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STURM-PICONE TYPE THEOREMS FOR SECOND-ORDER
NONLINEAR ELLIPTIC DIFFERENTIAL EQUATIONS

AYDIN TIRYAKI

ABSTRACT. The aim of this article is to give Sturm-Picone type theorems for

the pair of second order nonlinear elliptic differential equations
div(p1(2)|Vu|* "' Vu) + g1 (@) f1(u) + r1(2)g1(u) = 0,
div(p2(2)|Vo|*~ Vo) + g2(2) f2 (v) + r2(2)g2(v) = 0,

where | - | denotes the Euclidean length and V = (%, R %)T (the super-

script T' denotes the transpose). Our results include some earlier results and
generalize to n-dimensions well-known comparison theorems given by Sturm,
Picone and Leighton [26] [37] which play a key role in the qualitative behavior
of solutions. By using generalization of n dimensional Leigton’s comparison
theorem, an oscillation result is given as an application.

1. INTRODUCTION

In the qualitative theory of ordinary differential equations, the celebrated Sturm-
Picone theorem plays a crucial role. In 1836, the first important comparison theo-
rem was established by Sturm [36]. In 1909, Picone [33] modified Sturm’s theorem.
For a detailed study and earlier developments of this subject, we refer the reader
to the books |26, [37]. Sturm-Picone theorem is extended in several directions, see
[2] and [3] for linear systems, [30] for nonself adjoint differential equations, [40] for
implicit differential equations, [20, [29] for half linear equations, [7] for degenerate
elliptic equations,[48] for linear equations on time scales and [39) [41] for a pair of
nonlinear differential equations. On the other hand, we emphasize that the classi-
cal proof of Sturm-Picone theorem heavily depends on the Leighton’s variational
lemma [28] (see [37] also). Since when it was proved, it has been extended in
different contexts, see, for instance [16], 21}, 25].

There is also a good amount of interest in the qualitative theory of differen-
tial equations to determine whether the given equation is oscillatory or not and
Sturm-Picone theorem also plays an important role in this direction. For earlier
developments, we refer to [26] 33, [36, [37] and for recent developments, we refer to
Yoshida’s book [44]. Sturm comparison theorems for half linear elliptic equations
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and Picone type identities have been studied in, for example [5 [6] [7, 8] 13| [15], 19,
99 [23, 241 27, 38, 42, 43, [44] [45, 46|, 47).

Recently, Tyagi [4I] studied a pair of second order nonlinear elliptic partial
differential equations

—Au = gy (@) i (u) + by () (w), (L1)
—Av = gy(2) fo(v) + ba(@)ra(v), (1.2)

under suitable conditions. By establishing a nonlinear version of Leighton’s vari-
ational lemma, he gave the generalization of Sturm-Picone theorem for and
(1.2). But it is obvious that this result does not work for the half linear elliptic case.
A natural question now arises: Is it possible to generalize the Sturm comparison
results to the nonlinear elliptic partial differential equations that contain the half
linear case by using a nonlinear version of Leighton’s variational lemma?

Motivated by the ideas in [27, 39, [41], extending Tyagi’s results, we prove a non-
linear analogue for n-dimensional Leighton’s theorem and we give a generalization
of n-dimensional Sturm-Picone theorem by establishing a suitable nonlinear version
of Leighton’s variational lemma which contain the half linear and also linear elliptic
equations.

2. MAIN RESULTS

Let us consider a pair of second-order nonlinear elliptic type partial differential
operators:

lu =V - (p1(2)[Vu|* V) + g1 (@) fr(u) +r1(2)g1 (u), (2.1)
Lv =V - (pa(x)|Vo|* V) + ga () f2(u) + ro(x)ga(u), (2.2)
where | - | denotes the Euclidean length and V = (8%1’ ceey %)T (the super-

script T' denotes the transpose). In this section, by establishing a nonlinear version
of Leighton’s variational Lemma, we focused on obtaining a generalization of n-
dimensional Sturm-Picone theorem for and .

