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QUASILINEAR PROBLEMS WITH TWO PARAMETERS
INCLUDING SUPERLINEAR AND GRADIENT TERMS

MANUELA C. REZENDE, CARLOS A. SANTOS

Abstract. In this article, we establish conditions for the existence of solu-

tions for a quasilinear elliptic two-parameter problem with dependence on the

gradient term in smooth bounded domains or in the whole space RN . We
consider superlinear and asymptotically linear terms. Estimates on the values

of two parameters for which the problem have solutions are provided.

1. Introduction

This article concerns the existence of solutions and estimates of the intervals of
parameters for which the problem

−∆pu = a(x)f(u) + λb(x)g(u) + µV (x,∇u) in Ω,
u > 0 in Ω, u = 0 on ∂Ω,

(1.1)

has a solution. Here, ∆pu = div(|∇u|p−2∇u), 1 < p < ∞, denotes the usual
p-Laplacian operator; λ > 0; µ ≥ 0 are real parameters; f, g : (0,∞) → [0,∞);
a, b : Ω → [0,∞) with a, b 6= 0; V : Ω × RN → [0,∞) are continuous functions
satisfying appropriate hypotheses and either Ω ⊂ RN is a smooth bounded domain
or Ω = RN . When Ω = RN , the condition u = 0 on ∂Ω means that u(x)→ 0 when
|x| → ∞.

By a solution of (1.1) we mean a function u = uλ,µ ∈ C1(Ω)∩C(Ω), with u > 0
in Ω, u = 0 on ∂Ω and∫

Ω

|∇u|p−2∇u∇φdx =
∫

Ω

[a(x)f(u) + λb(x)g(u) + µV (x,∇u)]φdx,

for all φ ∈ C∞0 (Ω).
In this article we say that a function h : (0,∞)→ [0,∞) is (p− 1)-sublinear at 0

or at +∞, if lims→0 h(s)/sp−1 =∞ or lims→∞ h(s)/sp−1 = 0 respectively; (p− 1)-
superlinear at 0 or at +∞, if lims→0 h(s)/sp−1 = 0 or lims→∞ h(s)/sp−1 = ∞
respectively and (p− 1)-asymptotically linear, if there are positive and finite num-
bers that correspond to the values of these limits. To abbreviate, we say sublinear,
superlinear and asymptotically linear nonlinearities, respectively. In particular, a
sublinear term h at 0 is called singular at 0, if lims→0+ h(s) =∞.
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For µ = 0, problems like (1.1) have been intensively studied in recent years,
including sublinear and superlinear nonlinearities terms at zero and/or infinity and
singular terms at zero. In [5, 15, 13, 18] and references therein studies on the
bounded domain case are found. For Ω = RN , we refer the reader to [4, 14, 19, 21]
and their references.

However, there are not many results in the case where the nonlinearities depend
on the gradient of the solution, that is, µ 6= 0, with p 6= 2. In general, variational
techniques are not suitable to handle (1.1). In the case p = 2, an interesting
exception can be seen in [6].

One of the novelties in this article is that we improve a regularization-mono-
tonicity technique (see Section 2). This allows us to treat (1.1) with superlinear
nonlinearities both in bounded domain and RN . This improvement also makes
possible for us to study (1.1) in RN by creating a sequence of solutions of (1.1)
in bounded domains, locally bounded below by a positive function and bounded
above by a carefully constructed function.

We emphasize that our results do not require any monotonicity condition and
(or) singularity of the functions f and g. We are particularly interested in the cases
where f and g may have singularity at 0. Problems including singular nonlinearities
arise in electrical conductivity, the theory of pseudoplastic fluids, singular minimal
surfaces, reaction-diffusion processes, the obtaining of various geophysical indexes
and industrial processes, among others; see [3, 10] for a detailed discussion.

Considering the problem (1.1) in smooth bounded domains, we quote Zhang and
Yu [27] who, in 2000, studied the problem

−∆u = u−α + λ+ µ|∇u|q in Ω,
u > 0 in Ω, u = 0 on ∂Ω,

(1.2)

where µ, λ ≥ 0, α > 0 and q ∈ (0, 2]. Using a change of variables, the authors proved
that the problem (1.2) has classical solutions for µλ < λ1, if q = 2 or µ ∈ [0, µ∗),
if 0 < q < 2, with µ∗ = µ∗(q, λ), where λ1 > 0 denotes the first eigenvalue of the
Dirichlet problem in W 1,2

0 (Ω).
Ghergu and Radulescu [11] considered

−∆u = h(u) + λf(x, u) + µ|∇u|q in Ω,
u > 0 in Ω, u = 0 on ∂Ω,

(1.3)

under the conditions f > 0 in Ω × (0,∞), ∂f/∂s(x, s) ≥ 0, s > 0, f(x, s)/s non-
increasing in s > 0, lims→∞ f(x, s)/s = 0, lims→0 h(s) = +∞, h ∈ C0,α((0,∞)),
h > 0 non-increasing and λ = 1. They proved that

(i) if 0 < q < 1, then (1.3) has solution for each µ ≥ 0,
(ii) if 1 ≤ q ≤ 2, there exists µ∗ > 0 such that (1.3) has a solution for 0 ≤ µ <

µ∗. Moreover, if 1 < q ≤ 2, then µ∗ <∞.
In 2010, Alves, Carrião and Faria [1] used the Galerkin method to study

−∆u = g(x, u) + µV (x,∇u) in Ω,
u > 0 in Ω, u = 0 on ∂Ω,

(1.4)

where g and V are locally Hölder continuous functions such that

b|s|r1 ≤ g(x, s) ≤ a1(x) + a2(x)|s|r2 +
a3(x)
|s|r3

, 0 ≤ V (x, ξ) ≤ a5(x) + a4(x)|ξ|r4 ,
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with b > 0, ri ∈ (0, 1), i = 1, . . . , 4 are constants and ai, i = 1, . . . , 5 are positive
continuous functions. Under these conditions, it was shown that (1.4) has a solution
for each µ ≥ 0.

Liu, Shi and Wei [16], still with p = 2, recently showed, by using Morse theory
and an iterative method, existence of solution for a problem like (1.1) with terms
that have asymptotically linear growth at zero and infinity. Considering singular
terms at 0 and permitting p 6= 2, Loc and Schmitt [17] used the lower and upper
solution method to show existence of solution for (1.1) with the nonlinearity of the
gradient term bounded above by the natural growth.

For Ω = RN in the problem (1.1). In 2007, Ghergu and Radulescu [12] showed
existence of solution for the problem

−∆u = a(x)[f(u) + g(u) + |∇u|q] in RN ,

u > 0 in RN , and u(x)
|x|→∞−→ 0,

(1.5)

where q ∈ (0, 1), f ∈ C1((0,∞)) is positive and decreasing, lims→0+ f(s) =∞ and
the function g : [0,∞)→ [0,∞) satisfies

g′ ≥ 0,
g(s)
s

is non-increasing in s > 0, lim
s→0+

g(s)
s

= +∞

and lim
s→∞

g(s)
s

= 0.

Concerning the function a, they assumed that 0 < a ∈ C0,α(RN ) and∫ ∞
0

rφ(r) dr <∞, where φ(r) = max
|x|=r

a(x). (1.6)

In the same year, Xue and Zhang in [24] assumed (1.6) and studied the problem
(1.5) without requiring any monotonicity condition over f and g. They just assumed

lim
s→0+

g(s)
s

= +∞, lim
s→∞

g(s)
s

= 0, lim
s→0+

f(s)
s

= +∞, lim
s→∞

f(s)
s

= 0.

For the rest of this article, given σ : (0,∞)→ (0,∞), we denote by σi, σi ∈ [0,∞]
the following limits

σi := lim
s→i

σ(s) and σi := lim
s→i

σ(s)
sp−1

, for i = 0 or i =∞

and we assume that there exists a ρ ∈ C(Ω) ∩ L∞(Ω), ρ ≥ 0, ρ 6= 0 such that
ρ ≤ a, b. We denote by λΩ = λ1,Ω(ρ) > 0 the first eigenvalue and by ϕΩ = ϕ1,Ω > 0
the first eigenfunction of the problem

−∆pϕ = λρ(x)|ϕ|p−2ϕ in Ω,
ϕ > 0 in Ω, ϕ = 0 on ∂Ω,

(1.7)

where Ω ⊂ RN is a smooth bounded domain. Moreover, we denote by λ1(ρ) =
limR→∞ λ1,BR(0)(ρ) ≥ 0, where BR(0) is the ball centered at the origin of RN with
radius R > 0.

