω). Hence, by Lemma 2.3, we can extract
a subsequence of {un} (still denoted by {un}), such that

un ⇀ u in X(Ω),

un → u in Lq(Ω), 2 < q < 2∗.

Since ∇(un)2 is uniformly bounded in L2(Ω), by Sobolev’s inequality we have
|u2
n|2∗ ≤ C, which gives |un|22∗ ≤ C. By Hölder’s inequality we have

un → u in Lq(Ω), 2 < q < 22∗.

Taking the limit in n, it follows from JΩ(un) = 0 that

JΩ(u) =
N

2

∫
Ω

N∑
i,j=1

aij(u)∂iu∂judx+
1
2

∫
Ω

u

N∑
i,j=1

a′ij(u)∂iu∂judx

+
N + 2

2

∫
Ω

V (x)u2 dx+
1
2

∫
Ω

∇V (x) · xu2 dx− N + p+ 1
p+ 1

∫
Ω

|u|p+1 dx

≤ 0.

By Lemma 2.6, there exists t > 0 such that JΩ(ut) = 0. Extend un and u to X by
setting un ≡ 0 and u ≡ 0 on RN \ Ω. In the following we just need to recall the
expression of I((un)t),

c = lim
n→+∞

IΩ(un) = lim
n→+∞

I(un) ≥ lim
n→+∞

inf I((un)t) ≥ I(ut), ∀t > 0.

So maxt I(ut) = c. Then, by Lemma 2.6, there exists t0 > 0 such that ut0 ∈M(Ω),
which implies that c is attained.
Step 2. u is a radial solution of (2.3). We use an indirect argument which is
based on a general idea used in [14]. Suppose that u ∈ M(Ω), IΩ(u) = c but
I ′Ω(u) 6= 0. In such a case, we can find a function φ ∈ X(Ω) with the property that∫

Ω
u2|∇φ|2 dx < +∞,

∫
Ω
φ2|∇u|2 dx < +∞ but

〈I ′Ω(u), φ〉 ≤ −1.

Extend u ∈ X(Ω) to X as above and choose ε > 0 small enough such that

〈I ′(ut + σφ), φ〉 ≤ −1
2
, ∀|t− 1|+ |σ| ≤ ε.

Let η be a cut-off function,

η(t) =

{
1, |t− 1| ≤ 1

2ε,

0, |t− 1| ≥ ε.
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Define

γ(t) =

{
ut, |t− 1| ≥ ε,
ut + εη(t)φ, |t− 1| < ε.

Next we estimate supt I(γ(t)). If |t− 1| ≤ ε, then

I(γ(t)) = I(ut + εη(t)φ)

= I(ut) +
∫ 1

0

〈I ′(ut + σεη(t)φ), εη(t)φ〉dσ

≤ I(ut)−
1
2
εη(t).

(2.5)

If |t−1| ≥ ε, then η(t) = 0, and the above estimate is trivial. Now since u ∈M(Ω),
for t 6= 1 we get I(ut) < I(u). Hence it follows from (2.5) that

I(ut + εη(t)φ) ≤

{
I(ut) < I(u), t 6= 1,
I(u)− 1

2εη(1) = I(u)− 1
2ε, t = 1.

(2.6)

In any case we have I(γ(t)) < I(u) = c.
To conclude observe that J(γ(1 − ε)) > 0 and J(γ(1 + ε)) < 0. As a result,

we can find t0 ∈ (1 − ε, 1 + ε) such that J(γ(t0)) = 0, which implies that γ(t0) =
ut0 + εη(t0)φ ∈M(Ω). However, it follows from (2.6) that IΩ(γ(t0)) < c. This is a
contradiction.
Step 3. u > 0. Consider u ∈ M(Ω) a minimizer of IΩ|M(Ω). Then the absolute
value |u| ∈M(Ω) is also a minimizer. By the classical maximum principle and the
fact that solutions are C2, |u| > 0. �

