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EXISTENCE OF INFINITELY MANY RADIAL SOLUTIONS FOR
QUASILINEAR SCHRODINGER EQUATIONS

GUI BAO, ZHI-QING HAN

ABSTRACT. In this article we prove the existence of radial solutions with ar-
bitrarily many sign changes for quasilinear Schrodinger equation

N N
1
= > O(ayon) + 5 > aly(wdudyu+ V@ = ul’tu, @ €RY,
i,j=1 3,j=1

where N > 3, p € (1, Slfl\rjf ). The proof is accomplished by using minimization

under a constraint.

1. INTRODUCTION

We consider the quasilinear elliptic problem

N N
1
— Z 0j(ai;(u)Oiu) + 3 Z a’ij(u)aiu(?ju +V(z)u = |ulftu, zeRY, (1.1)
5,j=1 5,j=1
where N >3, 1 <p<2(2)—1= %, 2% = % is the critical Sobolev constant,

aij € CH*(R) is a symmetric matrix function, a € (0,1) and aj;(u) = La;; ().
For a;j(u) = (1 + u?)d;;, Equation (L.1)) is reduced to the well known Modified
Nonlinear Schréodinger Equation

—Au+V(z)u— %uA(uQ) = |uff~'u, xecRV. (1.2)

This type of equations arise from the study of steady states and standing wave
solutions of time-dependent nonlinear Schrodinger equations, and are derived as
models in various branches of mathematical physics; see [3 5] 6] [8, 13| 16, 17, 19, 22].

In the literature several papers have considered problem (L1.2). For example,
the existence of positive ground state solution of was proved by Poppenberg,
Schmitt and Wang [20] by using a constrained minimization argument. Liu et al
[15], by a change of variables, transformed the quasilinear problem into a semilinear
one, and used an Orlicz space was the working space. The authors proved the
existence of soliton solutions of for a Lagrange multiplier A > 0. Colin and
Jeanjean [10] also used the change variables but work in the Sobolev space H!(RY),
they proved the existence of positive solution for with a Lagrange multiplier
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appears in the equation. The same method of changing variables was also used
recently to obtain the existence of infinitely many solutions of problem in
[12]. See also [4] for the existence of positive solutions of problem for the case
of critical growth.

The main mathematical difficulties with problem are caused by the term
Jan ©?|Vu|? dz which is not convex. A further problem is caused by usual lack of
compactness since these problems are dealt with in the whole RY.

In this article, we consider a general problem . Under a certain con-
straint, we prove that possess infinitely many sign-changing solutions for
p € (1,342). As far as we know, besides [14], there are very few results for
the existence of sign-changing solutions for . However, we point out that in
[14], solutions are founded in the case p > 3.

Throughout this article, we denote the positive constants (possibly different) by
C,C1,C,,. ... First we state the following assumptions.

(V1) V(x) € C*(RY) is a radially symmetric function and satisfies

0<Vp<V(z)< lim V(z)=Va < +oo, VzeRY,

|| +o0

(V2) The function  — z - VV(z) belongs to L>®°(RY) and ||z - VV(2)]lec <
Cy < (p — 1)V0.

(V3) The map s — sV*+2V (sz) is concave for any z € RV, s € R.

(A1) There exist constants C; > 0,Cy > 0, such that for all ¢ € RY and s € R,

N
Cr(1+ 87> < ) aij(s)€i; < Ca(l + )¢

ij=1

(A2) There exists constant b > 0 such that for all £ € RY and s € R such that

N N N
(b-2) Z aij(s)§i§; < s Z ai; ()66 < (p—1) Z ai;j(8)&:&; — blE|*.
ij=1 ij=1 ij=1

(A3) [sV=U 0N (ai(s) + % sal;(s))&€; is decreasing in s € (0,+00) and in-
creasing in s € (—00,0).

Here is our main result.

Theorem 1.1. Assume (V1)-(V3), (A1)-(A3). Then for any k € {0,1,2,...},
there exists a pair of radial solutions uf of (L.1) with the following properties:

(i) ug (0) <0 < uf(0);
(ii) uf possess exactly k nodes r; with 0 < 11 < ro < -+ < 1rp < +00, and
U (%) g =y = 0, 1 =1,2,... k.

