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NONUNIQUENESS AND FRACTIONAL INDEX CONVOLUTION
COMPLEMENTARITY PROBLEMS

DAVID E. STEWART

Abstract. Uniqueness of solutions of fractional index convolution comple-
mentarity problems (CCPs) has been shown for index 1 + α with −1 < α ≤ 0

under mild assumptions, but not for 0 < α < 1. Here a family of counterex-

amples is given showing that uniqueness generally fails for 0 < α < 1. These
results show that uniqueness is expected to fail for convolution complemen-

tarity problems of the type that arise in connection with solutions of impact

problems for Kelvin-Voigt viscoelastic rods.

1. Convolution complementarity problems

A convolution complementarity problem (CCP) is the task, given functions m :
[0,∞)→ Rn×n and q : [0,∞)→ Rn, of finding a function z : [0,∞)→ Rn where

K 3 z(t) ⊥
∫ t

0

m(t− τ) z(τ) dτ + q(t) ∈ K∗ for almost all t ≥ 0, (1.1)

where K is a closed and convex cone (x ∈ K and α ≥ 0 implies αx ∈ K) and K∗

is its dual cone:
K∗ = {y ∈ Rn | xT y ≥ 0 for all x ∈ K}. (1.2)

Most commonly K = Rn+, for which K∗ = Rn+ = K . Also note that “a ⊥ b” means
that a and b are orthogonal: aT b = 0. Convolution complementarity problems
were introduced by this name in [5], although this concept was used by Petrov and
Schatzman [4].

One reason for studying CCPs is their use in studying mechanical impact prob-
lems. In particular, Petrov and Schatzman [4] studied the problem of a visco-elastic
rod impacting a rigid obstacle:

ρutt = Euxx + βutxx + f(t, x), x ∈ (0, L), (1.3)

N(t) = − [Eux(t, 0) + βutx(t, 0)] , (1.4)

0 = − [Eux(t, L) + βutx(t, L)] , (1.5)

0 ≤ N(t) ⊥ u(t, 0) ≥ 0. (1.6)
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Here u(t, x) is the displacement at time t and position x ∈ (0, L); (1.3) is the
equation for one-dimensional Kelvin–Voigt visco-elasticity; (1.4) is the boundary
condition for a contact force N(t) applied at x = 0; (1.5) is the boundary condition
for a free end at x = L; and finally, (1.6) is the Signorini-type contact condition at
x = 0, indicating that separation (u(t, 0) > 0) implies no contact force (N(t) = 0)
while a positive contact force (N(t) > 0) implies contact (u(t, 0) = 0). Because the
system is time-invariant, u(t, 0) can be represented as û(t, 0) +

∫ t
0
m(t− τ)N(τ) dτ

where û(t, x) is the solution of the linear system with N(t) ≡ 0 and no contact
conditions, and the kernel function m(t) ∼ m0t

1/2 as t ↓ 0 with m0 > 0. While
existence of solutions has been demonstrated for these problems [4, 6], uniqueness
has not. This paper shows why.

The index of a CCP is the number β where (d/dt)βm(t) = m0 δ(t) +m1(t) with
δ the Dirac-δ function, and

∫
[0,ε)
‖(d/dt)βm1(t)‖ dt → 0 as ε ↓ 0, and m0 is an

invertible matrix. If we allow fractional derivatives in the sense of [2], then β need
not be an integer. Typically, for index β we have m(t) ∼ m0 t

β−1 as t ↓ 0. Basic
results for fractional index CCPs with index 0 < β < 1 were published in [9]. In
particular, combining the results of [5], [9], and [6] we can say that under fairly
mild regularity and positivity conditions (related to the index), solutions exist for
0 ≤ β < 2 and are unique for 0 ≤ β ≤ 1. These results can be extended to prove
existence of solutions for index β = 2. However, it is known that solutions are not
unique in general for β = 2. Neither existence nor uniqueness hold in general for
β > 2 (see [8, §3.2.5]). For clarity as to what exactly has been proven for 1 < β < 2,
we quote the main results of [6, §8]:

