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NONUNIQUENESS AND FRACTIONAL INDEX CONVOLUTION
COMPLEMENTARITY PROBLEMS

DAVID E. STEWART

ABSTRACT. Uniqueness of solutions of fractional index convolution comple-
mentarity problems (CCPs) has been shown for index 14+ « with —1 < a <0
under mild assumptions, but not for 0 < o < 1. Here a family of counterex-
amples is given showing that uniqueness generally fails for 0 < o« < 1. These
results show that uniqueness is expected to fail for convolution complemen-
tarity problems of the type that arise in connection with solutions of impact
problems for Kelvin-Voigt viscoelastic rods.

1. CONVOLUTION COMPLEMENTARITY PROBLEMS

A convolution complementarity problem (CCP) is the task, given functions m :
[0,00) — R™*™ and ¢ : [0,00) — R", of finding a function z : [0, 00) — R™ where

t
K>z(t) L / m(t —7)z(r)dr +q(t) € K* for almost all ¢t > 0, (1.1)
0

where K is a closed and convex cone (z € K and a > 0 implies ax € K) and K*
is its dual cone:

K'={ycR"|2Ty>0foral zec K}. (1.2)

Most commonly K = R, for which K* =R} = K . Also note that “a L b” means
that a and b are orthogonal: a”b = 0. Convolution complementarity problems
were introduced by this name in [5], although this concept was used by Petrov and
Schatzman [4].

One reason for studying CCPs is their use in studying mechanical impact prob-
lems. In particular, Petrov and Schatzman [4] studied the problem of a visco-elastic
rod impacting a rigid obstacle:

pust = Ege + Puiee + f(t,2), 2 € (0,L),
N(t) = — [Bug(t,0) + Buts(t,0)]
0= —[Bug(t, L) + Bus(t, L)],
0 < N(t) L u(t,0) >0.
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Here u(t,x) is the displacement at time t and position x € (0, L); is the
equation for one-dimensional Kelvin—Voigt visco-elasticity; is the boundary
condition for a contact force N(t) applied at « = 0; is the boundary condition
for a free end at x = L; and finally, is the Signorini-type contact condition at
x = 0, indicating that separation (u(¢,0) > 0) implies no contact force (N(t) = 0)
while a positive contact force (N (t) > 0) implies contact (u(t,0) = 0). Because the
system is time-invariant, u(¢,0) can be represented as u(t,0) + fg m(t—T7)N(7)dr
where @(t,z) is the solution of the linear system with N(¢) = 0 and no contact
conditions, and the kernel function m(t) ~ mot'/? as ¢t | 0 with mg > 0. While
existence of solutions has been demonstrated for these problems [4, [6], uniqueness
has not. This paper shows why.

The index of a CCP is the number 3 where (d/dt)?m(t) = mq 6(t) + m1 (t) with
d the Dirac-¢ function, and f[O,e) |l(d/dt)Pmy(t)||dt — 0 as e | 0, and myg is an
invertible matrix. If we allow fractional derivatives in the sense of [2], then 3 need
not be an integer. Typically, for index 3 we have m(t) ~ mot®~! as ¢t | 0. Basic
results for fractional index CCPs with index 0 < § < 1 were published in [9]. In
particular, combining the results of [5], [9], and [6] we can say that under fairly
mild regularity and positivity conditions (related to the index), solutions exist for
0 < B < 2 and are unique for 0 < g < 1. These results can be extended to prove
existence of solutions for index 3 = 2. However, it is known that solutions are not
unique in general for § = 2. Neither existence nor uniqueness hold in general for
B > 2 (see [8, §3.2.5]). For clarity as to what exactly has been proven for 1 < § < 2,
we quote the main results of [6] §8]:

Theorem 1.1. If m(t) = mot?~! +my(t) for t > 0 with mg > 0, my Lipschitz,
1<B8<2, a=p-1,q¢ € H¥?*0,T*) with T* > 0, and q(0) > 0, then there is a
solution z(-) € H=*/2(0,T*) of

0<z(t)L(m=x2z)(t)+qt)>0 forallt>D0.