Also, we let us assume:

(V1) V (x, ξ) ≤ α(x)|ξ|q + β(x) in Ω × RN for some 0 ≤ α, β ∈ C(Ω) ∩ L∞(Ω)
and q ≥ 0,
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(M1) there exists ωM ∈ C1(Ω) (ωM ∈ C1(Ω) ∩W 1,∞(Ω) if Ω = RN ) satisfying
−∆pωM = M(x) in Ω,

ωM > 0 in Ω, ωM = 0 on ∂Ω,
(1.8)

where M(x) := max{2a(x), 2b(x), α(x), β(x)}, x ∈ Ω,
(F1)

(F0) f0 < 1/‖ωM‖p−1
L∞(Ω), or (F∞) f∞ < 1/‖ωM‖p−1

L∞(Ω).

Remark 1.1. With respect to the hypotheses (M1) and (F1), we note that:
(1) If Ω ⊂ RN is a smooth bounded domain, then (M1) occurs if, for example,

M ∈ Lq(Ω) for some q > N > 1. See, for instance, Perera and Zhang
[20]. This allows we take singular potentials of the type a(x) = b(x) =
1/(1− |x|)γ , with γ < 1 and Ω = B1(0) ⊂ RN in (1.1).

(2) If Ω = RN , it is known that (1.8) has a solution if M is a bounded contin-
uous function and satisfies

M∞ :=
∫ ∞

0

[
s1−N

∫ s

0

tN−1M̂(t)dt
] 1
p−1

ds <∞,

where M̂(t) = max|x|=tM(x), t ≥ 0. The existence and L∞-boundedness
of a solution of (1.8) imply its regularity (see [8]). In addition, if we assume
that N ≥ 3 and∫ ∞

1

r
1
p−1 M̂

1
p−1 (r)dr <∞ or

∫ ∞
1

r
(p−2)N+1

p−1 M̂(r)dr <∞,

if 1 < p ≤ 2 or p ≥ 2, respectively, then M∞ < ∞. In [25], we have an
example that shows that the converse of this fact is not true.

(3) Condition (F0) holds if f is superlinear at 0 (f0 = 0) and (F∞) occurs if f
is sublinear at ∞ (f∞ = 0).

To state our results, we assume 0 < g0 + f0 ≤ ∞ and denote by

λ∗ = λ∗(g0) :=


0, if g0 = 0 and f0 > λΩ(ρ),
max{0, λΩ(ρ)−f0

g0
}, if 0 < g0 <∞,

0, if g0 =∞,

where λ1(ρ) = λΩ(ρ), if Ω = RN . We have that λ∗ = 0 in all the previous works,
because g0 =∞ there.

Regarding problem (1.1) in bounded domains we have the following result.

Theorem 1.2. Assume that (F1), (M1), (V1) with q ∈ [0, p] hold. Then there
exists λ∗ ∈ (0,∞] such that for each λ∗ < λ < λ∗, there exist µ∗ = µ∗λ > 0 and a
u = uλ,µ ∈ C1(Ω) ∩ C(Ω) solution of (1.1) for each 0 ≤ µ < µ∗. Additionally:

(i) u ≥ cϕΩ for some c > 0,
(ii) if (Fi) holds, for i ∈ {0,∞}, then

λ∗ ≥ 1
gi

( 1
‖ωM‖p−1

L∞(Ω)

− fi
)

:= λi,

(iii) there exists a constant d > 0 such that

µ∗λ ≥ dmin
{

[f i + λgi]
p−1−q
p−1 , f i + λgi

}
, if q ∈ [0, p− 1].

For Ω = RN and 1 < p < N our main result is the following.
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Theorem 1.3. Assume that (F1), (M1), (V1) with q ∈ [0, p− 1] hold. Then there
exists λ∗ ∈ (0,∞] such that for each λ∗ < λ < λ∗, there exist µ∗ = µ∗λ > 0 and a
u = uλ,µ ∈ C1(RN ) solution of (1.1) for each 0 ≤ µ < µ∗. Moreover, if (Fi) holds,
for i ∈ {0,∞}, then there is a constant d > 0 such that

(i) λ∗ ≥ λi

(ii) µ∗λ ≥ dmin
{

[f i + λgi]
p−1−q
p−1 , f i + λgi

}
for 0 < λ < λi.

Remark 1.4. In the definition of λ∗, the possibility f0 > λ1(ρ) does not permit
(F0) to occur, because λΩ(ρ) ≥ λΩ(M) ≥ ‖wM‖1−pL∞(Ω) and as a consequence of this,

we have λ1(ρ) ≥ λ1(M) ≥ ‖wM‖1−pL∞(RN )
also (see Santos [21]). In this situation,

(F∞) should occur, as in [12] and [24].

Theorem 1.3 improves previous results principally because it addresses the p-
Laplacian operator, obtains estimates for λ∗ and µ∗, no monotonicity or growth
restriction on the nonlinearities are required, the cases q = 0 and q = p − 1 are
included and we assume the hypothesis (M1) that is weaker than (1.6). We point
out that problem (1.1) has no solution for p ≥ N (see Serrin and Zou [22]).

This paper is organized as follows: In section 2 we construct several auxiliary
functions for the terms f and g and we study their properties. Because of the
singularities allowed on f and g, we regularize the problem (1.1) and we obtain an
upper solution for it in bounded domain and in RN , in sections 3 and 5, respectively.
After that, we use section 4 to prove Theorem 1.2. In section 6, we generalize this
result for RN .

2. Auxiliary functions

To prove Theorems 1.2 and 1.3 we refine a regularization-motonicity technique
used, among others, by Feng and Liu [9], Zhang [26] and Mohammed [19].

Observing that we do not assume monotonicity on the nonlinearities, we intro-
duce a truncation of the terms f and g through a parameter γ > 0 and build
auxiliary functions which allow us to obtain not only the monotonicity, but also
the necessary regularity for the proof of our results. Parallel to this, the inclusion
of a parameter θ < 1, in this construction, makes it possible solving the problem
(1.1) for the case q > p− 1.

Analyzing the behavior of these auxiliary functions, the parameters λ, γ, θ and
the fact that the problem (1.8) has a solution, we determine a Λ∗-curve whose
behavior allow us to find region of variation for the parameter λ, and consequently,
obtain an estimate from below for that region.

With these purposes, let us define the continuous functions, depending on real
parameter γ > 0, as

fγ(s) :=

{
f(s), if 0 < s ≤ γ
f(γ)
γp−1 s

p−1, if s ≥ γ
and gγ(s) :=

{
g(s), if 0 < s ≤ γ
g(γ)
γp−1 s

p−1, if s ≥ γ.

Now, for each s > 0, defining the function

ζλ,γ(s) = sp−1 sup
{fγ(t)
tp−1

, t > s
}

+ λsp−1 sup
{gγ(t)
tp−1

, t > s
}
, λ ≥ 0 (2.1)

we obtain, from the above definitions, that

(i) ζλ,γ(s)
sp−1 is non-increasing in s > 0;
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(ii) ζλ,γ(s) ≥ fγ(s) + λgγ(s), s > 0;
(iii) lims→∞

ζλ,γ(s)
sp−1 = f(γ)

γp−1 + λ g(γ)
γp−1 .

Now, defining

Hλ,γ(s) =
s2∫ s

0
t

ζλ,γ(t)
1
p−1

dt
, s > 0,

and using (i) and (iii) above, we have the following lemma.

Lemma 2.1. The function H satisfies:
(i) Hλ,γ ∈ C1((0,∞), (0,∞));
(ii) ζλ,γ(s) ≤ [Hλ,γ(s)]p−1, s > 0;

(iii) Hλ,γ(s)
s is non-increasing in s > 0;

(iv)

lim
s→∞

Hλ,γ(s)
s

=
[ f(γ)
γp−1

+ λ
g(γ)
γp−1

] 1
p−1

.