Theorem 1.1. If m(t) = m0t
β−1 + m1(t) for t ≥ 0 with m0 > 0, m1 Lipschitz,

1 < β < 2, α = β − 1, q′ ∈ Hα/2(0, T ∗) with T ∗ > 0, and q(0) ≥ 0, then there is a
solution z(·) ∈ H−α/2(0, T ∗) of

0 ≤ z(t) ⊥ (m ∗ z)(t) + q(t) ≥ 0 for all t ≥ 0.

As yet, an open question has been whether uniqueness holds for 1 < β < 2. This
paper answers this question in the negative: there are functions q(·) for which there
are at least two solutions for z(·) with m(t) = tα for 0 < α < 1 where α = β−1. The
construction of a counter-example to uniqueness is somewhat involved. It proceeds
in a similar manner to Mandelbaum’s counter-example to uniqueness for certain
differential complementarity problems [3]: we first prove equivalence of uniqueness
of solutions for (1.1) for n = 1 to non-existence of a non-zero function ζ : [0,∞)→ R
satisfying

ζ(t)(m ∗ ζ)(t) ≤ 0 for all t ≥ 0. (1.7)
Given such a ζ we are able to construct both a function q(·) a pair of solutions z1(·)
and z2(·) of (1.1). The next task is then to construct a suitable ζ(·) 6≡ 0 satisfying
(1.7) for m(t) = tα.

We define the floor of a real number z to be bzc = max{k ∈ Z | k ≤ z}, and the
ceiling of z to be dze = min{k ∈ Z | k ≥ z}.

2. Mandelbaum’s condition for CCPs

In [3], Mandebaum considered differential complementarity problems of the form

dw

dt
(t) = Mz(t) + q′(t), w(0) = q(0), (2.1)
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0 ≤ w(t) ⊥ z(t) ≥ 0 (2.2)

for all t. He was able to show that multiple solutions may exist even for M =[
2 −1
3 1

]
which is positive definite, but not symmetric. The tool that Mandelbaum

used was the following theorem.

Theorem 2.1. The system (2.1), (2.2) has a unique solution if and only ifω(t) ◦
ζ(t) ≤ 0 and dω/dt(t) = Mζ(t) for t ≥ 0 and ω(0) = 0 implies that ζ(t) = 0 for all
t ≥ 0.

Note that “a ◦ b” is the Hadamard product given by (a ◦ b)i = aibi for all i. In
the scalar case (n = 1), the Hadamard product reduces to the ordinary product of
real numbers.

Theorem 2.2. The system (1.1) with n = 1 has unique solutions for all q(·) if and
only if ζ(t)(m ∗ ζ)(t) ≤ 0 for all t ≥ 0 implies ζ(t) = 0 for all t ≥ 0.

Proof. The proof is based on Mandelbaum’s proof. The sufficiency of the condition
for uniqueness can be shown via the contrapositive: if the system (1.1) has two
distinct solutions z1(·) and z2(·) then we can set ζ(t) = z1(t)− z2(t) not identically
zero where

ζ(t)(m ∗ ζ)(t) = (z1(t)− z2(t))(m ∗ z1 + q −m ∗ z2 − q)(t)
= z1(t)(m ∗ z1 + q)(t)− z1(t)(m ∗ z2 + q)(t)

− z2(t)(m ∗ z1 + q)(t) + z2(t)(m ∗ z2 + q)(t)

= −z1(t)(m ∗ z2 + q)(t)− z2(t)(m ∗ z1 + q)(t) ≤ 0

for all t ≥ 0, since z1(t), z2(t) ≥ 0, (m ∗ z1 + q)(t), (m ∗ z2 + q)(t) ≥ 0 and z1(t)(m ∗
z1 + q)(t) = z2(t)(m ∗ z2 + q)(t) = 0.