3. Proof of Theorem 1.1

For given k + 2 numbers rl (l = 0, 1, . . . , k + 1) such that 0 = r0 < r1 < · · · <
rk < rk+1 = +∞, denote

Ω1 = {x ∈ RN : |x| < r1}, Ωl = {x ∈ RN : rl−1 < |x| < rl}.
We will always extend ul ∈ X(Ωl) to X by setting u ≡ 0 on x ∈ RN\Ωl for every
ul ∈ X(Ωl), l = 1, 2, . . . , k + 1. In this sense, we use I(ul) to replace IΩl(ul) and
J(ul) to replace JΩl(ul). Define

Y ±k (r1, r2, . . . , rk+1) =
{
u ∈ X : u = ±

k+1∑
l=1

(−1)l−1ul, ul ≥ 0,

ul 6≡ 0, ul ∈ X(Ωl), l = 1, 2, . . . , k + 1
}
,

M±k =
{
u ∈ X : ∃0 < r1 < r2 < · · · < rk < rk+1 = +∞, such that

u ∈ Y ±k (r1, r2, . . . , rk, rk+1) and ul ∈M(Ωl), l = 1, 2, . . . , k + 1
}
.

Note that M±k 6= ∅, k = 1, 2, . . . . In the following we always refer to Mk and we
drop the ” + ”. For M−k , everything could be done exactly in the same way. By
Lemma 2.6, it is easy to verify that for all u,

u =
k+1∑
l=1

(−1)l−1ul ∈Mk ⇔ I(u) = max
αl>0

1≤l≤k+1

I
( k+1∑
l=1

(−1)l−1(ul)αl

)
. (3.1)
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Set
ck = inf

Mk

I(u), k = 1, 2, . . . .

Lemma 3.1. ck is attained, k = 0, 1, 2, . . . .

Proof. By induction we prove that for each k there exists uk ∈Mk such that

I(uk) = ck.

The case that k = 0 can be deduced by setting Ω = RN in Lemma 2.8. We
suppose the claim is true for k− 1 and discuss the case k ≥ 1 in the following. For
convenience, we divide the proof of the rest proof into four steps.

Step 1. I is bounded from below on Mk by a positive constant. Since

I(u) = I
( k+1∑
l=1

(−1)l−1ul

)
=
k+1∑
l=1

IΩl(ul), ∀u ∈Mk.

We just need to prove that, for l = 1, 2, . . . , k + 1, IΩl is bounded from below on
M(Ωl) by a positive constant.

For any ul ∈ M(Ωl), we extend it to X by setting ul ≡ 0 on RN \ Ωl. By (V1)
and (A1) we have

I(ul) ≥
1
2

∫
RN

(C1(1 + u2
l )|∇ul|2 + V0u

2
l ) dx− 1

p+ 1

∫
RN

|ul|p+1 dx.

Let

Ī(ul) =
1
2

∫
RN

(C1(1 + u2
l )|∇ul|2 + V0u

2
l ) dx− 1

p+ 1

∫
RN

|ul|p+1 dx.

Obviously,

c̄ := inf
ul∈X(Ωl),ul 6=0

max
t>0

Ī((ul)t) ≤ inf
ul∈X(Ωl),ul 6=0

max
t>0

I((ul)t) = c.

Let us define

M̄(Ωl) = {ul ∈ X(Ωl) \ {0} : g′ul
(1) = 0} where gul

(t) = Ī((ul)t).

Similar to Lemma 2.6, we know that

c̄ = inf
ul∈M̄(Ωl)

ĪΩl(ul).