We shall prove Theorem 1.1 under a convenient constraint, which is not of
Nehari-type; instead, we use a Pohozaev identity. This kind of argument can be
found in [23], see also [I], 24 25] for different applications. Moreover, the main idea
to prove Theorem 1.1 can be found in [11], see also [2 @]. However, since we deal
with a more general case and p € (1, 3]<,Vj22), there are more difficulties.

This article is organized as follows: Section 2 is devoted to establish some pre-
liminary results and useful lemmas. Theorem 1.1 will be proved in Section 3.
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2. PRELIMINARY LEMMAS

Set HY(RY) = {u € H*RY) : u(z) = u(|z])}, and X = {u € HY(RY) :
Jan IVul?ul? dz < +oo}, where H'(RY) is the usual Sobolev space and |[u|%, =
Jan (IVul? + V|u|?) dz. X is a complete metric space with distance:

dx (u,v) = [u =] + [[Vu? = V07| .

Then, u € X is a weak solution of (1.1)) if for all ¢ € C$°(RY),

N N
/ ( > aij(u)dud;p + % > al;(w)dudjug + V(w)up — |u\p_1u¢) dz = 0.
RN

hj=1 i,j=1
(2.1)
The corresponding functional is
1 N 1
1) =3 /RN (3 autwomdyu+ viept)ar - —— [ a.

i,j=1
Given u € X and ¢ € C§°(RY), the Gateaux derivative of I in the direction ¢ at
u, denoted by (I'(u), ¢) is defined as lim;_, ¢+ w It is easy to check that

(I'(u), $)
N 1 N
- /RN ( > aij(u)dud;e + B > a;(w)diudug + V(x)ug — \u|P*1u¢) dz.
i,j=1 ij=1

Hence, u is a weak solution of problem (1.1)) if this derivative is zero in every
direction ¢ € C§°(RY).
From [20], we have the following two lemmas.

Lemma 2.1. For N > 2, there is a constant C = C(N) > 0 such that
1N
lu(z)| < Clo[ =" [[ull g,
for any |z| > 1 and u € HY(RYN).

Lemma 2.2. Let {u,} C H}(RY) satisfy u, — u in H*(RY). Then
liminf/ |Vt |2 |w,|? da 2/ |Vu|?ul? dz.
" RN RN

Lemma 2.3 ([26]). Let N > 2 and 2 < q < 2*. Then the imbedding
HA(RY) < LI(RY)
1S compact.

Lemma 2.4. (Brézis-Lieb lemma [7]) Let {u,} C LY(RYN) be a bounded sequence,
where 1 < q < 400, such that u,, — u almost everywhere in RN . Then

i (Junl? — fun — ) = [ulf

Lemma 2.5 ([14]). Let u be a weak solution of (1.1). Then u and Vu are bounded.
Moreover, u satisfies the following exponential decay at infinity

lu(z)] < Ce™ B |z| = R, (IVu)? + |u)?) dz < Ce9F,
RN\Bpr

for some positive constants C, 4.
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Let € be one of the following three types of domains:
{z e RY||z| < Ry},
{z e RN|0 < Ry < |2| < R3 < 400}, (2.2)
{z e RY||z| > Ry > 0}.
Set
Hy () = {u € Hy(Q)u(z) = u(|z|)},
X(Q) ={ue H}, () /Q |Vul*u? dz < +oo}.

Now we consider the following equation on :

N N
_ mzﬂ dj(aij(u)osu) + ;w-z_l ai;(w)iudju + V(r)u = wfP~tu, e Q, 0
u|pa = 0.
The corresponding functional is
1 al 1
Io(u) = 5/{) ( Z a;; (u)O;udju + V(:z:)uz) dz — Pl /Q |u|PT de.

ij=1

Similarly we can define the Gateaux derivative of I at w € X (£2) and weak solution

of problem (2.3)).

We extend any u € X (£2) to X by setting u = 0 on x € RV\Q. Hereafter denote
by u; the map:

RT >t € X, ug(z) = tu(t™'2),

and consider

tN Y
fu(t) == I(us) = 7/}1@ Z a5 (tu)0;ud;u de

i,7=1

tN+p+1
/ V(tz)u? doz — / Ju|PT da.
RN p+ 1 RN

By conditions (V1) and (A1), and the fact that p + 1 > 2, it is easy to see that
fu(t) is positive for small ¢ and tends to —oo if ¢ — +oo. This implies that f,(t)
attains its maximum. Moreover, thanks to (V2), f, : RT — R is C!, and

tN+2
+

N N N N
/ N—-1
fi, @) = 0 t /N E Qij (tu)aiuaju dx + 5 /N U g a;j(tu)aiuaju dz

ij=1 i,j=1
N+2 N2
+ ;tNH V(tz)u? dz + VV (tz) - vu® dz
2 RN RN
_ MtNﬂ»/ uP+! da.
P + 1 RN