To show necessity, we again use the contrapositive, and suppose that there is a
function ζ(·) which is not everywhere zero and ζ(t)(m ∗ ζ)(t) ≤ 0 for all t ≥ 0. Let
ω = m ∗ ζ. Note that ω(t)ζ(t) ≤ 0. We wish to find functions q(·), z1(·), and z2(·)
such that z1(·) and z2(·) are both solutions to (1.1). Let E+ = {t ≥ 0 | ω(t) > 0},
E− = {t ≥ 0 | ω(t) < 0}, and E0 = {t ≥ 0 | ω(t) = 0}. Let w1(t) = max(ω(t), 0)
and w2(t) = max(−ω(t), 0). For t ∈ E+ we set z1(t) = 0 and z2(t) = −ζ(t) > 0; for
t ∈ E− we set z1(t) = ζ(t) ≥ 0 and z2(t) = 0; for t ∈ E0 we set z1(t) = max(ζ(t), 0)
and z2(t) = max(−ζ(t), 0). Then ζ(t) = z1(t)−z2(t) and z1(t), z2(t), w1(t), w2(t) ≥
0 for all t ≥ 0. For t ∈ E+, w1(t)z1(t) = 0 since z1(t) = 0, and w2(t)z2(t) = 0
since w2(t) = 0; for t ∈ E−, w1(t)z1(t) = 0 since w1(t) = 0, and w2(t)z2(t) = 0
since z2(t) = 0; for t ∈ E0, w1(t)z1(t) = w2(t)z2(t) = 0 since w1(t) = w2(t) = 0.
Thus both (z1(·), w1(·)) and (z2(·), w2(·)) satisfy the complementarity conditions.
We now check the dynamic conditions.

Let q(t) = w1(t)−(m∗z1)(t) for all t ≥ 0. Then, clearly, w1(t) = (m∗z1)(t)+q(t).
On the other hand, w1(t)− w2(t) = ω(t) and z1(t)− z2(t) = ζ(t) for all t ≥ 0, so

w2(t) = w1(t)− ω(t)

= (m ∗ z1)(t) + q(t)− (m ∗ ζ)(t)

= (m ∗ (z1 − ζ))(t) + q(t)

= (m ∗ z2)(t) + q(t).
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Thus the dynamic conditions also hold, and we have two distinct solutions of (1.1),
as we wanted. �

This theorem can be extended to the n > 1 case by working componentwise.

3. Constructing the counter-example

Much like the examples given for related non-smooth dynamical systems [1,
3, 7], there is a self-similar structure to the counter-example created here. The
counter-example involves non-analytic q(·). The construction begins with a “bump”
function θ : R→ R where θ(s) ≥ 0 for all s ∈ R, supp θ ⊆ [−1,+1],

∫ +∞
−∞ θ(s) ds =

1, and θ is C∞.
Let ψα(t) = tα for t > 0 and ψα(t) = 0 for t ≤ 0. We will consider 0 < α < 1;

the CCP
0 ≤ z(t) ⊥ (ψα ∗ z)(t) + q(t) ≥ 0 (3.1)

then has index 1 + α. The case α = 1
2 corresponds to the viscoelastic impact

problem in Petrov and Schatzman [4] where, asymptotically, m(t) ∼ m0

√
t as t ↓ 0.

The case m(t) = tα has additional structure that we will exploit in the construction
here. We will construct a function ζ(t) satisfying ζ(t)(ψα ∗ ζ)(t) ≤ 0 for all t ≥ 0
and ζ(t) = 0 for t < 0.