After these, introducing a parameter θ ∈ (0, 1] and defining the function

Γλ(γ) = Γλ,θ(γ) =
θ

γ

∫ γ

0

tθ

Hλ,γ(tθ)
dt, γ > 0 (2.2)

we obtain, from the previously defined functions and their properties, the following
result.

Lemma 2.2. Suppose (M1) and (F1) hold. Then for each θ ∈ (‖wM‖∞f1/(p−1)
i , 1],

for either i = 0 or i =∞, we have:
(i) limγ→∞ Γλ,θ(γ) = θ

(f∞+λg∞)
1
p−1

, for each λ ≥ 0;

(ii) limγ→0 Γλ,θ(γ) = θ

(f0+λg0)
1
p−1

, for each λ ≥ 0;

(iii) Γλ,θ is decreasing in λ > 0, for each γ > 0;
(iv) there exists a γ̃ = γ̃(Ω, θ) > 0 such that Γ0,θ(γ̃) > ‖ωM‖L∞(Ω).

By Lemma 2.2, we can define the nonempty set

A = AΩ,θ := {γ ∈ (0,∞) : Γ0,θ(γ) > ‖ωM‖L∞(Ω)}.

Now, as a consequence of limλ→∞ Γλ,θ(γ) = 0, limλ→0 Γλ,θ(γ) = Γ0,θ(γ) and of the
above lemma, we have that the function Λ∗ = Λ∗Ω,θ : A → (0,∞) that associate for
each γ ∈ A the unique number Λ∗(γ) satisfying

ΓΛ∗(γ),θ(γ) = ‖ωM‖L∞(Ω), (2.3)

is well defined.
Thus, we can define the positive number

λ∗θ(Ω) := sup{Λ∗(γ) : γ ∈ A}. (2.4)

After these, we infer the following lemma.

Lemma 2.3. Suppose (M1) and (F1) hold. Then for each θ ∈ (‖wM‖∞f1/(p−1)
i , 1],

we have

λ∗θ(Ω) ≥ 1
gi

( θ

‖ωM‖p−1
L∞(Ω)

− fi
)

:= λiθ.
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Proof. If (F0) occurs and g0 < ∞, then for each 0 < δ < λ0
θ, from Lemma 2.2 (ii)

it follows that

lim inf
γ→0

(Γδ,θ(γ)− ‖ωM‖∞) =
θ

(f0 + δg0)
1
p−1
− ‖ωM‖∞

>
θ

(f0 + λ0
θg0)

1
p−1
− ‖ωM‖∞ = 0.

Now, if (F∞) occurs and g∞ <∞, using Lemma 2.2 (i), we have

lim inf
γ→∞

(Γδ,θ(γ)− ‖ωM‖∞) =
θ

(f∞ + δg∞)
1
p−1
− ‖ωM‖∞

>
θ

(f∞ + λ∞θ g∞)
1
p−1
− ‖ωM‖∞ = 0,

for each 0 < δ < λ∞θ .
So, in both cases, there exists a γ0 = γ0(δ) > 0 such that Γδ,θ(γ0) > ‖ωM‖∞.

As a consequence of this and Lemma 2.3(iii), we have that γ0 ∈ A, because
Γ0,θ(γ0) > Γδ,θ(γ0) > ‖ωM‖∞. So, from (2.3) there is a unique Λ∗(γ0) such that
ΓΛ∗(γ0),θ(γ0) = ‖ωM‖∞. Now, using ΓΛ∗(γ0),θ(γ0) < Γδ,θ(γ0) and Lemma 2.3(iii),
we obtain Λ∗(γ0) > δ. So, by the arbitrariness of δ, it follows the proof of the
Lemma. �

Now, defining

ηλ(s) = ηλ,θ(s) =
θ

γ

∫ s

0

tθ

Hλ,γ(tθ)
dt, s > 0, γ ∈ A, λ > 0, (2.5)

it follows that
ηλ,θ(γ) = Γλ,θ(γ) > ‖ωM‖∞ + σ̄, (2.6)

for each 0 < λ < Λ∗(γ), where σ̄ = σ̄(λ, θ, γ) =
(
Γλ,θ(γ)− ‖ωM‖∞

)
/2 > 0.

Besides this, the following lemma follows from the previous results.

Lemma 2.4. Suppose (M1) and (F1) hold. Then, for each 0 < λ < λ∗θ(Ω) given:
(i) [σ̄, ‖ωM‖∞ + σ̄] ⊂ Im(ηλ);
(ii) ηλ ∈ C2((0,∞), Im(ηλ)) is increasing in s > 0;

(iii) η−1
λ := ψλ ∈ C2((Im(ηλ)\{0}, (0,∞)) is increasing in s > 0;

(iv) ψ′λ(s) = γHλ,γ0 (ψλ(s)θ)

θψλ(s)θ
, s > 0;

(v) ψ′′λ(s) ≤ 0, s > 0;
(vi) ηλ is decreasing in λ.

3. An auxiliary problem

To solve the problem (1.1) with the gradient term in the presence of nonlinearities
f and g already described, we will explore the behavior of the auxiliary λ, γ, θ-
functions given in the previous section considering different intervals of variation
for q ∈ [0, p] and an appropriate division of the domain Ω ⊂ RN . All this together
with the behavior of the Λ∗-curve will allow us to determine a µ∗-curve whose
behavior will define the region of variation of the parameter µ ≥ 0.

As a consequence of the hypotheses (M1), (F1) and of the behavior of Λ∗, µ∗-
curves, we obtain a γ0 which allow us to show the existence of solution (ε-uniformly
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limited in L∞(Ω)) of the ε-family of problems (3.1) below, for appropriate λ > 0
and µ ≥ 0.

In this sense, we will construct a positive bounded upper solution for the ε-family
of problems

−∆pu = a(x)f(u+ ε) + λb(x)g(u+ ε) + µV (x,∇u) in Ω
u > 0 in Ω, u = 0 on ∂Ω,

(3.1)

for sufficiently small ε > 0.

Proposition 3.1. Assume (F1), (M1), (V1) with q ∈ [0, p] hold. Then there exists
a λ∗ > 0 such that for each 0 < λ < λ∗, there exist real numbers σ = σ(λ) > 0 and
µ∗ = µ∗λ > 0, both independent of ε, such that if 0 < σ ≤ σ and 0 ≤ µ < µ∗, then
there exists a vσ = vσ,λ ∈ C1(Ω) upper solution of (3.1). Additionally:

(i) ψλ(σ)θ0 ≤ vσ ≤ γθ00 for some θ0 = θ0(λ) ∈ (‖wM‖∞f1/(p−1)
i , 1] and γ0 =

γ0(λ) > 0;
(ii) if (Fi) holds, for i ∈ {0,∞}, then

λ∗ ≥ 1
gi

( 1
‖ωM‖p−1

L∞(Ω)

− fi
)

:= λi;

(iii) there exists a constant d > 0 such that for 0 < λ < λi, we have

µ∗λ ≥ dmin
{

[f i + λgi]
p−1−q
p−1 , f i + λgi

}
if q ∈ [0, p− 1].

Proof. Because the possible singular behavior of the nonlinearities, we divide this
proof into two parts, depending on the value of the exponent q of the gradient term
in the hypothesis (V1).

Case one: q ∈ [0, p − 1]. In this case, we pick θ0 = 1 and take θ = θ0 in the
functions Γλ,θ and ηλ,θ. So, given 0 < λ < λ∗ := λ∗1(Ω) we define, for each γ > 0,
the positive number

µ∗λ(γ) = µ∗λ,Ω(γ) := min
{ [f(γ) + λg(γ)]

p−1−q
p−1

4‖∇ωM‖qL∞(Ω)

,
f(γ) + λg(γ)

4

}
. (3.2)

Now, we can define

µ∗λ = µ∗λ,Ω := sup{µ∗λ(γ) : γ ∈ A and λ < Λ∗(γ)} ∈ (0,∞]. (3.3)

So, from (2.4), there exists γ ∈ A such that λ < Λ∗(γ). That is, µ∗λ ≥ µ∗λ(γ) > 0.
Thus, given 0 ≤ µ < µ∗λ there is a γ0 = γ0(λ) ∈ A such that λ < Λ∗(γ0) and

µ < µ∗λ(γ0). Now, we fix this γ0.
From the hypothesis (M1) and Lemma 2.4 (ii), we define vσ = vσ,λ ∈ C1(Ω),

increasing in σ, by
vσ(x) := ψλ(ωM (x) + σ), x ∈ Ω (3.4)

for each 0 < σ ≤ σ̄, where σ̄ = σ̄(λ) is given in (2.6). So, vσ(x) > ψλ(σ) in Ω and
vσ(x) = ψλ(σ) on ∂Ω, because ωM (x) > 0 in Ω and ωM (x) = 0 on ∂Ω.