For any ul ∈ M̄(Ωl),

N + 2
2

V0

∫
Ωl

u2
l dx+

C1(N + 2)
2

∫
Ωl

|∇ul|2u2
l dx

≤ N + p+ 1
p+ 1

∫
Ωl

|ul|p+1 dx

≤ N + 2
2

V0

∫
Ωl

u2
l dx+ C

∫
Ωl

|ul|
4N

N+2 dx,

for a suitable constant C > 0. So, by using the Sobolev’s inequality,

C1(N + 2)
2

∫
Ωl

|∇ul|2u2
l dx ≤ C

∫
Ωl

|ul|
4N

N+2 dx ≤ C ′
(∫

Ωl

|∇ul|2u2
l dx

) N
N−2

,
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this shows that
∫

Ωl |∇ul|2u2
l dx is bounded away from zero on M̄(Ωl). Since the

functional ĪΩl restricted to M̄(Ωl) has the expression

ĪΩl(ul) =
C1

2
p+ 1

N + p+ 1

∫
Ωl

|∇ul|2 dx+
V0

2
p− 1

N + p+ 1

∫
Ωl

u2
l dx

+
C1(p− 1)
N + p+ 1

∫
Ωl

|∇ul|2|ul|2 dx.

We obtain that c̄ > 0, and hence c > 0. This implies that dX(M(Ωl), 0) > 0. Then
by Proposition 2.7, we get that IΩl is bounded from below on M(Ωl) by a positive
constant.

Step 2. We suppose {um}m≥1 be a minimizing sequence of ck in Mk; that is

lim
m→+∞

I(um) = ck, um ∈Mk, m = 1, 2, . . . .

um corresponds to k nodes, r1
m, r

2
m, . . . , r

k
m with 0 < r1

m < r2
m < · · · < rkm < +∞.

By Proposition 2.7, we know that {um} is bounded in X. Set

Ωlm = {x ∈ RN : rl−1
m < |x| < rlm},

ulm =

{
um, x ∈ Ωlm,
0, x 6∈ Ωlm.

By selecting a subsequence, we may assume that limm→+∞ rlm = rl, and clearly
0 ≤ r1 ≤ r2 ≤ · · · ≤ rk ≤ +∞.

Next we prove that rl 6= rl−1, l = 1, 2, . . . , k. Here we denote r0 = 0. If there ex-
ists some l ∈ {1, 2, . . . , k} such that rl = rl−1, then limm→+∞ rlm = limm→+∞ rl−1

m .
We denote the measure of Ωlm by |Ωlm|, so that |Ωlm| → 0 as m→ +∞. From (A1)
and the fact that {um} is bounded in X, we have

I(ulm) =
1
2

∫
Ωl

m

( N∑
i,j=1

aij(ulm)∂iulm∂ju
l
m + V (ulm)2

)
dx− 1

p+ 1

∫
Ωl

m

|ulm|p+1 dx

≤ 1
2

∫
Ωl

m

(
C2(1 + (ulm)2)|∇ulm|2 + V∞(ulm)2

)
dx− 1

p+ 1

∫
Ωl

m

|ulm|p+1 dx

≤ C − 1
p+ 1

∫
Ωl

m

|ulm|p+1 dx.

(3.2)
By using Hölder’s inequality,∫

Ωl
m

|ulm|2 dx ≤
(∫

Ωl
m

|ulm|p+1 dx
) 2

p+1 |Ωlm|
1− 2

p+1 ,

i.e., ∫
Ωl

m

|ulm|p+1 dx ≥
(∫

Ωl
m

|ulm|2 dx
) p+1

2 |Ωlm|
1−p
2 . (3.3)
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Since ulm ∈Mk,

N + p+ 1
p+ 1

∫
Ωl

m

|ulm|p+1 dx

=
N

2

∫
Ωl

m

N∑
i,j=1

aij(ulm)∂iulm∂ju
l
m dx+

1
2

∫
Ωl

m

ulm

N∑
i,j=1

a′ij(u
l
m)∂iulm∂ju

l
m dx

+
N + 2

2

∫
Ωl

m

V (x)(ulm)2 dx+
1
2

∫
Ωl

m

∇V (x) · x(ulm)2 dx

≥ C1(N + b− 2)
2

∫
Ωl

m

(1 + (ulm)2)|∇ulm|2 dx+
N + 2

2
V0

∫
Ωl

m

(ulm)2 dx

− 1
2
C0

∫
Ωl

m

(ulm)2 dx

≥ C1(N + b− 2)
2

∫
Ωl

m

(ulm)2|∇ulm|2 dx+
(N + 3− p)V0

2

∫
Ωl

m

(ulm)2 dx.