As yet, an open question has been whether uniqueness holds for 1 < 8 < 2. This
paper answers this question in the negative: there are functions ¢(-) for which there
are at least two solutions for z(-) with m(¢) = t* for 0 < a < 1 where & = f—1. The
construction of a counter-example to uniqueness is somewhat involved. It proceeds
in a similar manner to Mandelbaum’s counter-example to uniqueness for certain
differential complementarity problems [3]: we first prove equivalence of uniqueness
of solutions for for n = 1 to non-existence of a non-zero function ¢ : [0,00) — R
satisfying

Ct)Y(m={)(t) <0 forallt>0. (1.7)

Given such a ¢ we are able to construct both a function ¢(-) a pair of solutions 21 (+)
and zz(-) of (L.1). The next task is then to construct a suitable ((-) # 0 satisfying

(1.7) for m(t) = t=.
We define the floor of a real number z to be |z| = max{k € Z | k < z}, and the
ceiling of z to be [z] =min{k € Z | k > z}.

2. MANDELBAUM’S CONDITION FOR CCPs

In [3], Mandebaum considered differential complementarity problems of the form

dw

o 0 =Mz(t) + (), w(0) = q(0), (2.1)
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0<w(t) Lz(t)>0 (2.2)

for all t. He was able to show that multiple solutions may exist even for M =
2

-1
3 1
used was the following theorem.
Theorem 2.1. The system (2.1), (2.2) has a unique solution if and only ifw(t) o
¢(t) <0 and dw/dt(t) = M{(t) fort >0 and w(0) = 0 implies that ((t) = 0 for all
t>0.

which is positive definite, but not symmetric. The tool that Mandelbaum

Note that “a o d” is the Hadamard product given by (a o b); = a;b; for all i. In
the scalar case (n = 1), the Hadamard product reduces to the ordinary product of
real numbers.

Theorem 2.2. The system with n = 1 has unique solutions for all q(-) if and
only if C(t)(m *)(t) <0 for all t > 0 implies ((t) =0 for allt > 0.

Proof. The proof is based on Mandelbaum’s proof. The sufficiency of the condition
for uniqueness can be shown via the contrapositive: if the system has two
distinct solutions z1(-) and zq(-) then we can set ((t) = 21 () — 22(t) not identically
zero where

C(E)(m* Q)(t) = (21(t) — 22(t))(m* 21 + ¢ — m* 22 — q)(t)
= z1(t)(m* 21 + q)(t) — z1(£)(m * 22 + ) (¢)
— 2(t)(m x 21 + ) (t) + 22(t) (m x 22 + ¢) (1)
=—z1(t)(m* 2o + q)(t) — 22(t)(m*x 21 + q)(t) <0

for all t > 0, since z1(t), z2(t) > 0, (mx* 21 +q)(t), (m* 22+ q)(t) > 0 and 21 (t)(m *
21 4+ q)(t) = 22(t)(m * 29 + q)(t) = 0.