Besides this, from (2.6), Lemma 2.4 (iii) and 0 < λ < Λ∗(γ0) we have that
vσ(x) < γ0, x ∈ Ω. So, there exists an ε > 0, which is sufficiently small, such that

‖vσ‖L∞(Ω) < γ0 − ε, 0 < σ ≤ σ̄. (3.5)



EJDE-2014/220 QUASILINEAR PROBLEMS WITH TWO PARAMETERS 9

Now, it follows from (3.4), Lemmas 2.1, 2.4 and the assumption (M1), that∫
Ω

|∇vσ|p−2∇vσ∇φdx

=
∫

Ω

[ψ′λ(ωM ) + σ]p−1|∇ωM |p−2∇ωM∇φdx

=
∫

Ω

|∇ωM |p−2∇ωM∇([ψ′λ(ωM + σ)]p−1φ) dx

− (p− 1)
∫

Ω

|∇ωM |p[ψ′λ(ωM + σ)]p−2ψ′′λ(ωM + σ)φdx

≥
∫

Ω

M(x)[ψ′λ(ωM + σ)]p−1φdx

=
∫

Ω

M(x)γp−1
0

[Hλ,γ0(ψλ(ωM + σ))
ψλ(ωM + σ)

]p−1

φdx

(3.6)

for each φ ∈ C∞0 (Ω), φ ≥ 0.
The study of this inequality will be divided in two parts. One of them will

produce an estimate for af + λbg while the other will result in an estimate for µV .
We note that from the definitions and properties of the functions defined in the

Section 2 and (3.5) that

1
2

∫
Ω

M(x)γp−1
0

[Hλ,γ0(ψλ(ωM + σ))
ψλ(ωM + σ)

]p−1

φ

≥ 1
2

∫
Ω

M(x)γp−1
0

ζλ,γ0(vσ + ε)
(vσ + ε)p−1

φ

≥ 1
2

∫
Ω

M(x)γp−1
0

ζλ,γ0(vσ + ε)
(γ0)p−1

φ

≥
∫

Ω

[a(x)f(vσ + ε) + λb(x)g(vσ + ε)]φ

(3.7)

for each ε > 0 and 0 < σ < σ̄.
On the other hand, from Lemma 2.1 (iii)-(iv) and 0 ≤ q ≤ p− 1, it follows that

1
2

∫
Ω

M(x)γp−1
0

[Hλ,γ0(ψλ(ωM + σ))
ψλ(ωM + σ)

]p−1

φdx

≥ 1
4

∫
Ω

M(x)γp−1
0

[f(γ0)
γp−1

0

+ λ
g(γ0)
γp−1

0

]
φdx

+
1
4

∫
Ω

M(x)γp−1−q
0

[Hλ,γ0(ψλ(ωM + σ))
ψλ(ωM + σ)

]p−1−q[γ0Hλ,γ0(ψλ(ωM + σ))
ψλ(ωM + σ)

]q
φdx

≥ [f(γ0) + λg(γ0)]
4

∫
Ω

M(x)φdx

+
{[f(γ0) + λg(γ0)]

1
p−1 }p−1−q

4

∫
Ω

M(x)[ψ′λ(ωM + σ)]qφdx

≥ [f(γ0) + λg(γ0)]
4

∫
Ω

β(x)φdx

+
[f(γ0) + λg(γ0)]

p−1−q
p−1

4‖∇ωM‖qL∞(Ω)

∫
Ω

M(x)[ψ′λ(ωM + σ)]q|∇ωM |qφdx.
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Now, using (V1) and (3.2) we can write

1
2

∫
Ω

M(x)γp−1
0

[Hλ,γ0(ψλ(ωM + σ))
ψλ(ωM + σ)

]p−1

φdx

≥ µ∗λ(γ0)
∫

Ω

β(x)φdx+ µ∗λ(γ0)
∫

Ω

α(x)|∇vσ|qφdx ≥ µ
∫

Ω

V (x,∇vσ)φdx.
(3.8)

So, replacing (3.7) and (3.8) in (3.6), we conclude the proof of Proposition 3.1.
Case two: q ∈ (p − 1, p]. If gi < ∞, we define λ∗ := lim infθ↗1 λ

∗
θ(Ω), where

λ∗θ(Ω) was defined in (2.4). Note that, by Lemma 2.3, we have λ∗ ≥ λiθ with
θ = 1. So, given 0 < λ < λ∗, there is a θ0 = θ0(λ) ∈ (‖wM‖∞f1/(p−1)

i , 1) such that
0 < λ < λ∗θ0(Ω). Now, we fix this θ0 in the functions Γλ,θ and ηλ,θ defined in (2.2)

and (2.5), respectively. So, if gi = ∞, we choose a θ0 ∈ (‖wM‖∞f1/(p−1)
i , 1) and

we set λ∗ = λ∗θ0(Ω). In this case, we have λ∗ ≥ λiθ0 .
In both cases, given 0 < λ < λ∗, we set the positive number µ∗λ(γ) := µ∗λ,Ω(γ)

by

min
{ γp−1−q

4C2‖∇ωM‖qL∞(Ω)

γ(p−1)(θ0−1)[f(γ) + λg(γ)]
4

,

(1− θ0)(p− 1)[γHλ,γ(1)]p−q

4‖α‖L∞(Ω)

} (3.9)

for each γ > 0 and for some constant C2 = C2(γ) > 0 to be chosen posteriorly.
Now, we define

µ∗λ = µ∗λ,Ω := sup
{
µ∗λ(γ) : γ ∈ A and λ < Λ∗(γ)

}
.

As in Case one, we claim that µ∗λ > 0 and given 0 ≤ µ < µ∗λ, there is a γ0 = γ0(λ) ∈
A such that λ < Λ∗(γ0) and µ < µ∗λ(γ0). From now on, we fix this γ0.

Since ωM ∈ C1(Ω) and ∂ωM/∂ν < 0 on ∂Ω, there are δ0 > 0 sufficiently small
and k0 = k0(δ0) > 0 such that

|∇ωM |p > k0(δ0) for x ∈ Ωδ0 , (3.10)

where Ωδ0 = {x ∈ Ω : dist(x, ∂Ω) < δ0} and ν is the exterior normal to the ∂Ω.
In a similar way to that done in (3.4), we obtain that

vσ(x) := [ψλ(ωM (x) + σ)]θ0 , x ∈ Ω (3.11)

is well-defined, ψλ(σ)θ0 ≤ vσ ∈ C1(Ω) and ‖vσ‖L∞(Ω) < γθ00 , for each 0 < σ ≤ σ̄.
In the last conclusion, we used Lemma 2.4 and the inequality (2.6).