Let G be a bounded domain in R™ with boundary G having a piecewise con-
tinuous unit normal. Let also p; € C(G,R), ¢;, r; € C*(G,R), fi € C}(R,R),
fo € C(R,R), g; € C(R,R), for i = 1,2 where 0 < < 1, ¢;’s are of indefinite sign
for i = 1,2 and p;(x) > 0, r;(x) > 0 for all € G and « is a positive real constant.

The domain Dy(G) of £ is defined to be the set of all functions u of class C*(G,R)
with the property that p(z)|Vu|*~'Vu € C1(G;R)NC(G,R). The domain Dy (G)
of L is defined similarly. Note that such a function u € Dy(G) (and v € Dr(QG))
exists for (and (2.2)) [12,34]. The principal part of (and (2-2)) is reduced
to the p-Laplacian Ayu := V- (|Vul[P72Vu) (p = a+1, p1(x) = 1). We know that a
variety of physical phenomena are modelled by equations involving the p-Laplacian
4, 0] [10, 14}, BT, B2, B5).

In what follows, we make the following hypotheses on f; and g;.

(H1) Let f; € CY(R,R) and there exist ag, a; € (0,00) such that aglu|*~t <

fi(u) and aq|u|*tu > fi(u) # 0 for all 0 # u € R.
(H1*) Let f1 € C*(R,R) and there exists a k > 0 such that W > for all

[f1(u)] "o
0#u€eR.
(H2) Let g1 € C(R,R) and there exists a 8 > 0 such that ?125; > (3 for all
0+#u€R.
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(H3) Let fo,92 € C(R,R) and there exists ag, as, ay € (0,00) such that
aslv[*T < fa(v)v < aplv][**! and ga(v)v < agfv[*
Remark 2.1. Assumption (H1) motivates us to study nonlinearities of the form
fi(u) = Ju|*"'u(1 F a nonlinear part)
where nonlinear part is decays at oo.

Remark 2.2. Assumption (H3) simply says that \vﬁ%”(i?v is bounded for all 0 #£ v €
R.

Remark 2.3. Assumption (H1*) is a very common condition in the literature for
half linear equations.

We begin with a lemma and the definition of some concepts needed in this article.
Lemma 2.4 ([27]). Define ®(&) = |£]*71¢, € € R™, a > 0. If X,YinR"™, then
XP(X)+aYP(Y)— (a+1)X - 2(Y) > 0. (2.3)
where the equality holds if and only if X =Y.

Let U be the set of all real valued continuous functions defined on G which vanish
on JG and have uniformly continuous firs partial derivatives on G. Also define the
functions j, j* and J: U — R by

j0) = /G {01 (@) V1™ = C1 (g1 (2) + 1 (2) |+ Y,
J(n) = /G P @IVn — Co(qu(x) + Bra (@) ol Ve, (2.4)

50 = [ 1pa@) T3 (a2 (0) = aagz &) + aara) ™ Y

where C1 = (%)%, C2 = (g)o‘, g3 = mar{q,0} and ¢; = mar{—qz,0}. The
variation V() and V*(n) are defined as
Vin) = J(n) — i),
V=i (n) =J(n) —j"(n)
with domain D := D;NDy= D;=NDj.
To prove a nonlinear analogue of Leighton’s theorem we first establish a nonlinear

version of Leighton’s variational lemma (Generalization of n-dimensional Leighton’s
variational type lemma).

(2.5)

Lemma 2.5. Assume that there exists a nontrivial functionn € U such that j(n) <
0 (or j*(n) < 0 ). Then under the hypotheses (H1) (or (H1*)) and (H2), every
solution w € D; of £(u) = 0 vanishes at some points of G.