Let
M) = {u e X(2)\ {0} : Jo(u) =0},
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where Jg : X(£2) — R is defined as

N/ Za” )o;udjudr + = / Z u)Ojudjude

7,7=1 1,j=1

+¥/V(x)uzdx—k%/VV(x)mlﬁdx N+p+1/| P dz.
Q Q

In other words, M(2) is the set of functions u € X() such that f/(1) = 0.
Moreover, M(Q2) # @ (actually, given any u # 0, there exists ¢ > 0 such that
ug € M(Q) (cf. [23])).

In the appendix of [I4], by using Moser and De Giorgi iterations, the authors
proved that weak solutions of are bounded in L>(RY). Their arguments work
also for p € (1,3). A density argument show that weak formulation holds also
for test functions in H'(R™) N L>°(RY). By [I8, theorems 5.2 and 6.2 in chapter
4] it follows that u € C%. From Schauder theory we conclude that v € C*¢ is
a classical solution of . Moreover, if u € X is a solution, u, Du, D?*u have an
exponential decay as |x| — +oo (see [I4]). By [21], assume that u € X is a C?
solution of . Then, for all a € R, we have the identity

7—a/ Za” (‘3u8udm—7/ Z u)Ojudjude
RN RN

i,5=1 1,j=1
N 1
+(=—a) V(z)u?de + = VV(x) - zu®da (24)
2 RN 2 RN
N
-— Pl dr = 0.
o o) [ e

Observe also that M () is nothing but the set of functions u € X () such that the
identity (2.4]) holds for a = —1. Then, all solutions belong to M ().

Lemma 2.6. For any u € X(Q), the map f, attains its mazimum at exactly one
point t*. Moreover, f, is positive and increasing for t € [0,t"] and decreasing for
t > t*. Also,
c:= inf Ig= inf  max T (u).
M(Q) wEX (Q),uz0 t>0

Proof. We employ a similar argument as in [23, Lemma 3.1]. Set

N
tN tNJFP*’rl
= — a;; (tw)Oud;udr — / ulPt dz.
2/2_; (twdwdjude — = |

Let t; € RY, ty € RT, t; # to, then we have

N
g/(tl) t2 / tN 1 al-j(tlu —tlu Z tlu )&u@u dzx
i,j=1

Jl

N
N
— E tév_l( Z aij(tgu tgu Z tQU )&uajudx

N s
R 3,j=1 i,j=1

N 1
SRR [t
p+1 RN
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By using (A3) we obtain

(9'(t1) — g'(t2))(t1 — t2) < 0.
This implies that g(t) is a concave function. Then by assumption (V3),

N+2
Ju(t) = g(t) + ’ /RN V (tz)u? dx

is a concave function. We already know that it attains its maximum. Let t* be
the unique point at which this maximum is achieved. Then t* is the unique critical
point of f, and f, is positive and increasing for 0 < ¢ < t* and decreasing for
t>th.

In particular, for any v € X(2) \ {0}, t* € R is the unique value such that
belongs to M (Q2), and I(u;) reaches a global maximum for ¢ = t*. O

Similar to [23| Proposition 3.3], we can prove the coercivity of I |a )

Proposition 2.7. There exists C > 0 such that for any v € M(2),
Io(u) > C/ (v + |Vul? + u?|Vul?) dz
Q
Proof. Take u € M(Q) and extend u to X by setting u = 0 on RY \ Q. Choose
€ (0,1), then

tN+p+1
I(ug) — NP (0 /RN Z au (tu)O;udju — Taij(u)ﬁiuaju) dz

tN+2 tN+p+1 5
+/RN( 5 V(tx) — 3 V(m))u dz.