That is, there is a sufficiently small ε > 0 such that

‖vσ‖L∞(Ω) < γθ00 − ε. (3.12)

Since lims→0 ψλ(s) = 0, we can take 0 < σ̃ < σ̄ sufficiently small such that

ψλ(σ̃)θ0 <
1
2

and
k0(δ0)

2ψλ(σ̃)θ0
> ‖∇ωM‖qL∞(Ω). (3.13)

So, from Lemma 2.4 (iii), it follows that vσ(x) < vσ̃(x) in Ω, for each 0 < σ < σ̃.
Moreover, since vσ̃(x) = ψλ(σ̃)θ0 on ∂Ω, it follows from Lemma 2.4 (iii) again, that
there exists a δ1 = δ1(σ̃) > 0 sufficiently small such that

vσ(x) < vσ̃(x) < 2ψλ(σ̃)θ0 , for x ∈ Ωδ1 , σ ∈ (0, σ̃). (3.14)
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Then, from (3.10), (3.13) and (3.14), we have

|∇ωM (x)|p

vσ(x)
>

k0(δ0)
2ψλ(σ̃)θ0

> |∇ωM (x)|q, (3.15)

for each x ∈ Ωδ, where δ = min{δ0, δ1} > 0.
Now, given φ ∈ C∞0 (Ω) with φ ≥ 0 and 0 < σ < σ̃, we take τ ∈ C∞0 (Ω) defined

by τ = 1 in Ω\Ωδ and τ = 0 in Ωδ/2 with 0 ≤ τ ≤ 1. So, writing φ = τφ+ (1− τ)φ,
we have that∫

Ω

|∇vσ|p−2∇vσ∇φ =
∫

Ω\Ωδ/2

|∇vσ|p−2∇vσ∇(τφ) +
∫

Ωδ

|∇vσ|p−2∇vσ∇(1− τ)φ.

(3.16)
In Ω\Ωδ/2, it follows from the definition of vσ, that

∫
Ω\Ωδ/2

|∇vσ|p−2∇vσ∇(τφ)

=
∫

Ω\Ωδ/2

|∇ωM |p−2∇ωM∇
{
θ0
p−1[ψλ(ωM + σ)](θ0−1)(p−1)[ψ′λ(ωM + σ)]p−1τφ

}
− (θ0 − 1)(p− 1)

∫
Ω\Ωδ/2

|∇ωM |pθ0
p−1

× [ψλ(ωM + σ)](θ0−1)(p−1)−1[ψ′λ(ωM + σ)]pτφ

− (p− 1)
∫

Ω\Ωδ/2

|∇ωM |pθ0
p−1[ψλ(ωM + σ)](θ0−1)(p−1)

× [ψ′λ(ωM + σ)]p−2ψ′′λ(ωM + σ)τφ

Now, recalling that θ0 ∈ (‖wM‖∞f1/(p−1)
i , 1), ψ′λ ≥ 0, ψ′′λ ≤ 0 (see Lemma 2.4) and

noting that

θ0
p−1[ψλ(ωM + σ)](θ0−1)(p−1)[ψ′λ(ωM + σ)]p−1τφ ∈W 1,p

0 (Ω),

it follows from (M1) and Lemma 2.4 (iv) that

∫
Ω\Ωδ/2

|∇vσ|p−2∇vσ∇(τφ)dx

≥
∫

Ω\Ωδ/2

|∇ωM |p−2∇ωM∇
{
θ0
p−1[ψλ(ωM + σ)](θ0−1)(p−1)

× [ψ′λ(ωM + σ)]p−1τφ
}

≥
∫

Ω\Ωδ/2

M(x)θ0
p−1[ψλ(ωM + σ)](θ0−1)(p−1)[ψ′λ(ωM + σ)]p−1τφ

=
∫

Ω\Ωδ/2

M(x)θ0
p−1v

(θ0−1)(p−1)
θ0

σ
γp−1

0

θp−1
0

[Hλ,γ0((ψλ(ωM + σ))θ0)
(ψλ(ωM + σ))θ0

]p−1

τφ.

(3.17)
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As in Case one, the analysis of this inequality will be divided in two parts. So, from
the properties of auxiliary functions, Lemma 2.1 (ii) and (3.12), we have

1
2

∫
Ω\Ωδ/2

|∇vσ|p−2∇vσ∇τφ dx

≥ 1
2

∫
Ω\Ωδ/2

M(x)γ(θ0−1)(p−1)
0 γp−1

0

ζλ,γ0(vσ + ε)
(vσ + ε)p−1

τφ

≥ 1
2

∫
Ω\Ωδ/2

M(x)γ(p−1)θ0
0

ζλ,γ0(vσ + ε)

γ
θ0(p−1)
0

τφ

≥ 1
2

∫
Ω\Ωδ/2

M(x)[fγ0(vσ + ε) + λgγ0(vσ + ε)]τφ

≥
∫

Ω\Ωδ/2

[a(x)f(vσ + ε) + λb(x)g(vσ + ε)]τφ,

(3.18)

for each λ ∈ (0, λ∗), σ ∈ (0, σ̃), ε > 0.
Now, denoting by

v(x) := lim
σ→0

vσ(x) = [ψλ(ωM (x))]θ0 , x ∈ Ω, (3.19)

it follows from Lemma 2.1 (iii), vσ > v > 0 in Ω\Ωδ/2 and q ∈ (p− 1, p] that[Hλ,γ0(vσ)
vσ

]q−(p−1)

≤
[Hλ,γ0(v)

v

]q−(p−1)

≤
∥∥Hλ,γ0(v)

v

∥∥q−(p−1)

L∞(Ω\Ωδ/2)

= C2

[
min

Ω\Ωδ/2

v
] (θ0−1)(p−1−q)

θ0

≤ C2v
(θ0−1)(p−1−q)

θ0

< C2v
(θ0−1)(p−1−q)

θ0
σ , for all x ∈ Ω\Ωδ/2,

(3.20)

where

C2 =
∥∥Hλ,γ0(v)

v

∥∥q−(p−1)

L∞(Ω\Ωδ/2)

/[
min

Ω\Ωδ/2

v
] (θ0−1)(p−1−q)

θ0
> 0

is independent of σ.
Now we show that

1
2

∫
Ω\Ωδ/2

|∇vσ|p−2∇vσ∇τφ dx ≥
γ

(p−1)(θ0−1)
0 [f(γ0) + λg(γ0)]

4

∫
Ω\Ωδ/2

β(x)τφ dx

+
γp−1−q

0

4C2‖∇ωM‖qL∞(Ω)

∫
Ω\Ωδ/2

α(x)|∇vσ|q]τφ dx

and as a consequence of this, using (3.9), we obtain

1
2

∫
Ω\Ωδ/2

|∇vσ|p−2∇vσ∇τφ dx ≥ µ
∫

Ω\Ωδ/2

V (x,∇vσ)τφ dx

for each 0 ≤ µ < µ∗λ.
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By (3.20) and Lemma 2.1 (iii)-(iv) in (3.17), we have

1
2

∫
Ω\Ωδ/2

|∇vσ|p−2∇vσ∇τφ dx

≥ 1
2

∫
Ω\Ωδ/2

M(x)v
(θ0−1)(p−1)

θ0
σ γp−1

0

[Hλ,γ0(vσ)
vσ

]p−1

τφ

≥ 1
4

∫
Ω\Ωδ/2

M(x)γ(θ0−1)(p−1)
0 γp−1

0

[f(γ0)
γp−1

0

+ λ
g(γ0)
γp−1

0

]
τφ

+
1
4

∫
Ω\Ωδ/2

M(x)v
(θ0−1)(p−1−q)

θ0
σ γp−1−q

0

[Hλ,γ0(vσ)
vσ

]p−1 θq0
θq0
v

(θ0−1)q
θ0

σ γq0τφ

≥
γ

(p−1)θ0
0 [ f(γ0)

γp−1
0

+ λ g(γ0)

γp−1
0

]

4

∫
Ω\Ωδ/2

M(x)τφ

+
γp−1−q

0

4C2

∫
Ω\Ωδ/2

M(x)θq0v
(θ0−1)q
θ0

σ
γq0
θq0

[Hλ,γ0(vσ)
vσ

]q
τφ.

Using (3.9), Lemma 2.4 (iv), the definition of M and (V1), we obtain

1
2

∫
Ω\Ωδ/2

|∇vσ|p−2∇vσ∇τφ dx

≥ γ
(p−1)(θ0−1)
0 [f(γ0) + λg(γ0)]

4

∫
Ω\Ωδ/2

M(x)τφ dx

+ µ∗λ(γ0)‖∇ωM‖qL∞(Ω)

∫
Ω\Ωδ/2

M(x)[θ0ψλ(ωM + σ)θ0−1ψ′λ(ωM + σ)]qτφ dx

≥ γ
(p−1)(θ0−1)
0 [f(γ0) + λg(γ0)]

4

∫
Ω\Ωδ/2

β(x)τφ dx

+ µ∗λ(γ0)
∫

Ω\Ωδ/2

α(x)[θ0ψλ(ωM + σ)θ0−1ψ′λ(ωM + σ)|∇ωM |]qτφ dx

≥ µ∗λ(γ0)
∫

Ω\Ωδ/2

[β(x) + α(x)|∇vσ|q]τφ dx

≥ µ
∫

Ω\Ωδ/2

V (x,∇vσ)τφ dx.