(3.4)

On the other hand,

N + p+ 1
p+ 1

∫
Ωl

m

|ulm|p+1 dx ≤ (N + 3− p)V0

2

∫
Ωl

m

|ulm|2 dx+ C

∫
Ωl

m

|ulm|
4N

N+2 dx,

for a suitable C > 0. So by using Sobolev’s inequality

C1(N + b− 2)
2

∫
Ωl

m

|ulm|2|∇ulm|2 dx ≤ C
∫

Ωl
m

|ulm|
4N

N+2 dx

≤ C ′
∫

Ωl
m

|ulm|2|∇ulm|2 dx.

This shows that
∫

Ωl
m
|ulm|2|∇ulm|2 dx is bounded away from zero on Mk. This

implies that ∫
Ωl

m

|ulm|2 dx ≥ δ > 0.

Then from (3.3) we obtain∫
Ωl

m

|ulm|p+1 dx ≥
(∫

Ωl
m

|ulm|2 dx
) p+1

2 |Ωlm|
1−p
2 ≥ δ

p+1
2 |Ωlm|

1−p
2 .

Note that |Ωlm| → 0 as m→ +∞ and p > 1, we have∫
Ωl

m

|ulm|p+1 dx→ +∞, as m→ +∞.

This and (3.2) implies that I(ulm) → −∞ as m → +∞, which contradicts Step 1.
Thus rl 6= rl−1, l = 1, 2, . . . , k.
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Step 3. rk < +∞. If rk = +∞, then limm→+∞ rkm = +∞. Since ukm ∈ M(Ωkm),
from (V1), (V2), (A1) and (A2) we have

I(ukm)

=
1
2

∫
Ωk

m

( N∑
i,j=1

aij(ukm)∂iukm∂ju
k
m + V (x)(ukm)2

)
dx− 1

p+ 1

∫
Ωk

m

|ukm|p+1 dx

=
1
2

∫
Ωk

m

( N∑
i,j=1

aij(ukm)∂iukm∂ju
k
m + V (x)(ukm)2

)
dx

− 1
N + p+ 1

(N
2

∫
Ωk

m

N∑
i,j=1

aij(ukm)∂iukm∂ju
k
m dx

+
1
2

∫
Ωk

m

ukm

N∑
i,j=1

a′ij(u
k
m)∂iukm∂ju

k
m dx+

N + 2
2

∫
Ωk

m

V (x)(ukm)2 dx

+
1
2

∫
Ωk

m

∇V (x) · x(ukm)2 dx
)

≥
(1

2
− N

2(N + p+ 1)
− p− 1

2(N + p+ 1)

)∫
Ωk

m

N∑
i,j=1

aij(ukm)∂iukm∂ju
k
m dx

+
((1

2
− N + 2

2(N + p+ 1)

)
V0 −

C0

2(N + p+ 1)

)∫
Ωk

m

(ukm)2 dx

+
b

2(N + p+ 1)

∫
Ωk

m

|∇ukm|2 dx

≥ 1
N + p+ 1

∫
Ωk

m

C1

(
1 + (ukm)2

)
|∇ukm|2 dx+

(p− 1)V0 − C0

2(N + p+ 1)

∫
Ωk

m

(ukm)2 dx

+
b

2(N + p+ 1)

∫
Ωk

m

|∇ukm|2 dx

≥ Cη2(ukm),
(3.5)

where

η2(ukm) =
∫

Ωk
m

(
1 + (ukm)2

)
|∇ukm|2 dx+

∫
Ωk

m

(ukm)2 dx.

From Step 1 we know that
∫

Ωk
m
|ukm|2|∇ukm|2 dx is bounded away from zero on

M(Ωkm). Then there exists some δ0 > 0 such that∫
Ωk

m

|ukm|2 dx ≥ δ0 > 0.