Proof. Let us give the proof under the conditions j(n) < 0, (H1) and (H2). Similarly
proof holds for j*(n) < 0, (H1*) and (H2). Assume on the contrary that the
statement is false. Suppose that there exists a solution v € Dy(G) of £(u) = 0
satisfying u # 0 on G. By (H1), we have f(u(x)) # 0, Yo € G. Then for n € U,
the following equality is valid in G:

) an®(n) 2 IVul vy
¥ (aay? @Iv V)
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- p1(2)|Vul|*~1Vu
Z:: 8961 fi(u(x))

+ an@(n)(aaxifl(ul(x)))pl(xﬂvmaqu

0477(1)(77) 6 a—1

u a—l 1(u(x
—pia >&| Val™ — agy (@)nf - ary (2) 20D et

(fi(u(z)))> fi(u(z))
[fu(u@)|*T! o nVufiu@)
2 Gt Ry )
where
aVufi(u(e)
A ATE
et VA wuf(u)
=Vl e Ty | e eV o ()
By (H1) and (H2), we obtain
p1(@)|Vn|*F! = Ci(qr(2) + Bri(z)) >
77(1)(77) a—1
2O (Fagyn @IV V) (2:6)
O RW@) Vs ()
+ o e ey ev)
We integrate over G and then apply the divergence theorem to obtain

. g . |f1(u(@)|*7t  raVuf](u(z)) N .
023 [ e (T ov) 20

Therefore,

Al mVufi(u@)
L@ e (v =
From Lemma, we see that
W) @l
@y =Y YRy =0 B

Since n € U, there exists a nonzero constant K such that

In(@)|* = |K fi(u(x))]
in G and hence on G by continuity. This is not possible because n(x) = 0 on 9G
but fi(u(z)) # 0 on G (u(x) # 0 on OG). This implies that j(n) > 0, which is
a contradiction and hence every solution u of fu = 0 vanishes at some point of G.
This completes the proof. (I

Lemma plays a crucial role to establish the following Generalization of n-
dimensional Leighton’s theorem.

Theorem 2.6. Let (H1) (or (H1*)), (H2) and (H3) hold. If there exists a nontrivial
solutionv € D of Lv = 0 in G such that v =0 on 0G and V (v) > 0 (or V*(v) > 0),
then every solution u of fu = 0 vanishes at some point of G.
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Proof. As in the proof of Lemma [2.5, let us give the proof under the conditions
(H1), (H2) and V(v) > 0. Since v is a solution of Lv = 0 and v = 0 on IG so by
an application of Green’s theorem we have

[ (@00 + @)

= —/ vV - (p2(2)|Vo|* " Vo)da

¢ (2.7)

— o(ps ()| VUV Jog +/ pa(a) [ Vo] da
G

_ / po ()| Vo[ d.
G

In view of (H3), one can see that

| (@@ a0+ ra(@ima(eo)de < | (o (2) = asgs (@) + asra(a)) ol do.
(2.8)
By and (2.8)), we have J(v) < 0. Since V(u) > 0, this implies
j(v) < J(v) <0
and hence by application of Lemma[2.5]every nontrivial solution u of fu = 0 vanishes

at some point of G. This completes the proof. O

Remark 2.7. If the condition V' (v) > 0 (or V*(v) > 0) is strengthened to V(v) > 0
(or V*(v) > 0), the conclusion of Theorem holds also in the domain G.

From Theorem [2.6, we immediately have the following Corollary which is an n-
dimensional extension of Sturm-Picone comparison theorem for the operators (2.1)

and (2.2]).
Corollary 2.8. Let (H1) (or (H1%*)), (H2) and (H3) hold. Suppose there exists a

nontrivial solution v of Lv = 0 in G such that v =0 on 0G. If pa(x) > p1(z) and
Ciqa(z) + Bri(z)) = [a2ge(z) — (03 — a2)qy (z) + aura(x)],
(or Calar(@) + Br1(@) = lazae() — (a3 — €2)gg (2) + aura(@)] )

for every x € G. Then every nontrivial solution u of fu = 0 vanishes at some point

of G.