(3.21)
Going back to (3.17) and using (3.18) and (3.21), we obtain

∫
Ω\Ωδ/2

|∇vσ|p−2∇vσ∇τφ dx

≥
∫

Ω\Ωδ/2

[a(x)f(vσ + ε) + λb(x)g(vσ + ε) + µV (x,∇vσ)]τφ,
(3.22)

for each 0 < λ < λ∗, 0 ≤ µ < µ∗λ, ε > 0.
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Below we work on the ring Ωδ. As before, using the definition of vσ, it follows
that ∫

Ωδ

|∇vσ|p−2∇vσ∇(1− τ)φdx

=
∫

Ωδ

|∇ωM |p−2∇ωM∇
{
θ0
p−1[ψλ(ωM + σ)](θ0−1)(p−1)

× [ψ′λ(ωM + σ)]p−1(1− τ)φ
}

− (θ0 − 1)(p− 1)
∫

Ωδ

|∇ωM |pθ0
p−1[ψλ(ωM + σ)](θ0−1)(p−1)−1

× [ψ′λ(ωM + σ)]p(1− τ)φ

− (p− 1)
∫

Ωδ

|∇ωM |pθ0
p−1[ψλ(ωM + σ)](θ0−1)(p−1)

[ψ′λ(ωM + σ)]p−2ψ′′λ(ωM + σ)(1− τ)φ.

(3.23)

In a way similar to the one for (3.18), we have

1
2

∫
Ωδ

|∇vσ|p−2∇vσ∇(1− τ)φdx

≥ θ0
p−1

2

∫
Ωδ

M(x)[ψλ(ωM + σ)](θ0−1)(p−1)[ψ′λ(ωM + σ)]p−1(1− τ)φdx

≥
∫

Ωδ

[a(x)f(vσ + ε) + λb(x)g(vσ + ε)](1− τ)φdx,

(3.24)

for each λ ∈ (0, λ∗), σ ∈ (0, σ̃), ε > 0. Besides this, we will show that

1
2

∫
Ωδ

|∇vσ|p−2∇vσ∇(1− τ)φdx

≥ (1− θ0)(p− 1)[γ0Hλ,γ0(1)]p−q

4‖α‖∞

∫
Ωδ

α(x)|∇vσ|q(1− τ)φdx

+
γ

(p−1)(θ0−1)
0 [f(γ0) + λg(γ0)]

4

∫
Ωδ

β(x)(1− τ)φdx

and as a consequence of this, using (3.9), we obtain

1
2

∫
Ωδ

|∇vσ|p−2∇vσ∇(1− τ)φdx ≥ µ
∫

Ωδ

V (x,∇vσ)(1− τ)φdx

for each 0 ≤ µ < µ∗λ.
In fact, from the properties of the auxiliary functions and (M1), we have

1
2

∫
Ωδ

|∇vσ|p−2∇vσ∇(1− τ)φdx

≥ − (θ0 − 1)(p− 1)
4

∫
Ωδ

|∇ωM |pθp−1
0 [ψλ(ωM + σ)](θ0−1)(p−1)−1

× [ψ′λ(ωM + σ)]p(1− τ)φ

+
1
4

∫
Ωδ

|∇ωM |p−2∇ωM∇{θ0
p−1[ψλ(ωM + σ)](θ0−1)(p−1)

× [ψ′λ(ωM + σ)]p−1(1− τ)φ}
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=
(1− θ0)(p− 1)

4

∫
Ωδ

|∇ωM |pθp−1
0 v

p(θ0−1)−θ0
θ0

σ
γp0
θp0

[Hλ,γ0(vσ)
vσ

]p
(1− τ)φ

+
1
4

∫
Ωδ

M(x)θ0
p−1[ψλ(ωM + σ)](θ0−1)(p−1)[ψ′λ(ωM + σ)]p−1(1− τ)φ.

That is, from (3.15) and Lemma 2.1, we have

1
2

∫
Ωδ

|∇vσ|p−2∇vσ∇(1− τ)φdx

=
(1− θ0)(p− 1)

4

∫
Ωδ

|∇ωM |p

vσ

θp−1
0

θp−1
0

v
p(θ0−1)
θ0

σ γp0

[Hλ,γ0(vσ)
vσ

]p
(1− τ)φdx

+
1
4

∫
Ωδ

M(x)θ0
p−1v

(θ0−1)(p−1)
θ0

σ
γp−1

0

θp−1
0

[Hλ,γ0(vσ)
vσ

]p
(1− τ)φdx

≥ (1− θ0)(p− 1)
4

∫
Ωδ

|∇ωM |qv
p(θ0−1)
θ0

σ γp0

[Hλ,γ0(vσ)
vσ

]p
(1− τ)φdx

+
1
4

∫
Ωδ

M(x)γ(θ0−1)(p−1)
0 γp−1

0

[f(γ0)
γp−1

0

+ λ
g(γ0)
γp−1

0

]
(1− τ)φdx.

(3.25)

Using that vσ < 1 in Ωδ (see (3.13)), q < p and θ0 < 1, we obtain

[vσ(x)]
(θ0−1)p
θ0 > [vσ(x)]

(θ0−1)q
θ0 , for each x ∈ Ωδ (3.26)

and from Lemma 2.1, we have

[Hλ,γ0(1)]p−q
[Hλ,γ0(vσ)

vσ

]q
≤
[Hλ,γ0(vσ)

vσ

]p
, x ∈ Ωδ. (3.27)

From (3.26) and (3.27), we rewrite (3.25) as

1
2

∫
Ωδ

|∇vσ|p−2∇vσ∇(1− τ)φdx

≥ (1− θ0)(p− 1)
4

∫
Ωδ

|∇ωM |qv
(θ0−1)q
θ0

σ γp−q0 γq0
θq0
θq0

[Hλ,γ0(1)]p−q

×
[Hλ,γ0(vσ)

vσ

]q
(1− τ)φdx+

γ
(p−1)θ0
0 [ f(γ0)

γp−1
0

+ λ g(γ0)

γp−1
0

]

4

∫
Ωδ

M(x)(1− τ)φdx

=
(1− θ0)(p− 1)[γ0Hλ,γ0(1)]p−q

4‖α‖∞

∫
Ωδ

‖α‖∞θq0v
(θ0−1)q
θ0

σ

[γ0Hλ,γ0(vσ)
θ0vσ

]q
× |∇ωM |q(1− τ)φ+

γ
(p−1)(θ0−1)
0 [f(γ0) + λg(γ0)]

4

∫
Ωδ

M(x)(1− τ)φdx.
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From Lemma 2.4 (iv), (3.9) and definitions of vσ, M and (V1), we obtain

1
2

∫
Ωδ

|∇vσ|p−2∇vσ∇(1− τ)φdx

≥ µ∗λ(γ0)‖α‖L∞(Ω)

∫
Ωδ

|∇vσ|q(1− τ)φdx+ µ∗λ(γ0)
∫

Ωδ

M(x)(1− τ)φ

≥ µ∗λ(γ0)
∫

Ωδ

[α(x)|∇vσ|q + β(x)](1− τ)φdx

≥ µ
∫

Ωδ

V (x,∇vσ)(1− τ)φdx.

(3.28)

for each 0 ≤ µ < µ∗λ.
Considering (3.23) and using (3.24) and (3.28), we have∫

Ωδ

|∇vσ|p−2∇vσ∇(1− τ)φ

≥
∫

Ωδ

[a(x)f(vσ + ε) + λb(x)g(vσ + ε) + µV (x,∇vσ)](1− τ)φ,
(3.29)

for each 0 < λ < λ∗, 0 ≤ µ < µ∗λ, 0 < σ < σ̃ and ε > 0.
Therefore, replacing (3.22) and (3.29) in (3.16), we conclude the proof of the

existence of a upper solution for Proposition 3.1.
To finalize the proof of the proposition, we need to verify the estimate for µ∗.