To show necessity, we again use the contrapositive, and suppose that there is a
function ¢(-) which is not everywhere zero and {(¢)(m x {)(¢) < 0 for all t > 0. Let
w = m* (. Note that w(t)((t) < 0. We wish to find functions ¢(-), z1(-), and za(-)
such that z1(-) and z(-) are both solutions to (I.I). Let E* = {t > 0| w(t) > 0},
E-={t>0]w(t) <0}, and E° = {t > 0 | w(t) = 0}. Let w;(t) = max(w(t),0)
and wy(t) = max(—w(t),0). For t € BT we set 21(t) = 0 and 2z2(t) = —((t) > 0; for
t € E- weset 21(t) = ((t) > 0 and 22(t) = 0; for t € E° we set z;(t) = max({(t),0)
and z2(t) = max(—((t),0). Then ((t) = 21(t)—z2(t) and z1(t), z2(t), w1 (t), wa(t) >
0 for all t > 0. For t € ET, wi(t)z1(t) = 0 since 21(t) = 0, and wa(t)22(t) = 0
since wy(t) = 0; for t € E~, wy(t)z1(t) = 0 since wy(t) = 0, and wa(t)2z2(t) = 0
since z3(t) = 0; for t € EY, wy(t)z1(t) = wa(t)22(t) = 0 since wi (t) = wa(t) = 0.
Thus both (z1(-),w1(+)) and (22(+), w=2(-)) satisfy the complementarity conditions.
We now check the dynamic conditions.

Let q(t) = w1 (t)—(m=z1)(t) for all t > 0. Then, clearly, wy(t) = (m*z1)(t)+q(t).
On the other hand, wq(t) — w2 (t) = w(t) and 21 (t) — z2(t) = ((¢) for all t > 0, so

wa(t) = wy(t) — w(t)
= (m# 21)(t) + q(t) — (m * ()(t)
= (m* (21 = Q) () + q(t)
= (mx22)(t) + q(1).
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Thus the dynamic conditions also hold, and we have two distinct solutions of (1.1)),
as we wanted. O

This theorem can be extended to the n > 1 case by working componentwise.

3. CONSTRUCTING THE COUNTER-EXAMPLE

Much like the examples given for related non-smooth dynamical systems [I]
3, [7], there is a self-similar structure to the counter-example created here. The
counter-example involves non-analytic ¢(-). The construction begins with a “bump”
function 6 : R — R where 6(s) > 0 for all s € R, suppé C [-1,+1], f 0(s)ds =
1, and 0 is C*°.

Let 1), (t) =t for t > 0 and 1, (t) = 0 for t < 0. We will consider 0 < o < 1;
the CCP

0<2(t) L (Yaxz2)(t)+q(t) =0 (3.1)
then has index 1 + a. The case a = % corresponds to the viscoelastic impact
problem in Petrov and Schatzman [4] where, asymptotically, m(t) ~ mgy/t ast | 0.
The case m(t) = t* has additional structure that we will exploit in the construction
here. We will construct a function ((t) satistying ((¢)(¢po * ¢)(t) < 0 for all £ > 0
and ((t) =0 for t < 0.

Let ¢1(s;m) = n~10(n~1(s —3)) where n > 0 and 5 are parameters to be deter-

mined. We set
C(tim) = (=D*p " (v tm) (3.2)
kEZ

where 0 < i, 1 < 7 are to be determined. Let s = 3(1 ++). Note that (i(s;n) —
d(s —5) as n | 0 in the sense of distributions where J is the “Dirac-¢ function”. If

we write R
C(t) =Y (=D uFy ot —17"3),
kez

then ¢(;n) — Zas n | 0 in the sense of distributions, and in terms of weak*
convergence of measures.

Note that
Cvtm) =D (=1 G (v )
keZ
= Z(*l)hl TG (n) (E=k+1) (3.3)
te
= —MZ )~ G () = —pg(t;m).
tez
Also note that
("/’a*f /wat_T 77)d

:/0 (t—7"'0)"flo)y " do (o ="7)

= yie / (7t — 0)* f (o) do
= # ) (1),
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Thus —py (e * (1)) (t) = (o * C(;1))(yt). From these relationships, if
CEtn) (Yo + C(5n))(t) < 0 for 1 <t < v, then ((t;m)(Ya * C(31))(t) < 0 for all
£ > 0. The reason is that C(vtin) — (—uC(tin)) and so C(vt5m)(a * C(5m))(7E) =
(=) (= )¢5 1) (Yo * C(5m))(t) and therefore

sign C(;1) (Ya * C(51))(t) = sign (vt 1) (Y * C(51)) (1)
Once we know that ((¢;n)(ve * C(;1))(#) < 0 for all t € [1,7], it follows that
C(t;m) (e % C(5m))(#) <0 for all £ > 0.