Let ζ1(s; η) = η−1 θ(η−1(s − ŝ)) where η > 0 and ŝ are parameters to be deter-
mined. We set

ζ(t; η) =
∑
k∈Z

(−1)kµ−kζ1(γkt; η) (3.2)

where 0 < µ, 1 < γ are to be determined. Let ŝ = 1
2 (1 + γ). Note that ζ1(s; η) →

δ(s− ŝ) as η ↓ 0 in the sense of distributions where δ is the “Dirac-δ function”. If
we write

ζ̂(t) =
∑
k∈Z

(−1)kµ−kγ−kδ(t− γ−kŝ),

then ζ(·; η) → ζ̂ as η ↓ 0 in the sense of distributions, and in terms of weak*
convergence of measures.

Note that

ζ(γt; η) =
∑
k∈Z

(−1)kµ−kζ1(γk+1t; η)

=
∑
`∈Z

(−1)`−1µ−`+1ζ1(γ`t; η) (` = k + 1)

= −µ
∑
`∈Z

(−1)`µ−`ζ1(γ`t; η) = −µζ(t; η).

(3.3)

Also note that

(ψα ∗ f(γ·))(t) =
∫ t

0

ψα(t− τ)f(γτ) dτ

=
∫ γt

0

(t− γ−1σ)αf(σ)γ−1 dσ (σ = γτ)

= γ−1−α
∫ γt

0

(γt− σ)αf(σ) dσ

= γ−1−α(ψα ∗ f)(γt).



EJDE-2014/226 NONUNIQUENESS AND FRACTIONAL INDEX 5

Thus −µγ1+α(ψα ∗ ζ(·; η))(t) = (ψα ∗ ζ(·; η))(γt). From these relationships, if
ζ(t; η)(ψα ∗ ζ(·; η))(t) ≤ 0 for 1 ≤ t ≤ γ, then ζ(t; η)(ψα ∗ ζ(·; η))(t) ≤ 0 for all
t > 0. The reason is that ζ(γt; η) = (−µζ(t; η)) and so ζ(γt; η)(ψα ∗ ζ(·; η))(γt) =
(−µ)(−µγ1+α)ζ(t; η)(ψα ∗ ζ(·; η))(t) and therefore

sign ζ(t; η)(ψα ∗ ζ(·; η))(t) = sign ζ(γt; η)(ψα ∗ ζ(·; η))(γt).

Once we know that ζ(t; η)(ψα ∗ ζ(·; η))(t) ≤ 0 for all t ∈ [1, γ], it follows that
ζ(t; η)(ψα ∗ ζ(·; η))(t) ≤ 0 for all t > 0.

Since supp ζ ∩ [1, γ] = ŝ + [−η,+η], it is sufficient to check that ζ(t; η)(ψα ∗
ζ(·; η))(t) ≤ 0 for t ∈ ŝ + [−η,+η]; since ζ(t; η) ≥ 0 for 1 ≤ t ≤ γ, it suffices to
check that (ψα ∗ ζ(·; η))(t) ≤ 0 for t ∈ ŝ + [−η,+η]. We will consider the limit as
η ↓ 0, so it becomes a matter of ensuring simply that (ψα ∗ ζ(·; η))(ŝ) < 0. There
are some additional technical issues that must be addressed, but this will be done
later.

Now we compute ψα ∗ ζ(·; η):

(ψα ∗ ζ(·; η))(t) =
∑
k∈Z

(−1)kµ−k(ψα ∗ ζ1(γk·; η))(t)

=
∑
k∈Z

(−1)kµ−k(γk)−1−α(ψα ∗ ζ1(·; η))(γkt)

=
∞∑

k=bln t/ ln γc

(−1)k(µγ1+α)−k(ψα ∗ ζ1(·; η))(γkt)

since ζ1(s; η) = 0 for s ≤ 1 and therefore (ψα ∗ ζ1(·; η))(s) = 0 for s ≤ 1. In
particular, for 1 ≤ t ≤ γ,

(ψα ∗ ζ(·; η))(t) =
∞∑
k=0

(−1)k(µγ1+α)−k(ψα ∗ ζ1(·; η))(γkt).