Assume (F0). So, from Lemma 2.2 (ii), we have

lim
γ→0

Γ0,1(γ) = f
−1
p−1

0 > ‖ωM‖L∞(Ω)

and a consequence of this there exists a γ̃ > 0 sufficiently small such that (0, γ̃) ⊂ A.
Given 0 < λ < λ0, where λ0 = λi with i = 0 (λi was defined in Theorem 1.2),

we claim that there exists a γ0 < γ̃ such that λ < Λ∗(γ) for all 0 < γ < γ0. In fact,
from λ < λ0 and Lemma 2.2 (ii) we have

lim
γ→0

Γλ,1(γ) =
1

(f0 + λg0)
1
p−1

> ‖ωM‖L∞(Ω).

So, there exists a γ0 < γ̃ such that Γλ,1(γ) > ‖ωM‖L∞(Ω) = ΓΛ∗(γ),1(γ) for 0 < γ <
γ0. Now, by Lemma 2.2 (iii), we obtain λ < Λ∗(γ), for all γ ∈ (0, γ0). From (3.2)
and (3.3) we have

µ∗λ ≥ sup{µ∗λ(γ) : γ ∈ (0, γ0) and λ < Λ∗(γ)}

≥ lim inf
γ→0

µ∗λ(γ) = min
{ [f0 + λg0]p−1−q

4‖∇ωM‖qL∞(Ω)

,
f0 + λg0

4

}
.

If (F∞) occurs, we proceed in a similar manner to the above case. We point out
that, in this case, γ0 is large. This completes the proof of Proposition 3.1. �

4. Conclusion of the proof of Theorem 1.2

We begin by constructing a lower solution for problem (3.1). It follows from the
definition of λ∗ that given λ > λ∗, there exists a 0 < ε1 ≤ min{γ0, γ

θ0
0 } such that

f(s) + λg(s) ≥ λΩ(ρ)sp−1, for 0 < s < ε1.
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Taking C = C(Ω, ε1) > 0 such that C‖ϕΩ‖L∞(Ω) = ε1/2, it follows that

C‖ϕΩ‖L∞(Ω) + ε < C‖ϕΩ‖L∞(Ω) + ε1/2 = ε1 (4.1)

for each 0 < ε < ε1/2, where ϕΩ > 0 is the eigenfunction associated to the first
eigenvalue λΩ > 0 of problem (1.7).

Thus, given φ ∈ C∞0 (Ω) with φ ≥ 0, we obtain∫
Ω

|∇(CϕΩ)|p−2∇(CϕΩ)∇φdx ≤
∫

Ω

[λb(x)g(CϕΩ + ε) + a(x)f(CϕΩ + ε)]φdx;

that is, CϕΩ is a lower solution of (3.1) for each 0 < ε < ε1/2, 0 < λ < λ∗ and
0 < µ < µ∗λ, because of the positivity of V .

Now, we claim that

Cϕ(x) ≤ vσ(x), x ∈ Ω. (4.2)

First, we consider q ∈ [0, p− 1]. In this case, vσ = ψλ(ωM + σ) is defined in (3.4).
So, from (4.1) and (2.1), for all φ ∈ C∞0 (Ω), φ ≥ 0, we have∫

Ω

|∇(CϕΩ)|p−2∇(CϕΩ)∇φdx

≤
∫

Ω

[
γp−1

0 a(x)
f(CϕΩ + ε)

(CϕΩ + ε)p−1
+ γp−1

0 λb(x)
g(CϕΩ + ε)

(CϕΩ + ε)p−1

]
φdx

≤
∫

Ω

[
γp−1

0 a(x)
fγ0(CϕΩ + ε)
(CϕΩ + ε)p−1

+ γp−1
0 λb(x)

gγ0(CϕΩ + ε)
(CϕΩ + ε)p−1

]
φdx

=
∫

Ω

M(x)γp−1
0

ζλ,γ0(CϕΩ + ε)
(CϕΩ + ε)p−1

φdx

≤
∫

Ω

M(x)γp−1
0

ζλ,γ0(CϕΩ)
(CϕΩ)p−1

φdx.

(4.3)

Moreover, from (3.6) and Lemma 2.1, we have∫
Ω

|∇vσ)|p−2∇vσ∇φdx ≥
∫

Ω

M(x)γp−1
0

ζλ,γ0(vσ)
vp−1
σ

φdx, (4.4)

for all φ ∈ C∞0 (Ω), φ ≥ 0. So, from (4.3), (4.4), ζλ,γ0(s)/sp−1 non-increasing in
s > 0 and CϕΩ = 0 < ψλ(σ) = vσ on ∂Ω, we apply a comparison principle for weak
solutions (see Tolksdorf [23]) to obtain (4.2).

In the second case, that is q ∈ (p − 1, p], we recall that vσ = [ψλ(ωM + σ)]θ0 ,
where θ0 ∈ (‖wM‖∞f1/(p−1)

i , 1), see (3.11). In a similar way to the first case (that
is, q ∈ [0, p− 1]), we obtain∫

Ω

|∇vσ|p−2∇vσ∇φdx ≥
∫

Ω

M(x)γ(p−1)θ0
0

ζλ,γ0(vσ)
vp−1
σ

φdx, (4.5)

for all φ ∈ C∞0 (Ω) with φ ≥ 0.
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From (4.1), definitions and properties of auxiliary functions ξf,γ0 , ξg,γ0 and ξλ,γ0 ,
we have∫

Ω

|∇(CϕΩ)|p−2∇(CϕΩ)∇φdx

≤
∫

Ω

[
γ

(p−1)θ0
0 a(x)

f(CϕΩ + ε)
(CϕΩ + ε)p−1

+ γ
(p−1)θ0
0 λb(x)

g(CϕΩ + ε)
(CϕΩ + ε)p−1

]
φdx

≤
∫

Ω

[
γ

(p−1)θ0
0 a(x)

fγ0(CϕΩ + ε)
(CϕΩ + ε)p−1

+ γ
(p−1)θ0
0 λb(x)

gγ0(CϕΩ + ε)
(CϕΩ + ε)p−1

]
φdx

=
∫

Ω

M(x)γ(p−1)θ0
0

ζλ,γ0(CϕΩ + ε)
(CϕΩ + ε)p−1

φdx

≤
∫

Ω

M(x)γ(p−1)θ0
0

ζλ,γ0(CϕΩ)
(CϕΩ)p−1

φdx,

(4.6)

for all φ ∈ C∞0 (Ω), φ ≥ 0.
Hence, from (4.5), (4.6), ζλ,γ0(s)/sp−1 non-increasing in s > 0 and CϕΩ = 0 <

ψθ0λ (σ) = vσ on ∂Ω, the claim follows. Here, again we used Tolksdorf [23].
Now, by taking σ = 1/m and ε = 1/n with sufficiently large m,n ∈ N, it follows

from the lower upper solution Theorem (see Boccardo, Murat and Puel [2]) that
there exists um,n ∈W 1,p

0 (Ω) ∩ L∞(Ω) with 0 < CϕΩ ≤ um,n ≤ vm satisfyingZ
Ω

|∇um,n|p−2∇um,n∇φdx =

Z
Ω

[a(x)f(um,n+
1

n
)+λb(x)g(um,n+

1

n
)+µV (x,∇um,n)]φdx

for all φ ∈ C∞0 (Ω) and for each λ∗ < λ < λ∗, 0 ≤ µ < µ∗.
Using a diagonal argument on n, for each fixed m, there exists um ∈ C1(Ω) with

0 < CϕΩ ≤ um ≤ vm < γθ00 in Ω and∫
Ω

|∇um|p−2∇um∇φdx

=
∫

Ω

[a(x)f(um) + λb(x)g(um) + µV (x, um)]φdx, φ ∈ C∞0 (Ω).

Again, by another diagonal argument on m, we obtain a u ∈ C1(Ω) ∩ C(Ω) that
satisfies 0 < CϕΩ ≤ u ≤ v < γθ00 in Ω and∫

Ω

|∇u|p−2∇u∇φdx =
∫

Ω

[a(x)f(u) + λb(x)g(u) + µV (x, u)]φdx,

for φ ∈ C∞0 (Ω), where v was defined in (3.19). This completes the proof of Theorem
1.2.