Since supp¢ N [1,7] = 5§+ [—n, +n], it is sufficient to check that ((t;n)(1a *
C(sm)(E) <0 fort € 4 [—n,+n]; since ((t;n) > 0 for 1 < ¢t <+, it suffices to
check that (¢q * ((+;n))(t) <0 for t € 5+ [—n, +n]. We will consider the limit as
7 | 0, so it becomes a matter of ensuring simply that (1, * (+;7))(5) < 0. There
are some additional technical issues that must be addressed, but this will be done
later.

Now we compute 1, * ((;1):

(o * CEm) () = D (=1 (W * G (F5)) (1)

kEZ

Y)Y T (W * G (5 m)) (V)

I
7
|
—_
S~—"
B
t\
>
—~

= Y DM W x Glsm) (M)
k=|Int/In~v]
since (1(s;n) = 0 for s < 1 and therefore (¢, * (1(;n))(s) = 0 for s < 1. In
particular, for 1 <t < ~,

o0

(a* CEm)(E) = D (=) (") 7  (Wa * C1(5m) (7).

k=0
For this sum to converge, we need py > 1: asymptotically (¢ * (1(+;1))(s) ~ s®
as s — 00, 80 (Yo * C1(:;m)(Y¥t) ~ (v¥)Ft* as k — oo. Furthermore, (1, *
Gl5m)(s) = tals —5) = (s —5)%asn | 0. Sofor 1 <t <1,

(o * CEm)(E) = Y (=D (") * (vt =9 asnlo
k=0
= (D)) -~
k=0
In particular, for t = 5,
(o *Cm)(E) = D (=DF(uy) "1 =752 (E)™ asnlo.
k=0

Note that the term in the sum with £ = 0 is zero, and so can be ignored in the
limit as n | 0. So we now want to evaluate the sum

oo

B, y) = Y (=D (uy) 1 =), (3.4)

k=1
and check that the value is negative Note that if yy = p > 1 is held fixed, then

0(p,7) = g ()P R = 7R = R (- D)Fp T = —pT /(L4 p7h) < O as
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~ — o0. Thus for sufficiently large v > 1 with puy = p > 1 fixed, we have ¥(u,y) < 0
as we want. Also, pv(u,y) — —(1 —y71)® as p — oo with fixed v > 1.

3.1. Regularity of ¢ and ¢, *(, and choice of parameters. First we consider
the question of how to ensure that ¢ € L'(0,7): Since ||¢1(:;n)|| = 1 independently
of n > 0, we have

CCmlzom < 3 = =y
k=0 P

which is finite as long as p = uy > 1. Note that this bound is independent of > 0.
Also, 1), is uniformly Holder continuous: |14 (t) — ¥ (s)| = [t* — s%¥| < |t — s|* for
any s,t € R as 0 < o < 1. Combining these results shows that for s,¢ € [0,7],
(et C(5 M) (O (a3 ()] < [t=371C 1) 23 (0,0)- That is, (b +C(5m)) lioy
is uniformly Holder continuous, independently of n > 0.

Thus, provided is negative, for sufficiently small 7 > 0, we have ((¢;1)(¢q *
C(sm)(t) < 0forall 1 <t <~. To see this rigorously, recall that ((t) # 0 for
1 <t < yonlyif |t —3 < n Choose n > 0 sufficiently small so that |(¢, *

CCsm)(3) = 0k, < 118(p,7)|. Now forlt — 3] <,
W M) = D001 < [0 M) — (W # CCm) B+ 8007
< It = FICC Ml 0) + 31008

« 1 ~
<nNCC Lo, + Zlv(u, 7)I-

Choose 1) > 0 sufficiently small so that it also satisfies ([ (+;7) | 21 (0,,) < [0(1,7)]-
Then ((t;n) # 0 and 1 < ¢ < v imply that (Yo * ((5;1))(t) < 20(k, ) < 0. Since
C(t;m) >0 for 1 <t <+, we have ((t;1) (Yo * C(;7))(t) <0 forall 1 <t < 7.