From Lemma 2.5 Theorem and Corollary [2.8] we easily obtain the following
results which are straightforward extensions of the variational Lemma, Leighton’s
theorem and the celebrated Sturm-Picone theorem from [26] [37] valid for linear
second order ordinary differential equations to half linear elliptic partial differential
equations that contain linear case.

Corollary 2.9. Let fi(u) = |u|*"tu and either r1(x) =0 or g1 (u) = 0 in 2.1). If

there exists a nontrivial function n € U such that

/G (21 @)Vl — gy (@)l]* yde < 0 (2.9)

then every nontrivial solution w of half linear elliptic equation

V- (p1(2)[Vul* V) + gu (@) |ul*Tlu =0 (2.10)
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vanishes at some point in G.

Corollary 2.10. Suppose that there exists a nontrivial solution v of

V- (p2(2)|V|* V) + go(2)|v|* o = 0 (2.11)
in G such that v =0 on 0G. If
/G{(m(l‘) = p1(2))[VU* T + (g1 (2) = g2(2) [T }dz > 0 (2.12)

then every nontrivial solution u of (2.10) vanishes at some point of G.

Corollary 2.11. Let py(x) > pi(z) and q1(z) > qz(x) for every x € G. If there
ezists a nontrivial solution v of (2.11) in G such that v = 0 on OG, then any
nontrivial solution u of (2.10) vanishes at some point of G.

Note that the Corollaries 2.9-2.11 were also obtained in [I5], 18] 23] 27, [44]. But
their proofs depend on the Picone-type and Wirtinger type inequalities.
Recently Bal [T1] gave a nonlinear version of the Sturmian comparison principle

for a special case of (2.1) and (2.2]) as the follows.
Theorem 2.12 ([T1]). Let q1 and g2 be the two weight functions such that g2 < ¢
p—2
and f1 satisfies f1(u) > (p—1) (f1 (u)ﬁ) If there is a positive solution v satisfying
— Apv = go(x)[v[P"20 for Q*, v =0 on 9Q*, (2.13)
then any nontrivial solution u of
—Apu=qi(x)fi(u) forxzeQ” (2.14)
must change sign, where Q* denotes any domain in R", 1 < p < oo and fy :
(0,00) — (0,00) is a C function.

From the hypothesis of f; this conclusion is not true. Because for u € (0, 00),
fi(u) >0 but for w < 0 fi(u) is not defined.

This result can be corrected by using Corollary for the bounded domain G
in R™ and we can give the following Sturmian comparison result for the equations

(2.13) and (2.14)) as follows:
Corollary 2.13. Let (H1*) hold with k = o = p — 1. If there exists a nontrivial

solution v € D of (2.13) in G such that v =0 on 0G and q1(v) > q2(x), then every
solution u of (2.14)) vanishes at some point of G.

3. AN APPLICATION

This section deals with an application of Theorem This theorem enables us
to develop some oscillation criteria for the equation fu = 0.

Let Q be an exterior domain in R™, that is, a domain such that Q D {x € R™ :
|z| > 7o} for some ro > 0, and consider the nonlinear elliptic equation

V- (p1(2) [ Vul* V) + g1 (@) fi(u) = 0 (3.1)
in Q where o > 0 is a constant, p; € C(Q,RT), ¢ € C(Q,R) and f; satisfy the
hypothesis (H1) (or (H1%)).

A nontrivial solution of (3.1)) is said to be oscillatory if it has a zero in QN {z €

R™ : |z| > r*} for any r* > ro. For brevity, (3.1]) is called oscillatory if all of its
nontrivial solutions are oscillatory.
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We will show that an explicit oscillation criterion for (3.1) can be obtained via
the comparison principle proven in the preceding section. Our main idea is to
compare ({3.1) with suitably chosen equations with radial symmetry of the type

V- (1 (|2))[Vo* T Vo) + @ (|z]) fi(v) = 0 (3-2)

in {x € R" : |z| > ro} and employ information about the oscillatory behavior of
radially symmetric solutions of .