5. Problem (1.1) in RN

To prove Theorem 1.3, we consider the ε-family of problems

−∆pu ≥ a(x)f(u+ ε) + λb(x)g(u+ ε) + µV (x,∇u) in RN ,

u > 0 in RN and u→ 0 as |x| → ∞,
(5.1)

for 1 < p < N . We show the following result.

Proposition 5.1. Assume (F1), (M1), (V1) with q ∈ [0, p − 1] hold. Then, there
exists a λ∗ > 0 such that for each 0 < λ < λ∗ and ε > 0, there exist a µ∗ = µ∗λ > 0
and a function v = vλ,µ ∈ C1(RN ), both independent of ε, with v being a solution
of (5.1) for each 0 ≤ µ < µ∗. Additionally:
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(i) if (Fi) occurs for i ∈ {0,∞}, then

λ∗ ≥ 1
gi

( 1
‖ωM‖p−1

L∞(RN )

− fi
)

;

(ii) there is d > 0 such that

µ∗λ ≥ dmin
{

[f i + λgi]
p−1−q
p−1 , f i + λgi

}
.

Proof. The proof of this result is analogous to the proof of part one of Proposition
3.1. Considering Ω = RN and θ0 = 1, we define the set A = ARN = {γ ∈
(0,∞) : Γ0,1(γ) > ‖ωM‖L∞(RN )}. So, we obtain (2.3) and the positive number
λ∗ = λ∗(RN ) = sup{Λ∗(γ) : γ ∈ ARN }.

Moreover, we define the positive number

µ∗λ(γ) = µ∗λ,RN (γ) = min
{ [f(γ) + λg(γ)]

p−1−q
p−1

4‖∇ωM‖qL∞(RN )

,
f(γ) + λg(γ)

4

}
. (5.2)

for each γ, λ > 0.
Now, for 0 < λ < λ∗, we take the number µ∗λ = µ∗λ,RN > 0 as defined in (3.3).

Thus, for 0 ≤ µ < µ∗λ given, we have that there exists a γ0 ∈ A such that λ < λ∗(γ0)
and µ < µ∗λ(γ0). Now, we fix this γ0.

So, given 0 < λ < λ∗, we define

v(x) = vλ(x) = ψλ(ωM (x)), x ∈ RN

and, as a consequence of the properties of ψλ, we obtain that v ∈ C1(RN ), v(x)→ 0
as ‖x‖ → ∞ and 0 < v(x) ≤ ‖v‖L∞(RN ) < γ0, x ∈ RN , because of ωM (x) ≤
‖ωM‖L∞(RN ) < ηλ(γ0). That is, taking sufficiently small ε > 0, we have

‖v‖L∞(RN ) < γ0 − ε. (5.3)

So, for each φ ∈ C∞0 (RN ) with φ ≥ 0 given, we have (in a similar way to (3.6)) that∫
RN
|∇v|p−2∇v∇φdx ≥

∫
RN

M(x)γp−1
0

[Hλ,γ0(ψλ(ωM ))
ψλ(ωM ))

]p−1

φdx. (5.4)

Below, we analyze the previous integral in two parts. First, we have

1
2

∫
RN

M(x)γp−1
0

[Hλ,γ0(ψλ(ωM ))
ψλ(ωM )

]p−1

φdx

≥ 1
2

∫
RN

M(x)γp−1
0

ζλ,γ0(v)
vp−1

φdx

≥ 1
2

∫
RN

M(x)γp−1
0

ζλ,γ0(v + ε)
(v + ε)p−1

φdx

≥ 1
2

∫
RN

M(x)[fγ0(v + ε) + λgγ0(v + ε)]φdx.

As a consequence of this, (5.3), definitions of ζf,γ0 , ζg,γ0 and M , we have

1
2

∫
RN

M(x)γp−1
0

[Hλ,γ0(ψλ(ωM ))
ψλ(ωM )

]p−1

φdx

≥
∫

RN
[a(x)f(v + ε) + λb(x)g(v + ε)]φdx.

(5.5)
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For the other part, using the properties of the auxiliary functions and (5.2), we
have

1
2

∫
RN

M(x)γp−1
0

[Hλ,γ0(ψλ(ωM ))
ψλ(ωM )

]p−1

φdx

≥ 1
4

∫
RN

M(x)γp−1
0

[f(γ0)
γp−1

0

+ λ
g(γ0)
γp−1

0

]
φdx

+
1
4

∫
RN

M(x)γp−1−q
0

[Hλ,γ0(ψλ(ωM ))
ψλ(ωM )

]p−1−q[γ0Hλ,γ0(ψλ(ωM ))
ψλ(ωM )

]q
φdx

≥ (f(γ0) + λg(γ0))
4

∫
RN

M(x)φdx

+
1
4

∫
RN

M(x)γp−1−q
0

[f(γ0)
γp−1

0

+ λ
g(γ0)
γp−1

0

] p−1−q
p−1

[ψ′λ(ωM )]qφdx

≥ µ∗λ
∫

RN
β(x)φdx+ µ∗λ

∫
RN

M(x)[ψ′λ(ωM )]q|∇ωM |qφdx

≥ µ∗λ
∫

RN
[β(x) + α(x)|∇v|q]φdx ≥ µ

∫
RN

V (x,∇v)φdx,

(5.6)

for each 0 ≤ µ < µ∗λ.
Hence, replacing (5.5) and (5.6) in (5.4), we get that v satisfies (5.1), for each

0 < λ < λ∗ and 0 ≤ µ < µ∗λ.
The estimates given for λ∗ and µ∗λ are obtained in a similar way as those of

Proposition 3.1. This proves Proposition 5.1.

6. Conclusion of the proof of Theorem 1.3

First, we note that ARN ⊂ ABR for all R ≥ 1. In fact, if γ ∈ ARN , then (using
Lemma 2.2 (iv)) we have

Γ0,θ(γ) > ‖ωM‖L∞(RN ) ≥ ‖(ωM )|BR ‖L∞(BR), for all R ≥ 1;

that is, γ ∈ ABR . So, we obtain

λ∗(RN ) = sup{λ∗(γ) : γ ∈ ARN } ≤ sup{λ∗(γ) : γ ∈ ABR} = λ∗(BR)

for all R ≥ 1.
Concerning µ∗λ. As a direct consequence of (3.2) and (5.2), we obtain that

µ∗λ(RN ) ≤ µ∗λ(BR), for all R ≥ 1. So, given λ∗ < λ < λ∗(RN ), 0 ≤ µ < µ∗λ(RN )
and taking vR = v|BR as an upper solution, there exists (Theorem 1.2 and its
demonstration) a uR ∈ W 1,p

0 (BR) ∩ C(BR) with 0 < CRϕBR ≤ uR ≤ vRN < γ0 in
BR satisfying

−∆puR = a(x)f(uR) + λb(x)g(uR) + µV (x,∇uR) in BR

uR > 0 in BR, uR = 0 on ∂BR,
(6.1)

for each R > 1, where v is given by Proposition 5.1.
Besides this, from the definition of λ∗, 0 < λ < λ∗ and λ1(ρ) = limR→∞ λBR(ρ),

it follows that there exists a L0 > 1 such that λBL0
(ρ) < λg0 + f0. That is, from

the monotonicity of the first eigenvalue concerning the domain, there exists one
δ = δ(L0) > 0 such that

f(s) + λg(s) > λBR(ρ)sp−1, for all s ∈ (0, δ) and R ≥ L0. (6.2)
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Now, considering CL0 the constant of the lower solution of (6.1) with R = L0

defined in (4.1), we take a sufficiently small C = C(δ) ∈ (0, CL0) such that

0 < C‖ϕBL0
‖L∞(BL0 ) < δ. (6.3)

With this choice and noting that CϕBL0
and uR satisfy (1.7) and (6.1), respectively,

it follows from (6.2), (6.3) and the classical Dı́az and Saá’s inequality [7], that

CϕBL0
(x) ≤ uR(x), x ∈ BL0 , for all R > L0.

Now, proceeding as in the end of proof of Theorem 1.2, we finish the proof of
Theorem 1.3. �
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E-mail address: manuela@mat.unb.br

Carlos A. Santos
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