Observe that V(tz) > Vy > §V, > 6V (x), for some positive § € (0,1) depending
only on Vj and V. By choosing a smaller ¢, if necessary, we obtain

$N+2 (N+p+1 (N+2 pN4p+
—V(tr) - V()2 (65— = —5— V(@) = %,

for a fixed constant 79 > 0. Since u € M(Q), from Lemma we obtain that
I(us) < I(u). By choosing ¢ € (O (gl)p 1) small enough, from (A1) we have

(1 =tV I (u)

> I(ug) — tVN TP (u)

tN 2 2
> [ (500 + ()| Vul -
RN \ 2
tN

= ((Cl — P Co) + (O — Cgtp_l)(tu)Q) |Vul|? dz + 70/ u? dx
2 RN RN

tN+p+1

Ca(1 + u?)|Vu| )der*yo/ u? dx

RN

N
> (C’1 CQtpil)\/ (1+t2u2)|Vu|2dx+’yo/ u? dx
RN RN

tN+2

> (Cy — C’gtp_l)/ (1—|—u2)\Vu\2dx+70/ u? de.
RN RN

Note that u = 0 on RY \ Q, we conclude by defining
C1tN+2 C2tN+p+1

¢ = min { 1 _ tN+p+1) 1— tN+p+1 }
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d

Lemma 2.8. Suppose that the domain Q is one of the forms of (2.2). Then
¢ = infppq) Io(u) can be achieved by some positive function u which is a solution
of problem ([2.3)). Moreover, [,u?|Ve|?dz < 400, [, ¢*|Vu|? dz < +o0.

Proof. We divide the proof into three steps.
Step 1. c is attained. By the definition of ¢, there exists a sequence {u,} C M(Q)
such that

Io(up) =c+o(1), Ja(u,)=0.

By Proposition[2.7 {u,} is bounded in X (£2). Hence, by Lemma we can extract
a subsequence of {u,} (still denoted by {u,}), such that

u, = u in X(Q),
u, —u in LYQ), 2 < q< 2%

Since V(u,)? is uniformly bounded in L?(f2), by Sobolev’s inequality we have
|u2 |2+ < C, which gives |uy, |22+ < C. By Holder’s inequality we have

u, —u in L1(Q), 2 < g < 22",

Taking the limit in n, it follows from Jq(u,) = 0 that

N/ Zau )O;udjudr + — / Z a;;(u)Ojudju dz

i,j=1 1,7=1

N 2 1 N 1
+ /V dx+§/VV(a:)~a:u2dm —|—p—|— /| [Pt da
o

By Lemma there exists ¢t > 0 such that Jo(u;) = 0. Extend u,, and v to X by
setting u, = 0 and v = 0 on RY \ Q. In the following we just need to recall the
expression of I((un)t),

c= lim Io(u,)= lim I(u,)> lim infT((u,):) > I(u), Vt>0.

n—-+oo n—-+oo n——+oo

So max; I(u;) = c. Then, by Lemma[2.6] there exists to > 0 such that u,, € M(9),
which implies that c is attained.

Step 2. wu is a radial solution of . We use an indirect argument which is
based on a general idea used in [I4]. Suppose that u € M(Q), In(u) = ¢ but
I{,(u) # 0. In such a case, we can find a function ¢ € X () with the property that
Jou?IVo*dz < 400, [, $*|Vul* dz < 400 but

(Io(u),¢) < —1.

Extend u € X () to X as above and choose £ > 0 small enough such that
1
(I +06),6) < 5, Vi—1]+ o] <<

Let n be a cut-off function,
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Define
U, t—1| > ¢,
y(t)=4 " .
ug +en(t)p, [t—1 <e.
Next we estimate sup, I(7(t)). If |t — 1| < ¢, then

I(y(t) = I(us + en(t)9)

::zu%>4-J/ (I'(uy + oen(t)6), en(t)g) do (2.5)

0

< () - yenl®)

If [t — 1| > ¢, then n(t) = 0, and the above estimate is trivial. Now since u € M (),
for t # 1 we get I(u;) < I(uw). Hence it follows from (2.5)) that

I(u) < I(uw), t#1,

I(u) = $en(1) = I(u) — 3, t=1. (26)

I(ug +en(t)p) < {

In any case we have I(v(t)) < I(u) = c.

To conclude observe that J(v(1 —¢)) > 0 and J(y(1 +¢)) < 0. As a result,
we can find ¢ty € (1 —€,1+ €) such that J(y(tp)) = 0, which implies that v(ty) =
ug, +en(to)p € M (). However, it follows from that Io(v(to)) < c. Thisis a

contradiction.