For this sum to converge, we need µγ > 1: asymptotically (ψα ∗ ζ1(·; η))(s) ∼ sα

as s → ∞, so (ψα ∗ ζ1(·; η))(γkt) ∼ (γα)ktα as k → ∞. Furthermore, (ψα ∗
ζ1(·; η))(s)→ ψα(s− ŝ) = (s− ŝ)α as η ↓ 0. So for 1 ≤ t ≤ γ,

(ψα ∗ ζ(·; η))(t)→
∞∑
k=0

(−1)k(µγ1+α)−k(γkt− ŝ)α as η ↓ 0

=
∞∑
k=0

(−1)k(µγ)−k(t− γ−kŝ)α.

In particular, for t = ŝ,

(ψα ∗ ζ(·; η))(ŝ)→
∞∑
k=0

(−1)k(µγ)−k(1− γ−k)α(ŝ)α as η ↓ 0.

Note that the term in the sum with k = 0 is zero, and so can be ignored in the
limit as η ↓ 0. So we now want to evaluate the sum

v̂(µ, γ) :=
∞∑
k=1

(−1)k(µγ)−k(1− γ−k)α, (3.4)

and check that the value is negative. Note that if µγ = ρ > 1 is held fixed, then
v̂(µ, γ) =

∑∞
k=1(−1)kρ−k(1 − γ−k)α →

∑∞
k=1(−1)kρ−k = −ρ−1/(1 + ρ−1) < 0 as
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γ →∞. Thus for sufficiently large γ > 1 with µγ = ρ > 1 fixed, we have v̂(µ, γ) < 0
as we want. Also, ρv̂(µ, γ)→ −(1− γ−1)α as ρ→∞ with fixed γ > 1.

3.1. Regularity of ζ and ψα ∗ ζ, and choice of parameters. First we consider
the question of how to ensure that ζ ∈ L1(0, γ): Since ‖ζ1(·; η)‖ = 1 independently
of η > 0, we have

‖ζ(·; η)‖L1(0,γ) ≤
∞∑
k=0

(µγ)−k =
1

1− ρ−1

which is finite as long as ρ = µγ > 1. Note that this bound is independent of η > 0.
Also, ψα is uniformly Hölder continuous: |ψα(t)− ψα(s)| = |tα − sα| ≤ |t− s|α for
any s, t ∈ R as 0 < α < 1. Combining these results shows that for s, t ∈ [0, γ],
|(ψα∗ζ(·; η))(t)−(ψα∗ζ(·; η))(s)| ≤ |t−s|α‖ζ(·; η)‖L1(0,γ). That is, (ψα ∗ ζ(·; η)) |[0,γ]
is uniformly Hölder continuous, independently of η > 0.

Thus, provided (3.4) is negative, for sufficiently small η > 0, we have ζ(t; η)(ψα ∗
ζ(·; η))(t) ≤ 0 for all 1 ≤ t ≤ γ. To see this rigorously, recall that ζ(t) 6= 0 for
1 ≤ t ≤ γ only if |t − ŝ| < η. Choose η > 0 sufficiently small so that |(ψα ∗
ζ(·; η))(ŝ)− v̂(µ, γ)| ≤ 1

4 |v̂(µ, γ)|. Now for|t− ŝ| ≤ η,

|(ψα ∗ ζ(·; η))(t)− v̂(µ, γ)| ≤ |(ψα ∗ ζ(·; η))(t)− (ψα ∗ ζ(·; η))(ŝ)|+ 1
4
|v̂(µ, γ)|

≤ |t− ŝ|α‖ζ(·; η)‖L1(0,γ) +
1
4
|v̂(µ, γ)|

≤ ηα‖ζ(·; η)‖L1(0,γ) +
1
4
|v̂(µ, γ)|.

Choose η > 0 sufficiently small so that it also satisfies ηα‖ζ(·; η)‖L1(0,γ) ≤ 1
4 |v̂(µ, γ)|.