It is easily verified that if v = y(|z|) is radially symmetric solution of (3.2)), then
the function y(r) satisfies the differential equation

" Y1) T @ () fily) =0, > (3.3)
We note that (3.3]) is a special case of the equation
(MY 1* ') +a(r) fily) =0, 7>rg (3.4)

the oscillatory behavior of which has been intensively investigated in recent years
by numerous authors [, [I7].

Suppose that p(r) and ¢(r) are continuous functions defined on [rg, 00) such that
p(r) > 0 on [rg,c0). A solution of is a function y : [rg,00) — R which is
continuously differentiable on [rg, c0) together with ply/|* 1y’ and satisfies
at every point of [rg, c0). A nontrivial solution is said to be oscillatory if it has a
sequence of zeros clustering ar r = co, and nonoscillatory otherwise. Now we give
an oscillation criterion for . Its proof can be found, for example, in [IJ.

Lemma 3.1. Let (H1) (or (H1*)) hold. Suppose that p € C([rg,o0),RT) and
q € C([ro,00),R) satisfies

/T (/b p(u)du)_l/ads =00

™1 To

lim L (/s q(u)du)ds = o0.

—
r—oo T o o

Then (3.4) is oscillatory.

We first establish a principle which enables us to deduce the oscillation of (3.1
from the one-dimensional oscillation of (3.3)).

Theorem 3.2. If there exist functions p1 € C([rg,00),R") and ¢; € C([rog,>=),R)
such that

and

p1(r) > max p1(x)

|z|=r
and
asqi(r) — azqi(r) < C min g, (x) (3.5)
(or a2 () ~ 31 () < Co min g1 (@)

where as, ag, C1 and Cy are defined as before, and the ordinary differential equation

(13.3) is oscillatory, then (3.1) is oscillatory in €.

Proof. By hypothesis there exists an oscillatory solution y(r) of (3.3 on [rg, 00).
Let {r;} be the set of all zeros of y(r) such that ro <14 < ro < -+ <1 < ...,
lim; o, 7; = c0. Then the function v(xz) = y(|z|) is a radially symmetric solution

of (3.2) which is defined in {z € R™ : |z| > ro} and has the spherical nodes
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|| = r;, i = 1,2,.... Let us compare (3.1) with (3.2) in the annular domains
Gi={zxeR":r; <|z| <rit1},1=1,2,.... For each i, v is a solution of (3.2) in
G; such that v # 0 in G; and v = 0 on 9G;. Since (3.5) implies

pilz|) = pi(z)
and
@i (|z]) — asq ™ (|z]) < Craqa ()

(or azdi*(Je) — asdy~(Jo) < Com ()

in {z € R": |z| > ro}, we obtain
Ve = [ (@) = @ITI ¢ ()
— (aadi*(J2]) — asa™ (J2)]lv]*+ e > 0
(or V') = [ 4G l1) = @101+ + [Com(a)

— (g (|z]) — asdi~ (J2)] ][>+ Yz > o).

Consequently from Theorem it follows that every solution u of (3.1)) has a zero
in Gy, i = 1,2,..., which shows that u is oscillatory in 2. This completes the
proof. O

Remark 3.3. An immediate consequence of Theorem is that (3.2) with p; €
C([rg,),RT) and a1 € C([rg,00),R) is oscillatory in {z € R™ : |z| > ro} if it has
one radially symmetric solution which is oscillatory there.

Combining Theore with Lemma applied to (3.3) gives the following
3.1).

oscillation criteria for (

Theorem 3.4. Let p; € C([rg,o0),R") and ¢1 € C([ro,),R) be functions satis-
fying (3.5). Let also (H1) (or (H1*)) hold. If the functions p1 and ¢ satisfy

/T(/S gy (w)du) T ds = oo

T1 To

and

lim 1 ' (/S u"_lq"l(u)du)ds = o0,

r—oo T ro ro

then (3.1)) is oscillatory in ).

REFERENCES

[1] Agarwal, R. P.; Grace, S. R.; O’Regal, D.; Oscillation Theory for Second order Linear,
Half-linear, Superlinear Dynamic Equations, Kluwer Academia Publishers, London, 2002.