Step 3. u > 0. Consider u € M(2) a minimizer of Io|j(q). Then the absolute
value |u| € M(2) is also a minimizer. By the classical maximum principle and the
fact that solutions are C?, |u| > 0. 0

3. ProOF oF THEOREM [[]]
For given k + 2 numbers r; (I = 0,1,...,k+ 1) such that 0 =rg <71y < --- <
rE < k41 = 00, denote
A ={zecRY 2| <r}, VQ={zecRY :r_,<|z|<n}
We will always extend u; € X (2!) to X by setting u = 0 on € RV\Q! for every
w € X(Q,1=1,2,...,k+ 1. In this sense, we use I(u;) to replace I (u;) and
J(up) to replace Jqi(u;). Define

k+1
Yki(T‘l,?“g, ey TR1) = {u eX :u= iZ(—l)l_lul, u; > 0,
=1

w 20,0 € X(Q), l:1,2,...,k+1},

M,zt:{ueX:30<7‘1<r2<~-~<rk<7"k+1:+oo, such that
UGYki(Tl,TQ,...,Tk,Tk+1) and EM(Ql),l:LZ,...,kJrl}.

Note that M,f #0,k=1,2,.... In the following we always refer to My and we
drop the ” 4 7. For M, , everything could be done exactly in the same way. By
Lemma [2:6] it is easy to verify that for all u,

k+1 k+1
— _1\l-1 _ _1y\l-1
u= g (=) € My, & I(u) max I( g (-1) (ul)m). (3.1)
=1 1<i<k+1  1=1
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Set
¢, =inf I(u), k=1,2,....
My,

Lemma 3.1. ¢ is attained, k =0,1,2,....
Proof. By induction we prove that for each k there exists uy € M} such that
I(uk) = Ck-

The case that k& = 0 can be deduced by setting § = R”" in Lemma We
suppose the claim is true for kK — 1 and discuss the case k > 1 in the following. For
convenience, we divide the proof of the rest proof into four steps.

Step 1. I is bounded from below on M) by a positive constant. Since

k+1 k+1

I@):I(E:@JV”UO::E:Ayum, Yu € My,
=1

=1

We just need to prove that, for I = 1,2,... k+ 1, Io: is bounded from below on
M(Q) by a positive constant.

For any u; € M(Q), we extend it to X by setting u; = 0 on RV \ QL. By (V1)
and (A1) we have

1 1
I(ul) > */ (C1(1+ul)|Vul\2+V0ul)dx_ S |ul|p+1 dz.
2 Jan pt1
Let
— 1 1
T) = 2 /]RN(Cl(l + )|V |* + Voui) do — P g A | [P d.
Obviously,
— , _ B _ .
= oxinf e dw)) < | it T () =

Let us define
M(Q') = {w € X(Q)\ {0} : g, (1) =0} where gy, (t) = I((ur):)-
Similar to Lemma we know that

¢= inf I .
c ul,elj\I}[(Ql) Ql(uz)

For any u; € M(QY),

N+2 N+2)
;— VO/ ui dz —|—C(7+/ |V |*uf dz

N+p+1/'|wﬂdx
= p+1

N +2
< i Vo/ u?dx + C \uﬂféﬁ? dz,
2 oy ol

for a suitable constant C' > 0. So, by using the Sobolev’s inequality,

N

Ci(N +2 *
M/ |V |?u? de < C/ | M7 dg < C'(/ |V |?u? dx) n
2 Ql Ql Ql
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this shows that [, |[Vu|*uf dz is bounded away from zero on M(Q'). Since the
functional I restricted to M (€2') has the expression

_ +1 p—1
I L Vi|? de + 2 / 24
o) = 2N+p+1/| w| JH_2N+ T1 o et
Cr(p — )/ 2
P d
+N+p+1 Vel de.

We obtain that & > 0, and hence ¢ > 0. This implies that dx (M (Q'),0) > 0. Then
by Proposition we get that I is bounded from below on M (92!) by a positive
constant.

Step 2. We suppose {um, }m>1 be a minimizing sequence of ¢ in Mj; that is

lim  I(tm) =ck, Um € My, m=12....

m——+oo

U corresponds to k nodes, rl 12 ... with 0 < rl <72 <. <71k < 4oc0.

m? i m? ) m

By Proposition 2.7} we know that {u,,} is bounded in X. Set

QL ={zeRY .7t < |z <7l },

. Um, T E Qin,
Uy, = N
0, x g Q.

