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SOLUTION TO SECOND-ORDER DIFFERENTIAL EQUATIONS
WITH DISCONTINUOUS RIGHT-HAND SIDE

ALEXANDER M. KAMACHKIN, DMITRIY K. POTAPOV, VICTORIA V. YEVSTAFYEVA

Abstract. We consider an ordinary differential equation of second order with

discontinuous nonlinearity relative to the phase variable. Phase trajectories

are studied. We establish a theorem on the existence of a continuum set for
nontrivial solutions and the theorem on the boundedness of solutions.

1. Introduction and statement of problem

Over a number of years differential equations with discontinuous right sides have
attracted researchers’ attention. Equations with discontinuous nonlinearities are of
interest on both theoretical and practical grounds. The problem on existence of
solutions for the Sturm-Liouville task with discontinuous nonlinearity is considered
in [1]–[4]. The applications of such problems are shown in [5, 6], and other papers.
Periodic solutions of second-order differential equations with discontinuous right
sides are studied in [7, 8]. This paper extends this research.

We study the existence of solutions to the second-order ordinary differential
equation with discontinuous nonlinearity of the form

−u′′ = g(x, u(x)), x ∈ R, (1.1)

g(x, u) =

{
m1 for u < f(x),
m2 for u ≥ f(x).

(1.2)

Here the function g : R × R → R, mi (i = 1, 2) are constants in R, the function
f : R→ R is piecewise smooth and one-to-one.

Let us remark that systems of ordinary differential equations with multiple-
valued discontinuous nonlinearity of this type are investigated, for instance, in
[9]–[11].

From (1.1), (1.2) we receive the equations

− u′′ = mi (i = 1, 2). (1.3)

It follows from (1.3) that u′ = −mix + c1, u = −mi

2 x
2 + c1x + c2, where c1, c2

are real constants. Then the phase curves on the plane (u, u′) are defined by the
equations 2mi(c2 − u) = (u′)2 − c21.
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We assume that the function u′ = ψ(u), which graph is a curve without contact
for the phase trajectories of system (1.1), (1.2), is assigned to the function u = f(x)
on the phase (uOu′)-plane. In other words, the phase trajectories have the only
isolated points of tangency to this curve, i.e. the points of tangency do not belong
to segments of this curve.

Let, in particular, the discontinuity surface be the straight line u = f(x) = kx+b,
where coefficients k, b ∈ R. Note that such switching surfaces arise quite often in
automatic control systems. On the phase (uOu′)-plane the straight line u′ = k
is a switching line. Its graph represents a curve without contact for the phase
trajectories of system (1.1), (1.2).

Let us consider all possible relations between parameters m1 and m2.

2. Solution of the problem

Case 1. Suppose mi > 0 (i = 1, 2); then the phase trajectories consist of
parabola pieces. The branches of the parabolas are directed aside opposite to the
positive direction of the Ou-axis. From any initial point on the half-plane u′ > k
the representative point reaches the switching line and then along the parabola on
the half-plane u′ < k it goes to infinity (u → −∞). If the initial point lies on the
half-plane u′ < k, then the representative point also tends to infinity (u → −∞).
The phase trajectories are called respectively trajectories of “parabola – parabola”
type or “parabola” one.

Case 2. The similar situation happens when mi < 0 (i = 1, 2). In this case
the parabola branches lying on both half-planes are directed towards the positive
direction of the Ou-axis. From any initial point on the half-plane u′ > k the
representative point moves along the parabolic trajectory to infinity (u→ +∞). If
the initial point is on the half-plane u′ < k, then the representative point comes to
the switching line along the parabolic trajectory and after that it goes into infinity
(u → +∞). The types of the phase trajectories are the same as in the previous
case.

Both cases considered above correspond to the condition m1m2 > 0. Suppose
m1 and m2 have opposite signs.

Case 3. To be precise, let m1 < 0, m2 > 0. Then from any initial point that
belongs to the phase plane and does not to the line u′ = k the representative
point comes to the straight line u′ = k along the parabolic trajectory. The phase
trajectories are of “parabola” type.

Case 4. Now we assume that m1 > 0, m2 < 0. From any initial point on u′ > k
the representative point extends to infinity (u → +∞) along the parabola, if on
u′ < k, then it also tends to infinity (u → −∞) along the parabola. We have the
phase trajectories of “parabola” type.