[2] Ahmad, S.; Lazer, A., C.; A new generalization of the Sturm comparison theorem to self
adjoint systems, Proc. Amer. Math. Soc., 68 (1978), 185-188.

[3] Ahmad, S.; On Sturmian theory for second order systems, Proc. Amer. Math. Soc. 87 (1983),
661-665.

[4] Ahmed, N.; Sunada, D. K.; Nonlinear flow in prous media, J. Hydraulics Division Proc.
Amer. Soc. Civil Eng., 95(1969), 1847-1857.

[5] Allegretto, W.; Huang, Y. X.; A Picone’s identity for the p-Laplacian and applications,
Nonlinear Anal., 32, (1998), 819-830.

[6] Allegretto, W.; Huang, Y. X.; Principal eigenvalues and Sturm Comprison via Picone’s
identity, J. Differential Equations 156, (1999), 427-438.



EJDE-2014/214 STURM-PICONE TYPE THEOREMS 9

(7]

8

[9]
(10]
(11]
(12]
(13]
(14]
[15]
[16]
(17]
18]

(19]

20]
(21]
(22]
23]
24]
[25]
[26]

27)

(28]
29]
(30]
(31]
(32]
33]

(34]

Allegretto, W.; Sturm theorems for degenerate elliptic equations, Proc. Amer. Math. Soc.
129(2001) 3031-3035.

Allegretto, W.; Sturm theorems for degenerate elliptic equations, Proc. Amer. Math. Soc.
129 (2001), 3031-3035.

Aris, R.; The Mathematical Theory of Diffusion and Reaction in Permeable Catalsts, vols. 1
and II, Clarendon Press, Oxford, 1975.

Astarita, G.; Marruci, G.; Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, New
York, 1974.

Bal, K.; Generalized Picone’s identity and its applications, Electronic Journal of Differential
Equations, Vol. 2013 (2013), No. 243, pp. 1-6.

Berger, M. S.; Nonlinearity and Functional Analysis, Lectures on Nonlinear Problems in
Mathematical Analysis, Academic Press, Inc. New York, 1997.

Bognar, G.; Dosly; The application of Picone-type identity for some nonlinear elliptic dif-
ferential equations, Acta Math. Univ. Comenian. 72 (2003), 45-57.

Diaz, J. I.; Nonlinear Partial Differential Equations and Free Boundaries, vol. I, Elliptic
FEquations, Res. Notes Math., Vol. 106, Pitman, London, 1985.

Dosly, O.; The Picone identity for a class of partial differential equations, Mathematica
Bohemica, 127 (2002), 581-589.

Dosly, O.; Jaro(s), J., A.; singular version of Leighton’s comparison theorem for forced quasi-
linear second-order differetial equations, Arch. Math. (BRNO), 39 (2003), 335-345.

Dosly, O.; Rék, P.; Half-linear Differential Equations, North-Holland Mathematics Studies,
202, Elsevier Science B. V., Amsterdam, 2005.

Dunninger, D. R.; A sturm comparison theorem for some degenrate quasilinear elliptic op-
erators, Boll. Un. Mat. Ital. A (7)9, (1995), 117-121.

Fisnarovéd, S.; Marik, R.; Generalized Picone and Riccati inequalites for half-linear differen-
tial operators with arbitrary elliptic matrices, Electronic J. Diff. Equations, No: 111, (2010),
pp. 1-13.

Jarog, J.; Kusano, T.; A Picone type identity for second order half-linear differential equa-
tions, Acta Math. Univ. Comenianae, Vol. LXVIII, 1(1999), 137-151.

Jarog, J.; Kusano, T.; Yoshida, N.; Forced superlinear oscillations via Picone’s identity, Acta
Math. Univ. Comenianae, LXIX (2000), 107-113.

Jarog, J.; Kusano, T.; Yoshida, N.; Picone-type inequalities for nonlinear elliptic equations
and their applications, J. Inequal. Appl. 6 (2001), 387-404.