By selecting a subsequence, we may assume that lim,, oo 7!,
0§7“1§7"2§~--§r’f§+oo.

Next we prove that 7! # ri=1 | = 1 2,...,k. Here we denote r0 = 0. If there ex-
ists some [ € {1,2,...,k} such that rt= rl 1 , then lim,, ¢ o 7%, = lim, 400 it
We denote the measure of Q! by [QL |, so that QL] — 0 as m — +o0. From (Al)
and the fact that {u,,} is bounded in X, we have

= 7!, and clearly

N

1 1
I(ul) = 3 /an <”Z_1 aij(ufn)@ulmﬁjuﬁn —+ V(uin)Q) dx — P o lul [P+ dz
1 1
<= 1 2 S — Lptld
2/%(Cx T+ Vacla ) e = 5 |
1
<C - pi—i— T |ulm|p+1 dz.

(3.2)
By using Holder’s inequality,

2
/Ql |uin‘2dx§ (/Ql |uin|P+lda:)P+1 |Q£n|17m

m m

i.e.

L“ P
/ [ d > (/ b2 da) 12,7 (33)
QL .
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Since ul, € My,

N+p+1/ |ul \p“dx
ptl oy "

N ol 1 al
! 1 ! ! ! ! 1
=5 /le i]zzzl i (Up, ) Ditty, Dty da + 3 /% Uy, ijZZI a;j (U, ) Oty Oy, A

2 Ja, 2 Ja, " (3.4)
_ GV +b-2)

- 2

1
—fC’o/ (ul )2 da
2 " Ja

L
m

N -2 N —
> —Cl( +b-2) / (ufn)2|Vuﬁn|2dx+ —( +3-p)V / (uﬁn)2 dz.
2 le 2 Ql

+M/ V(o) ul)2do+ 5 [ VV(@)-a(ul,)?do
Q

N +2
[ v P+ 202 [ () s
o, o,

m

On the other hand,

N 1 N+3-p)W
Yrpt- / lul [P dz < W+3-p)Vo / lul > dz + C/ |ufn|% dz,
1 Ja, 2 o, ok,

for a suitable C' > 0. So by using Sobolev’s inequality

M/ lul 12| V! \de<C/ |l \&%’zdm
2 a, T ey,

<’ /Ql |u£n|2|Vulm|2dx‘

m

This shows that [, |ul,|?|Vul,|*dz is bounded away from zero on M. This
implies that

/ lul,|*dx > > 0.
o

1
m

Then from ([3.3) we obtain

ptl
| e ([P ae) ek 2 5 0, 5

Note that [Q},| — 0 as m — +o0 and p > 1, we have

/ lul [P*1daz — 400, as m — 4oo0.
1

m

This and (3.2) implies that I(ul,) — —oo as m — +oo, which contradicts Step 1.
Thus ! £ 71 1=1,2,... k.
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Step 3. r¥ < +oo. If r¥ = 400, then lim,, o ¥, = +00. Since uk, € M(QF),
from (V1), (V2), (A1) and (A2) we have

I(uy,)
1 N )

== E (YO uE O.uF k2 L pt1
2/93 <z—,j_1a”(um)8‘umaf“m*V(m)(“m) ) da prl Iu 71 dr

N
Qk,

ij=1
N—|—p+1 / Za” 8u 8u dx

/ Z al; (uk)ouk, 0,uk, da +¥/ V(z)(uk)? da

i,j=1

1
+ - VV(z) - x(uk))? dx)
2 Jox,

1 N
> | - —
_(2 2(N+p+]_) N+p+1 /kaalj 8U 8u dz

m g,j=1

c 2
* ((% - 2(NN+ZQ+ 1))V0 2N +(1)9+ 1)) /%(“5") dz

b
I A Vil [2d
2(N+p+1)/Q Vet *d

1 (p—1)Vo—Co
> Cq(1 k2 \V4 k 2d —/ k 2d
_N—l—p—&-l/gfn (L () [V + 2N+ p+1) m(um) o

b
. v 24
+ (N+p+1)/ [Veum]*d

> Cn?(uf,),

where

20,k ) = W2 IV 12 da W2 da.
Rh) = [0+ @IV Far s [ k2

m m

From Step 1 we know that [, |ul|?|VuF,|>dz is bounded away from zero on

M(QF ). Then there exists some § > 0 such that

/ |uk, | dz > 6o > 0.
k

m

This and (3.4) imply that there exists some d; > 0 such that

/ [uk, [P dz > 6, > 0.
k

m
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Then from (3.2)), we have
1
Iut)y<c - — |uf [PT1 da
pH 1y,