This and (3.4) imply that there exists some δ1 > 0 such that∫
Ωk

m

|ukm|p+1 dx ≥ δ1 > 0.
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Then from (3.2), we have

I(ukm) ≤ C − 1
p+ 1

∫
Ωk

m

|ukm|p+1 dx

≤ C + C

∫
Ωk

m

|ukm|p+1 dx

≤ C
∫

Ωk
m

|ukm|p+1 dx
((∫

Ωk
m

|ukm|p+1 dx
)−1

+ 1
)

≤ C
∫

Ωk
m

|ukm|p+1 dx(δ−1
1 + 1)

≤ C
∫

Ωk
m

|ukm|p+1 dx,

(3.6)

for some suitable C > 0. It follows from (3.5),(3.6) and Lemma 2.1 that

η2(ukm) ≤ I(ukm)

≤ C
∫

Ωk
m

|ukm|p+1 dx

≤ C
∫

Ωk
m

|ukm|2|ukm|p−1 dx

≤ C‖ukm‖p−1

∫
Ωk

m

|ukm|2|x|
(1−N)(p−1)

2 dx

≤ C
(
η2(ukm)

) p+1
2 |rkm|

(1−N)(p−1)
2 .

Thus
η2(ukm) ≥ C|rkm|N−1. (3.7)

From (3.7) we have
η2(ukm)→ +∞ as m→ +∞.

So (3.5) implies
I(ukm)→ +∞ as m→ +∞. (3.8)

By the inductive assumption and (3.8), for ε > 0 fixed we choose M > 0 such that

I(ukm) > ck − ck−1 + ε, |I(um)− ck| < ε, as m ≥M.

Then we may define û(x) ∈Mk−1 by

û(x) =

{
usm(x), x ∈ Ωsm as s < k,

0, x ∈ Ωkm.

Hence I(û) = I(um)− I(ukm) < ck + ε− (ck − ck−1 + ε) = ck−1 as m ≥ M , which
contradicts the fact that ck−1 = infMk−1 I(u). Then, we obtain rk < +∞.
Step 4. ck is attained. By Proposition 2.7 we can find a subsequence (still denoted
by {um}) such that

um ⇀ u in X,

um → u in Lp+1(RN ).
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Set Ωl = {x ∈ RN |rl−1 < |x| < rl}, for all l = 1, 2, . . . , k+1, r0 = 0 and rk+1 = +∞.
Lemma 2.8 implies that c = infu∈M(Ωl) I(u) is attained by some positive function
ûl which satisfies the boundary-value problem

−
N∑

i,j=1

∂j(aij(u)∂iu) +
1
2

N∑
i,j=1

a′ij(u)∂iu∂ju+ V (x)u = |u|p−1u, x ∈ Ωl,

u|∂Ωl = 0.

Define uk =
∑k+1
l=1 (−1)l−1ûl(x), (ûl(x) = 0, x 6∈ Ωl). Then, clearly, uk ∈ Mk.

Consider the coordinate transformations Φm : RN → RN , m = 1, 2, . . . , defined by

Φm(x) = ϕm(|x|) x
|x|
, x ∈ RN ,

where

ϕm(r) =
(rl − rl−1)(r − rl−1

m )
rlm − rl−1

m

+ rl−1.

For any r ∈ R, clearly Φm(Ωlm) = Ωl. Let y = Φm(x) ∈ Ωl, if x ∈ Ωlm. It is easy to
show that

|∇u(y)| = (Rlm)−1|∇u(x)|, (3.9)

dy = |J lm|dx, (3.10)

alm ≤
(Φm(r)

r

)N−1

≤ Alm, (3.11)

where

Rlm =
rl − rl−1

rlm − rl−1
m

, J lm =
(
ϕm(|x|)

)N−1(
ϕm(|x|)

)′|x|1−N ,
alm =

(
min

{ rl
rlm

,
rl−1

rl−1
m

})N−1

, Alm =
(

max
{ rl
rlm

,
rl−1

rl−1
m

})N−1

.