The two latter cases correspond to the condition m1m2 < 0.
Case 5. Let m1 < 0, m2 = 0. If the initial point belongs to the half-plane

u′ ≥ k (k > 0), then the representative point moves to infinity (u → +∞) along
the straight line parallel to the Ou-axis. However, if the initial point is on the half-
plane u′ < k, then the representative point comes to the straight line u′ = k along
the parabolic trajectory and also goes to infinity (u→ +∞) along the straight line
u′ = k. Note that the straight line u′ = 0 is a set of equilibrium points. Let k < 0.
If the initial point is on the half-plane u′ < k, then the trajectory has “parabola –
straight line” type and the representative point tends to infinity (u → −∞) along
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u′ = k. At the same time, if the initial point is on the half-plane u′ > 0, then the
representative point goes to infinity (u → +∞) along the straight lines parallel to
the Ou-axis. Here the Ou-axis is a set of equilibrium points. If the initial point
is from the set k < u′ < 0, then the representative point leaves for infinity along
the lines parallel to the Ou-axis, so that u → −∞. We receive two types of the
trajectories, namely, “straight line” or “parabola – straight line”.

Case 6. Further, let m1 = 0 and m2 > 0. Obviously, the qualitative picture of
splitting the phase plane into trajectories is not changed in comparison with the
previous case, but pieces of the parabolic trajectories lie on the upper half-plane.
The types of the phase trajectories are the same as above. Really, if the initial point
belongs to the half-plane u′ > k (k > 0), then the representative point comes to the
line u′ = k along the parabolic trajectories and goes to infinity (u → +∞) along
this straight line. On the other hand, from any initial point on the set 0 < u′ < k
the representative point tends to infinity (u→ +∞) along the straight line parallel
to the Ou-axis. If u′ < 0, then the representative point leaves for infinity (u→ −∞)
along the straight line parallel the Ou-axis. Let k < 0. If the initial point is on
the half-plane u′ > k, then along the parabolic trajectory the representative point
comes to the line u′ = k and along this line it goes to infinity (u → −∞). But if
the initial point is on the half-plane u′ < k, then the representative point moves to
infinity (u→ −∞) along the line parallel to the Ou-axis. The straight line u′ = k
is a set of equilibrium positions when k = 0.

Case 7. Let m1 = 0, m2 < 0. This case differs from Case 6 in motion directions
along the parabolic pieces of trajectories. Indeed, let k > 0. If the initial point
belongs to the plane u′ ≥ k, then the representative point goes to infinity (u →
+∞) along the parabolic trajectory. The representative point moves to infinity
(u → +∞) along the straight lines parallel to the Ou-axis when 0 < u′ < k. Note
that the straight line u′ = 0 is a set of equilibrium points. The representative
point goes to infinity (u → −∞) along the straight lines parallel to the Ou-axis
when u′ < 0. Let k < 0. If u′ ≥ k, then the representative point goes to infinity
(u→ +∞) along the parabolic trajectory. If u′ < k, then the representative point
goes to infinity (u→ −∞) along the straight line parallel to the Ou-axis. The types
of the trajectories are “parabola” or “straight line”.

Case 8. Let m1 > 0, m2 = 0. This case differs from Case 5 in motion directions
along the parabolic trajectories. For example, let k > 0. If the initial point belongs
to the half-plane u′ ≥ k, then the representative point moves to infinity (u→ +∞)
along the straight lines parallel to the Ou-axis. If u′ < k, then the representative
point goes to infinity (u → −∞) along the parabolic trajectories. Let k < 0. If
u′ > 0, then the representative point goes to infinity (u→ +∞) along the straight
lines parallel to the Ou-axis. Here the straight line u′ = 0 is a set of equilibrium
points. If k ≤ u′ < 0, then the representative point goes to infinity (u → −∞)
along the straight lines parallel to the Ou-axis. If the initial point is taken from
the set u′ < k, then the representative point goes to infinity (u → −∞) along the
parabolic trajectories. The types of the trajectories are “parabola” or “straight
line”.

Case 9. Let m1 = m2 = 0. Let k > 0. If the initial point belongs to either u′ ≥ k
or 0 < u′ < k, then the representative point moves to infinity (u→ +∞) along the
straight line parallel to the Ou-axis. The line u′ = 0 is a set of equilibrium points.
If the initial point is taken from u′ < 0, then the representative point moves to
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infinity (u→ −∞) along the straight lines parallel to the Ou-axis. Now let k < 0.
If the initial point belongs to the half-plane u′ > 0, then the representative point
moves to infinity (u → +∞) along the straight lines parallel to the Ou-axis. The
straight line u′ = 0 is a set of equilibrium points. If the initial point is taken from
k < u′ < 0 or u′ ≤ k, then the representative point moves to infinity (u → −∞).
The trajectories are of “straight line” type.