Then ζ(t; η) 6= 0 and 1 ≤ t ≤ γ imply that (ψα ∗ ζ(·; η))(t) ≤ 1
2 v̂(µ, γ) < 0. Since

ζ(t; η) ≥ 0 for 1 ≤ t ≤ γ, we have ζ(t; η)(ψα ∗ ζ(·; η))(t) ≤ 0 for all 1 ≤ t ≤ γ.
Consequently, from the self-similarity property (3.3), ζ(t; η)(ψα ∗ ζ(·; η))(t) ≤ 0

for all t ≥ 0.
If we allow µ > 1 we can get much stronger regularity on ζ. If µ > 1 then by

the Weierstass M -test (see, e.g., [10, Thm. 3.106, p. 141]), ζ(·; η) is continuous.
Furthermore, if µγ−p > 1, ζ is p-times continuously differentiable for p = 1, 2, . . .,
again by the Weierstrass M -test but applied to ζ(p)(·; η). This is equivalent to the
condition that ργ−p−1 > 1.

If we set ρ = 2γmp+1, then

γp+1 v̂(µ, γ) = γp+1
∞∑
k=1

(−1)kρ−k(1− γ−k)α

= γp+1
∞∑
k=1

(−1)k(2γm+1)−k(1− γ−k)α

=
∞∑
k=1

(−1)k
1
2

(2γp+1)−k+1(1− γ−k)α

→ −1
2

as γ →∞.

So for sufficiently large γ > 1, v̂(µ, γ) < 0. Then µγ = ρ = 2γp+1, so we set µ = 2γp.
We then choose η > 0 sufficiently small so that ζ(t; η)(ψα∗ζ(·; η))(t) ≤ 0 for 1 ≤ t ≤
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γ. Since ζ(γ−kt; η) = (−µ)−kζ(t; η) and (ψα ∗ ζ(·; η))(γ−kt) = (−µγ1+α)−k(ψα ∗
ζ(·; η))(t), we have ζ(t; η)(ψα ∗ ζ(·; η))(t) ≤ 0 for γ−k ≤ t ≤ γ−k+1 for any k ∈ Z;
thus ζ(t; η)(ψα ∗ ζ(·; η))(t) = 0 for any t > 0. In addition, (ψα ∗ ζ(·; η))(0) = 0, so
ζ(t; η)(ψα∗ζ(·; η))(t) ≤ 0 for all t ≥ 0, and there is a counter-example to uniqueness
as we wanted. Furthermore, the counter-example is in Cp.

4. Extension to general m(t) ∼ m0t
α

Here we assume not only that 0 < α < 1 but also that m0 > 0. If m0 < 0 so
that m(t) < 0 for 0 ≤ t ≤ T1 with T1 > 0 and z1(t) is a positive smooth function
of t, then for q1(t) = −(m ∗ z1)(t) not only is z(t) = z1(t) for t ≥ 0 a solution to

0 ≤ z(t) ⊥ (m ∗ z)(t) + q1(t) ≥ 0 for all t ≥ 0,

but z(t) = 0 for 0 ≤ t ≤ T1 is also a solution as q1(t) > 0 for 0 ≤ t ≤ T1.
The assumptions made on m are that m(t) ∼ m0t

α, m′(t) ∼ m0αt
α−1 as t ↓ 0,

and m′(t) is continuous in t away from t = 0. This implies that on bounded sets,
m(·) is uniformly Hölder continuous: given a bounded interval [a, b], there is an M
where |m(t)−m(s)| ≤M |t− s|α for all s, t ∈ [a, b].

Note that dividing m(t) by m0 > 0 does not affect the existence of multiple
solutions as (1.1) is equivalent to

0 ≤ z(t) ⊥ ((m/m0) ∗ z)(t) + q(t)/m0 ≥ 0 for all t ≥ 0.

So we consider without loss of generality the case where m(t) ∼ tα. As in Section 2
we look for a non-zero function ζ : [0,∞) → R where ζ(t)(m ∗ ζ)(t) ≤ 0 for all
t ≥ 0. The constructed ζ from the previous Section will also work here with some
small modifications.