<C+ C/ |uk, [Pt dx
an

<cC /Q NE aar( ( /Q ! ar) " +1) (3.6)

<C |uf [P da(s7t 4+ 1)
Q’;m

< C/ [uk, [P da,
Q'Ircn
for some suitable C' > 0. It follows from ({3.5]),(3.6) and Lemma that
0 (uy,) < I(uy,)

SC/ [uk, P! da
Qn

<c / ik, 2k, da
Qk

m

A=N)(p—1)
2

<Club [ Pl e
Qr,

<o) T e,

Thus
0 () = Clrg, [V (3.7)

From (3.7) we have

n?(uk) — +oo asm — +oo.
So (3.5) implies

I(uk) = 400 asm — 4oo0. (3.8)

By the inductive assumption and ([3.8)), for € > 0 fixed we choose M > 0 such that
Twk) >cp—cp1 46, |[I(un) —cxl <e, asm > M.
Then we may define 4(z) € My_1 by
us (x), e ass <k,
(T’) = k
0, x e Q.

Hence (i) = I(uy) — I(uf)) < cx +e — (¢ — c—1 +€) = c—1 as m > M, which
contradicts the fact that c;_; = infy;, | I(u). Then, we obtain r* < +oo0.

Step 4. ¢, is attained. By Proposition [2.7]we can find a subsequence (still denoted
by {u,}) such that

Uy — U in X,

Up — u  in LPTHRY).
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Set Q! = {x e RN|r!=t < |z < v}, foralll = 1,2,..., k+1,7° = 0 and r**! = +o0.
Lemma implies that ¢ = inf,c iy I(u) is attamed by some positive function
4! which satisfies the boundary-value problem

N N
1 _
_ Z 0;(a;j(u)ou) + 3 Z al;(w)Oudju+ V(z)u = |ulf"'u, €
i,j=1 1,5=1
U|BQL =0.
_ k+1, a\i—1x1 ~1 _ l
Define uy, = Y, (=1)""'a'(z), (@' (x) = 0,z ¢ Q). Then, clearly, up € M.
Consider the coordinate transformations ®,, : RV — RN, m =1,2,..., defined by

T
D (z) = @m(|$|)m’ T e RN;

where
(Tl _ T‘l_l)(r _ T‘l_l) B
Pm(r) = 1 —1 e
T —Tm

For any r € R, clearly ®,,(Q ) = Q! Let y = ®,,(z) € Q, ifx € QL . Tt is easy to
show that

[Vu(y)| = (RL,) ™' Vu(z)], (3.9)
dy = |J. | da, (3.10)
® N-1
Lo (2T o (3.11)
r
where
! pl— gl I N-1 N 1—-N
RBo=— 10 Im= (em(2)” (em(lzD) |2,
l -1 N—1 l -1 N-1
. ooty . rtor
amf(mln{a,—rigl }) , Amf<max{m,—r£;1}> .
Clearly,
a"H'LR'i”/ S |J’rln| S A'l”'l/R'i”/7 (312)
and
R, —1, d, -1, A —1, J -1, asm— +oc. (3.13)
Let
~(t tNl/ Zaljtu )yosul, 6u dy
o5
N 1 gl ! ! N+2 yy 1 \2
Q = Q
tN+2 N + p + 1
[ V() () dy MT/IMV“dy

From Lemma there exists some !, > 0, such that (t},) = 0, thus (ul,), €
M (9. Now we claim that

th —1 asm— 400, l=1,2,...,k. (3.14)
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Indeed, since y(t.,) = 0, we have

thl/Zaw 3u8u dy
o)

1,7=1
/ Z a;;( Lot 05l dy
o 7,7=1
N+2 th yN+2
# A2y /Q VP + [ V() )

_N+p+1

L2 [ b ptay =o.

(3.15)
We can prove that there exists a constant £ > 0 such that

0<th <f<+o0.