Clearly,
almR

l
m ≤ |J lm| ≤ AlmRlm, (3.12)

and
Rlm → 1, alm → 1, Alm → 1, J lm → 1, as m→ +∞. (3.13)

Let

γ(t) =
N

2
tN−1

∫
Ωl

N∑
i,j=1

aij(tulm)∂iulm∂ju
l
m dy

+
tN

2

∫
Ωl

ulm

N∑
i,j=1

a′ij(tu
l
m)∂iulm∂ju

l
m dy +

N + 2
2

tN+1

∫
Ωl

V (ty)(ulm)2 dy

+
tN+2

2

∫
Ωl

∇V (ty) · y(ulm)2 dy − N + p+ 1
p+ 1

tN+p

∫
Ωl

|ulm|p+1 dy.

From Lemma 2.6, there exists some tlm > 0, such that γ(tlm) = 0, thus (ulm)tlm ∈
M(Ωl). Now we claim that

tlm → 1 as m→ +∞, l = 1, 2, . . . , k. (3.14)
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Indeed, since γ(tlm) = 0, we have

N

2
(tlm)N−1

∫
Ωl

N∑
i,j=1

aij(tlmu
l
m)∂iulm∂ju

l
m dy

+
(tlm)N

2

∫
Ωl

ulm

N∑
i,j=1

a′ij(t
l
mu

l
m)∂iulm∂ju

l
m dy

+
N + 2

2
(tlm)N+1

∫
Ωl

V (tlmy)(ulm)2 dy +
(tlm)N+2

2

∫
Ωl

∇V (tlmy) · y(ulm)2 dy

− N + p+ 1
p+ 1

(tlm)N+p

∫
Ωl

|ulm|p+1 dy = 0.

(3.15)
We can prove that there exists a constant t̃ > 0 such that

0 < tlm ≤ t̃ < +∞.

By selecting a subsequence, we may assume that limm→+∞ tlm = tl∗. Using (3.9)-
(3.13), we have

lim
m→+∞

∫
Ωl

N∑
i,j=1

aij(tlmu
l
m)∂iulm∂ju

l
m dy

= lim
m→+∞

∫
Ωl

m

N∑
i,j=1

aij(tlmu
l
m)∂iulm∂ju

l
m dx,

(3.16)

lim
m→+∞

∫
Ωl

ulm

N∑
i,j=1

a′ij(t
l
mu

l
m)∂iulm∂ju

l
m dy

= lim
m→+∞

∫
Ωl

m

ulm

N∑
i,j=1

a′ij(t
l
mu

l
m)∂iulm∂ju

l
m dx,

(3.17)

lim
m→+∞

∫
Ωl

V (tlmy)(ulm)2 dy = lim
m→+∞

∫
Ωl

m

V (tlmx)(ulm)2 dx, (3.18)

lim
m→+∞

∫
Ωl

∇V (tlmy) · y(ulm)2 dy = lim
m→+∞

∫
Ωl

m

∇V (tlmx) · x(ulm)2 dx, (3.19)

lim
m→+∞

∫
Ωl

|ulm|p+1 dy = lim
m→+∞

∫
Ωl

m

|ulm|p+1 dx. (3.20)

Substituting (3.16)-(3.20) in (3.15) we find that

lim
m→+∞

(N
2

(tlm)N−1

∫
Ωl

m

N∑
i,j=1

aij(tlmu
l
m)∂iulm∂ju

l
m dx

+
(tlm)N

2

∫
Ωl

m

ulm

N∑
i,j=1

a′ij(t
l
mu

l
m)∂iulm∂ju

l
m dx

+
N + 2

2
(tlm)N+1

∫
Ωl

m

V (tlmx)(ulm)2 dx+
(tlm)N+2

2

∫
Ωl

m

∇V (tlmx) · x(ulm)2 dx
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− N + p+ 1
p+ 1

(tlm)N+p

∫
Ωl

m

|ulm|p+1 dx
)

= 0. (3.21)

But for ulm(x) ∈M(Ωlm), we know that

N

2

∫
Ωl

m

N∑
i,j=1

aij(ulm)∂iulm∂ju
l
m dx+

1
2

∫
Ωl

m

ulm

N∑
i,j=1

a′ij(u
l
m)∂iulm∂ju

l
m dx

+
N + 2

2

∫
Ωl

m

V (tlmx)(ulm)2 dx+
1
2

∫
Ωl

m

∇V (x) · x(ulm)2 dx

− N + p+ 1
p+ 1

∫
Ωl

m

|ulm|p+1 dx = 0.