Let r(t) = (m(t)/ψα(t)) − 1. Note that r(t) → 0 as t ↓ 0. Using (3.2) to define
ζ(·),

ζ(t) =
∑
k∈Z

(−1)kµ−kζ1(γkt; η),

we can show that for γ−j ≤ t < 1
2γ
−j(1 + γ),

(m ∗ ζ)(t) =
∞∑
k=j

(−1)kµ−k(m ∗ ζ1(γk·; η))(t)

→
∞∑

k=j+1

(−1)kµ−kγ−km(t− γ−k+j ŝ) as η ↓ 0,

using (m ∗ ζ1(·; η))(s) → m(s− ŝ) as η ↓ 0, and m(0) = 0. We need to distinguish
between the value and the limit. First, note that if supp g ⊆ [ŝ− ρ, ŝ+ ρ] and g is
non-negative, then for continuous f ,∣∣∣ ∫ +∞

−∞
f(s) g(s) ds− f(ŝ)

∫ bs+ρ
bs−ρ g(s) ds

∣∣∣ ≤ max
s:|s−bs|≤ρ |f(s)− f(ŝ)|

∫ bs+ρ
bs−ρ g(s) ds.

Then

|(m ∗ ζ1(γk·; η))(t)− γ−km(t− γ−kŝ)| ≤M(γ−kη)αγ−k = Mηα(γ1+α)−k.

So, for t = γ−j ŝ,∣∣∣(m ∗ ζ)(γ−j ŝ)−
∞∑
k=j

(−1)kµ−kγ−km((1− γ−k+j)γ−j ŝ)
∣∣∣
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≤
∞∑
k=j

µ−k(γ1+α)−kMηα =
(µγ1+α)−jMηα

1− (µγ1+α)−1
.

Note that
∞∑

k=j+1

(−1)kµ−kγ−km((1− γ−k+j)γ−j ŝ)

= (−1)j(µγ)−j
∞∑
`=1

(−1)`(µγ)−`m((1− γ−`)γ−j ŝ)

= (−1)j(µγ)−j
∞∑
`=1

(−1)`(µγ)−`((1− γ−`)γ−j ŝ)α[1 + r((1− γ−`)γ−j ŝ)]

= (−1)j(µγ1+α)−j ŝα
∞∑
`=1

(−1)`(µγ)−`(1− γ−`)α[1 + r((1− γ−`)γ−j ŝ)].

Since r(t) → 0 as t ↓ 0, for every ε > 0 there is a δ > 0 where 0 < t < δ implies
|r(t)| < ε. Thus for j ≥ − ln(δ/ŝ)/ ln γ, |r((1− γ−`)γ−j ŝ)| < ε, and so∣∣ ∞∑

`=1

(−1)`(µγ)−`(1− γ−`)αr((1− γ−`)γ−j ŝ)
∣∣ ≤ ε

1− (µγ)−1
.

Since γ−j ≤ t ≤ γ−j+1 and ζ(t) 6= 0 implies |t−γ−j ŝ| ≤ γ−jη, we can use the bound
|(m ∗ ζ)(t) − (m ∗ ζ)(γ−j ŝ)| ≤ M(ηγ−j)α‖ζ‖L1(0,γ−j+1) ≤ Mηαγ−αj(µγ)−j/(1 −
(µγ)−1) for |t− γ−j ŝ| ≤ γ−jη. Thus for γ−j ≤ t ≤ γ−j+1 and ζ(t) 6= 0,

|(m ∗ ζ)(t)− (−1)j ŝα(µγ1+α)−j v̂(µ, γ)|

≤ Mηα(µγ1+α)−j

1− (µγ)−1
+

(µγ1+α)−jMηα

1− (µγ1+α)−1
+
ŝα(µγ1+α)−jε

1− (µγ)−1

≤ (µγ1+α)−j
[ Mηα

1− (µγ)−1
+

Mηα

1− (µγ1+α)−1
+

ŝαε

1− (µγ)−1

]
.