Consequently, from the self-similarity property (3.3)), ((t;1)(va * C(:;7))(t) <0
for all t > 0.

If we allow p > 1 we can get much stronger regularity on ¢. If g > 1 then by
the Weierstass M-test (see, e.g., [I0, Thm. 3.106, p. 141}), {(:;n) is continuous.
Furthermore, if yy™ > 1, ¢ is p-times continuously differentiable for p =1, 2, .. .,
again by the Weierstrass M-test but applied to ¢ (”)(~; 7n). This is equivalent to the
condition that py=P~! > 1.

If we set p = 2y™P*1 then

P B y) =AY (DR =)
k=1

=P (DRt TR - R
k=1

as y — o0.

So for sufficiently large v > 1, 0(i,y) < 0. Then py = p = 24P+ s0 we set p = 27P.
We then choose n > 0 sufficiently small so that {(¢;1)(¥a*C(;n))(t) <O0forl <t <
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7. Since ¢(y~*t;1) = (—p) 7FC(tim) and (o * C(1m)) (v ) = (—py't)"F (o +
C(sm)(t), we have C(t;m) (Yo * ((m))(t) < 0 for =8 < ¢ < 47"+ for any k € Z;
thus C(¢;1) (Yo * C(+;n))(t) = 0 for any ¢t > 0. In addition, (¢ * ((-;7))(0) =0, so
C(t;m) (axC(+5m))(t) < 0for all t > 0, and there is a counter-example to uniqueness
as we wanted. Furthermore, the counter-example is in CP.

4. EXTENSION TO GENERAL m(t) ~ mot®

Here we assume not only that 0 < a < 1 but also that mg > 0. If mg < 0 so
that m(t) < 0 for 0 < ¢ <T; with 71 > 0 and #(¢) is a positive smooth function
of t, then for ¢1(t) = —(m * 21)(t) not only is z(t) = z1(¢) for t > 0 a solution to

0<z(t) L(mx*z)(t)+q(t)>0 forallt>0,

but z(t) =0 for 0 < ¢ < T is also a solution as ¢;(¢t) > 0 for 0 < ¢ < Tj.

The assumptions made on m are that m(t) ~ mot®, m/(t) ~ moat® ! ast | 0,
and m/(t) is continuous in ¢ away from ¢ = 0. This implies that on bounded sets,
m(+) is uniformly Hélder continuous: given a bounded interval [a, b], there is an M
where |m(t) —m(s)| < M |t — s|® for all s,t € [a, b].

Note that dividing m(t) by mg > 0 does not affect the existence of multiple
solutions as is equivalent to

0<z(t) L ((m/mg)*2)(t) +q(t)/mog >0 forallt>0.
So we consider without loss of generality the case where m(t) ~ t®. As in Section
we look for a non-zero function ¢ : [0,00) — R where ((¢)(m * ¢)(t) < 0 for all
t > 0. The constructed ¢ from the previous Section will also work here with some

small modifications.
Let r(t) = (m(t)/¢a(t)) — 1. Note that r(t) — 0 as ¢t | 0. Using (3.2]) to define

C()a
C(t) =Y (=D p Gty em),
keZ
we can show that for v/ <t < %’y_j(l +7),

oo

(m*Q)(t) = > (=1)Fp ™ (m* G (+*1m)(t)
=
= Y (=DFpFyTFm(t —y7F8) asn Lo,
k=j+1

using (m * (1(;m))(s) — m(s — ) as n | 0, and m(0) = 0. We need to distinguish
between the value and the limit. First, note that if suppg C [§ — p,5+ p| and g is
non-negative, then for continuous f,

s ds— 1@ [ gtsrds| < max 156)— @) [ os)ds.
/.