So, we have considered all cases of relations between the parameters m1 and
m2. All studied types of the trajectories take place under the conditions on f(x)
imposed above. The function f is not only linear. Thus the following theorem on
existence of solutions for problem (1.1), (1.2) is fair.

Theorem 2.1. Let g : R × R → R, and the function f : R → R be piecewise
smooth and one-to-one. The graph of f on the phase (uOu′)-plane is a curve
without contact for the phase trajectories of system (1.1), (1.2). Then there is a
continuum set of nontrivial solutions for problem (1.1), (1.2) such that the phase
trajectories are the piecewise smooth curves consisting of the pieces of parabolas and
straight lines.

Notice that Theorem 2.1 agrees with the results received in [4] for one-dimensional
analog of the Gol’dshtik model for separated flows of incompressible fluid.

The following corollary follows from Theorem 2.1.

Corollary 2.2. Let the conditions of Theorem 2.1 hold and in addition m1m2 > 0,
f(x) = kx + b, k 6= 0. Then for each point of the switching line there exists a
neighborhood such that switching of the phase trajectory pieces in it does not lead
to qualitative change of the phase trajectories in the whole.

As established above, nontrivial solutions of problem (1.1), (1.2) belong to the
class of piecewise smooth functions. The phase trajectories are “sewed” on conti-
nuity on the curve u′ = ψ(u) to which the set {x ∈ R : u(x) = f(x)} is assigned.

3. Boundedness

Further, let the function g : Ω × R → R, where Ω ⊂ R is a bounded connected
set. Then the set of points {(ψ(u), u) : x ∈ Ω, u(x) = f(x)} has zero measure
and is closed with respect to the closed set Ω. In particular, this is fair for the set
Ω = [x1, x2] (x1, x2 ∈ R, x1 < x2). We note that the similar result on properties
of the “separating” set is received in [12, 13] for equations of elliptic type with
discontinuous nonlinearities.

We have
|g(x, u)| ≤ max{|m1|, |m2|} = m

for any x ∈ Ω and u ∈ R. It follows from the inequality above and equation (1.1)
that

0 ≤ | − u′′(x)| ≤ m,
where m is a real non-negative number defined above. So, the estimation for the
differential operator of problem (1.1), (1.2) is received.

For Ω = [x1, x2], we get

|u′(x2)− u′(x1)| =
∣∣ ∫ x2

x1

u′′(x)dx
∣∣ ≤ ∫ x2

x1

|u′′(x)|dx ≤ m(x2 − x1)

and
|u′(x)| ≤ m|x2|+ |c1| = C1.
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Note that such kind of estimations are also fair for any bounded closed set Ω.
From the form of solutions u(x) on the set Ω = [x1, x2] it follows that

|u(x)| ≤ m

2
x2

2 + |c1x2|+ |c2| = C2,

which means boundedness of the solutions u(x).
Thus the theorem on boundedness of solutions and their derivatives is received

for problem (1.1), (1.2).

Theorem 3.1. Let g : Ω× R→ R, where Ω is the bounded closed set in R. Then
the solutions u(x) of problem (1.1), (1.2) are bounded on Ω. Also u′(x) and u′′(x)
are bounded on the corresponding subsets of their existence of Ω.

Remark. Notice that solutions u(x) of problem (1.1), (1.2) are bounded with
respect to the norm in the corresponding functional spaces.

As an example, let us consider the norm in the Sobolev space H1
◦ ([x1, x2]):

‖u‖ =
(∫ x2

x1

|u′(x)|2dx
)1/2

.

We obtain

‖u(x)‖ =
(∫ x2

x1

(c1 −mix)2dx
)1/2

=

√
c21(x2 − x1)− c1mi(x2

2 − x2
1) +

m2
i

3
(x3

2 − x3
1) ≤ C3.

Since the space H1
◦ ([x1, x2]) is compactly embedded in C([x1, x2]), we obtain (see,

for example, [3]):

‖u‖∞ ≤
1√

2 2 ess inf[x1,x2] 1

x2−x1

‖u‖.

Thus,

‖u(x)‖∞ ≤
√
x2 − x1

2
‖u(x)‖ ≤

√
x2 − x1

2
C3 = C4.
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