Note that γ > 1 so that µγ1+α > µγ > 1. By choosing η > 0 and ε > 0 sufficiently
small, we can guarantee that the sign of (m∗ζ)(t) for γ−j ≤ t ≤ γ−j+1 and ζ(t) 6= 0
is the sign of (−1)j v̂(µ, γ). After choosing η > 0 and ε > 0 so that this holds, we can
ensure that ζ(t)(m∗ζ)(t) ≤ 0 for γ−j ≤ t ≤ γ−j+1 where j ≥ J := d− ln(δ/ŝ)/ ln γe.
Thus ζ(t)(m ∗ ζ)(t) ≤ 0 for all 0 < t ≤ γ−J . By setting ζ̂(t) = ζ(t) for 0 ≤ t ≤ γ−J
and ζ̂(t) = 0 for t ≥ γ−J (noting that ζ(t) = 0 in a neighborhood of γ−k for any
k ∈ Z), we see that ζ̂(t)(m∗ ζ̂)(t) ≤ 0 for all t ≥ 0, and thus we have non-uniqueness
of solutions for (1.1) where m(t) ∼ m0t

α and m′(t) ∼ m0αt
α−1 as t ↓ 0 provided

m0 > 0 and 0 < α < 1.

5. Conclusions

Non-uniqueness of convolution complementarity problems of the form (1.1) with
convolution kernel m(t) ∼ m0t

α and m′(t) ∼ m0αt
α−1 with m0 > 0 and 0 < α <

1 has been demonstrated via a generalization of a result of Mandelbaum. Note
that the counter-examples can belong to any space Cp, p = 1, 2, 3, . . .. Counter-
examples must have infinitely many oscillations in a finite time interval, and so
cannot be analytic. The main non-uniqueness result is of particular interest for
questions of contact mechanics, as the perpendicular impact of a Kelvin–Voigt
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viscoelastic rod on a rigid obstacle can be model by such a CCP (see [4]). Note
that this non-uniqueness holds in spite of the existence of an energy balance for this
situation [4]. By contrast, the perpendicular impact of a purely elastic rod on a rigid
obstacle does have uniqueness of solutions, by using CCP formulations but with α =
0 [5]. Multidimensional contact problems then either have a problem of existence
(for purely elastic bodies) or with uniqueness (for Kelvin–Voigt viscoelastic bodies).
How this can be resolved is a subject for future investigation.
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ditions de Signorini. Comptes Rendus Acad. Sci., Sér. I, 334:983–988, 2002.

[5] David E. Stewart. Convolution complementarity problems with application to impact prob-
lems. IMA J. Applied Math., 71(1):92–119, 2006.

[6] David E. Stewart. Differentiating complementarity problems and fractional index convolution

complementarity problems. Houston J. Mathematics, 33(1):301–322, 2006.
[7] David E. Stewart. Uniqueness for solutions of differential complementarity problems. Math.

Program., 118(2, Ser. A):327–345, 2009.
[8] David E. Stewart. Dynamics with Inequalities: impacts and hard constraints. Number 123 in

Applied Mathematics Series. SIAM Publ., Philadelphia, PA, July 2011.

[9] David E. Stewart and Theodore J. Wendt. Fractional index convolution complementarity
problems. Nonlinear Anal. Hybrid Syst., 1(1):124–134, 2007.

[10] K. R. Stromberg. An Introduction to Classical Real Analysis. Wadsworth, Belmont, CA,

1981.

David E. Stewart
Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA

E-mail address: david-e-stewart@uiowa.edu


	1. Convolution complementarity problems
	2. Mandelbaum's condition for CCPs
	3. Constructing the counter-example
	3.1. Regularity of  and *, and choice of parameters

	4. Extension to general m(t)m0t
	5. Conclusions
	References