(3.22)

Set

h(s) =
N

2
sN−1

∫
Ωl

m

N∑
i,j=1

aij(sulm)∂iulm∂ju
l
m dx

+
sN

2

∫
Ωl

m

ulm

N∑
i,j=1

a′ij(su
l
m)∂iulm∂ju

l
m dx

+
N + 2

2
sN+1

∫
Ωl

m

V (sx)(ulm)2 dx+
sN+2

2

∫
Ωl

m

∇V (sx) · x(ulm)2 dx

− N + p+ 1
p+ 1

sN+p

∫
Ωl

m

|ulm|p+1 dx.

(3.23)
From the proof of Lemma 2.6, we know that h(s) has only one zero on (0,+∞).
So, from (3.21)-(3.23) we get that tl∗ = 1. Moreover,

lim
m→+∞

I((ulm)tlm) = lim
m→+∞

I(ulm).

On the other hand, since I(ûl) = infM(Ωl
m) I(u) and (ulm)tlm ∈M(Ωlm), we obtain

I(ûl) ≤ I((ulm)tlm).

Hence limm→+∞ I((ulm)tlm) ≥ I(ûl), l = 1, 2, . . . , k + 1. Thus

ck = lim
m→+∞

I(um) = lim
m→+∞

k+1∑
l=1

I(ulm) ≥
k+1∑
l=1

I(ûl) = I(uk).

Since uk ∈Mk, we have that ck = I(uk), which means that ck is attained. �

Proof of Theorem 1.1. By Lemma 3.1, there exists uk ∈ Mk which attains ck. We
will prove that uk is indeed a solution to problem (1.1). For convenience, we
denote u := uk. Thus we get k nodes: r1, r2, . . . , rk, 0 < r1 < r2 < · · · < rk < +∞.
Clearly, u satisfies (1.1) in E = {x ∈ RN : |x| 6= rl, l = 1, 2, . . . , k + 1}. We know
already that u is of class C2 on E and satisfies, for x ∈ E

−
N∑

i,j=1

∂j(aij(u)∂iu) +
1
2

N∑
i,j=1

a′ij(u)∂iu∂ju+ V (x)u = |u|p−1u. (3.24)

We will prove that u satisfies (3.24) for all x ∈ RN .
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We use an indirect argument. Assume that for some l = 1, 2, . . . , k, there exists
x0 ∈ RN , |x0| = rl such that (3.24) does not hold. To complete the proof, it suffices
to show that for aij(u) = (1 + u2)δij , there exists a contradiction.

The existence of the contradiction can be proved similar to that as in [11], by a
slight modification, their arguments worked also for p ∈ (1, 3]. We just sketch the
proof. We set r := |x| and treat the special case aij(u) = (1 +u2)δij as an ordinary
differential equation:

−(1 + u2)(rN−1u′)′ = rN−1(|u|p−1 − V + |u′|2)u,

where ′ denotes d
dr . Then our assumption becomes to

u′+ = lim
r→r+l

u′(r) 6= lim
r→r−l

u′(r) = u′−.

Firstly, we construct some w such that w ∈Mk. Let

ψ(h) =
∫ rl+1

rl−1

(1
2

(h′2 + V h2 + h2h′2)− 1
p+ 1

|h|p+1
)
rN−1 dr.

Then, according to the definition of u, there holds

ψ(u) ≤ ψ(w).

However, under the assumption u′+ 6= u′−, we can prove that ψ(w) < ψ(u) (cf.
[11]). This is a contradiction. As a result, we complete the proof. �
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