S—p sis—3|<p

Then
[(mx G (v 5 m) () — v Fm(t — y7F8)| < M(y Fn)*y ™% = Mp~(y' )7~

So, for t = v 775,

o0

(m * ()(’y_j/s\) - Z(—l)k,u_k'y_km((l — fy—k'*‘j),y—jg)
k=3
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o] 14+« 7jM f
— ay— a Hy n
< Z'u k(’}/1+ ) kM’q _ ( )

2 = ()1
Note that
S (DR T Em((L =y )y I8)
k=j+1
= (=1 ()Y (=D ()" m((1 =7y 5
=1
= (1P ) S ) (A IR+ (7 )
=1
= (=1 (uy"T ) D (D) () A =) L+ (1 =)y )]

Since r(t) — 0 as t | 0, for every € > 0 there is a § > 0 where 0 < ¢t < ¢ implies
|r(t)| < e. Thus for j > —1In(§/3)/In~, |r((1 — v 5)v773)| < ¢, and so

D () A=) (=8| €
’;( Hm) ) =i ()~
Since v/ <t <4 7*! and ((t) # 0 implies |t—7 73] < y~77n, we can use the bound

(m % OE) — (m o O(I9)] = M=) ClLps0pmmny € My (un) (1 —
(uy)~1) for |t — 798| < y7In. Thus for v/ <t <4771 and ((t) # 0,

[(m o« Q)() = (=1)78 (uy"") 751, )]
Mn® ()77 (py ) T Mn® 5 (py ) e

- 1= ()t 1 — (uytte)-t 1—(uy)t
. Mn* Mn~ s%e
14+«
< (™7 R R (W)‘l]'

Note that v > 1 so that uy'*® > pvy > 1. By choosing n > 0 and € > 0 sufficiently
small, we can guarantee that the sign of (mx()(¢) for vy <t <y~ 9L and ((t) #0
is the sign of (—1)70(u,~). After choosing > 0 and € > 0 so that this holds, we can
ensure that ((t)(m=()(t) < 0fory 7 <t <yt where j > J := [—1n(6/3)/In~].
Thus ¢(t)(m *¢)(t) <0 for all 0 < t < y~/. By setting Z(t) =((t)for0<t <~/
and E(t) =0 for t > v~/ (noting that ((t) = 0 in a neighborhood of y=* for any
k € 7), we see that {(¢)(m*C)(t) < 0 for all t > 0, and thus we have non-uniqueness
of solutions for where m(t) ~ mot® and m/(t) ~ moat®~! as ¢t | 0 provided
mo>0and 0 < a < 1.

5. CONCLUSIONS

Non-uniqueness of convolution complementarity problems of the form with
convolution kernel m(t) ~ mot® and m/(t) ~ moat®™ ! with mg > 0 and 0 < a <
1 has been demonstrated via a generalization of a result of Mandelbaum. Note
that the counter-examples can belong to any space C?, p =1, 2, 3, .... Counter-
examples must have infinitely many oscillations in a finite time interval, and so
cannot be analytic. The main non-uniqueness result is of particular interest for
questions of contact mechanics, as the perpendicular impact of a Kelvin—Voigt
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viscoelastic rod on a rigid obstacle can be model by such a CCP (see [4]). Note
that this non-uniqueness holds in spite of the existence of an energy balance for this

sit
ob

uation [4]. By contrast, the perpendicular impact of a purely elastic rod on a rigid
stacle does have uniqueness of solutions, by using CCP formulations but with a =

0 [5]. Multidimensional contact problems then either have a problem of existence
(for purely elastic bodies) or with uniqueness (for Kelvin—Voigt viscoelastic bodies).
How this can be resolved is a subject for future investigation.
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