By selecting a subsequence, we may assume that lim,, ;. t,, = t.. Using (3.9)-

(3.13]), we have

mlirf@/g)l Zla” au 0; u dy
I (3.16)
:mlilﬂoo/ﬂl Za” LYol apud, de,
m g,5=1
li m) Ot O, d
Jim /Q L 321 i b 8l dy
" (3.17)
:mlir?&oo/ﬂl Z al (¢ ut, ol Ol da,
m 7,7=1
lirJrrl V(L y)(ul,)?dy = lim V(t,x)(u,)? dx, (3.18)
m——+oo Ol m——+o0 le
lim VV(th,y) -y(ul,)*dy = lim VV(t,x) x(ul,)?dz,  (3.19)
m——+00 Ol m— 400 Ql
lim / lul, [P dy = lim Jul, [P da. (3.20)
m—+o0 Jou m—-+00 QL

Substituting (3.16))-(3.20) in (3.15)) we find that

. LyN=1
ml_l)l’_Ii_loo t /Ql Zaw au (‘)u dx
m g,5=1
/ Z ai;( Lol 9l d
4,j=1
N 9 tl N+2
+T+<tin>N+l v<tinw><ufn>2dx+% V(1) -(ul,)? dr
QL Q

m
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N+p+1
- pT(tlTn)N+p Al |Ul7n‘p+1 d$> =0. (321)

But for ul, (x) € M(,), we know that

N

N
/ Z aij(ul,))0ul, 0;ul, do + - / ul Z aj; (uh, ) Oyuly, Ojul, dx
2 Jou 2
m g,7=1 m i,j=1
N +2 1
e / V(t x)(ul ) de + = VV(z) - x(ul,)? dz (3:22)
2 Ol 2 Qin
— M/ |ul ‘p+1 dx = 0.
p+1l Jo, "

Set

N
+ 7/@ ul, Z ay;(sub,)O;ub, Oul, da

N 9 N+2
isNH V(sz)(ul,)?dz + i
2 al, o,
— 7N+p+1sN+p/ |ulm\erl dz.
p+1

VV (sz) - x(ul,)? dx

m

(3.23)
From the proof of Lemma we know that h(s) has only one zero on (0, +00).

So, from ([3.21)-(3.23) we get that t. = 1. Moreover,
lim I((u)p 1) = lim I(ul).

m— 00 m— 00

On the other hand, since I(a!) = infpr ) £(u) and (ulm)tz € M(9,), we obtain

1(@') < I((up)a,)-
Hence lim,,— 400 I((Ulm)tgn) >I(a'),1=1,2,...,k+1. Thus

k+1 k+1
_ : _ Iy _
cp = lim I(um) —mgrﬂooZI ;Iu =
Since ux € My, we have that ¢, = I(ux), which means that ¢ is attained. O

Proof of Theorem[I.1. By Lemma [3.1] there exists u 6 Mk which attains c,. We
will prove that wu is indeed a solution to problem . For convenience, we
denote u := ug. Thus we get k nodes: 71,79, ...,7%, 0 <11 <719 < -+ <71 < 400.
Clearly, u satisfies in E={x eRY :|z|#r,l=1,2,....,k+1}. We know
already that u is of class C? on E and satisfies, for z € E

N N
- Z 0j(a;;(u)Ou) + % Z ag; (w)Oiudju+ V(x)u = u[P " u. (3.24)
i,j=1 i,j=1

We will prove that u satisfies (3.24) for all x € RV,
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We use an indirect argument. Assume that for some [ = 1,2,. .., k, there exists
xo € RN |zg| = r; such that does not hold. To complete the proof, it suffices
to show that for a;;(u) = (14 u?)d;;, there exists a contradiction.

The existence of the contradiction can be proved similar to that as in [I1], by a
slight modification, their arguments worked also for p € (1,3]. We just sketch the
proof. We set r := |z| and treat the special case a;;(u) = (14 u?)d;; as an ordinary
differential equation:

R L e R (T A O

d

where / denotes . Then our assumption becomes to

dr”

v, = lim u/(r) # lm o'(r) =u’.
7"—>7"lJr =T

Firstly, we construct some w such that w € M. Let

'(/J(h) — /7'H~1 (l(hIQ + Vh2 + thIQ) _ L|h‘p+l)rN—1 d’r
o 2 p+1 :

-1

Then, according to the definition of u, there holds

Y(u) < Y(w).

However, under the assumption u/, # u’, we can prove that ¢(w) < v¥(u) (cf.
[I1]). This is a contradiction. As a result, we complete the proof. O
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