Jaro§, J.; Kusano, T.; Yoshida, N.; Picone type inequalies for half linear elliptic equations
and their applications, Adv. Math. Sci. Appl., 12(2), (2002), 709-724.

Jaro$, J.; Kusano, T.; Yoshida, N.; Picone-type inequalities for elliptic equations with first
order terms and their applications, J. Inequal. Appl. (2006), 1-17.

Komkov, V.; A generalization of Leighton’s variational theorem, Applicable Analysis,
2(1972), 377-383.

Kreith, K.; Oscillation Theory, Lecture Notes in Mathematics, Vol.324, (1973), (Springer-
Verlag, Berlin).

Kusano, T., Jaros, J.; Yoshida, N.,; A Picone-type identity and Sturmain comparison and
oscillation theorems for a class of half-linear partial differential equations of second order,
Nonlinear Analysis, Theory, Methods and Applications 40 (2000), 381-395.

Leighton, W.; Comparison theorems for linear differential equations of second order, Proc.
Amer. Math. Soc. 13 (1962), 603610.

Li H. J.; Yeh, C. C.; Sturmian comparison theorem for half-linear second order differential
equations, Proc. Roy. Soc. Edinburgh 125A (1995), 11931204.

Miiller-Pfeiffer, E.; Sturm Comparison theorems for non-selfadjoint differential equations on
non-compact intervals, Math. Nachr., 159 (1992), 291-298.

Oden, J. T.; Existence theorems and approxrimations in nonlinear elasticity, in: E. Laksh-
mikantham (Ed.), Nonlinear Equations in Abstract Space, North-Holland, 1978.

Pelissier, M. C.; Sur quelques problémes non linearies en glaciologie, These, Publ. Math.
d’orsay, 110, 1975.

Picone, M.; Sui valori eccezionali di un parametro da cui dipende un’equazione differenziale
lineare ordinaria del second’ordine, Ann. Scuola Norm. Sup. Pisa 11(1909), 1-141.

Renardy, M.; Rogers, R. C.; An introduction to Partial Differential Equations, Springer
Verlag, New York, Inc. 2004.



10

A. TIRYAKI EJDE-2014/214

[35] Schoenauer, M.; A monodimensional model for fracturing, in: A. Fasano, M. Primicerio

(Eds.), Free Boundary Problems: Theory, Applications, in: Res. Notes Math., vol. 79, Pit-
man, London, 1983, pp. 701-711.

[36] Sturm, C.; Sur les quations diffrentielles linaires du second ordre, J. Math. Pures. Appl.

1(1836), 106-186.

[37] Swanson, C. A.; Comparison and Oscillation Theory of Linear Differential Equations, Aca-

demic Press, New York, 1968.

[38] Tadie, J.; Oscillation criteria for semilinear elliptic equations with a damping term in R™,

Electronic J. Diff. Equations, No. 51, (2010), pp. 1-5.

[39] Tiryaki, A.; Sturm-Picone type theorems for second-order nonlinear differential equations,

Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 146, pp.1-11.

[40] Tyagi, T.; Raghavendra, V.; A note on generalization of Sturm’s comparison theorem, Non-

linear Dyn. Syst. Theory, 8(2) (2008), 213-216.

[41] Tyagi, J.; Generalization of Sturm-Picone theorem for second-order monlinear differential

equations, Taiwanese Journal of Mathematics, Vol. 17. Nol. (2013) pp. 361-378.

[42] Yoshida, N.; Oscillation of half-linear partial differenetial equations with first order terms,

Stud. Univ. Zilina, 17 (2003), 177-184.

[43] Yoshida, N.; Oscillation criteria for half-linear partial differential equations via Picone’s

Identity, in: Proceedings of Equadiff-11, 2005, pp. 589-598.

[44] Yoshida, N.; Oscillation Theory of Partial Differential Equations, World Scientific Publishing

Co. Pte. Ltd., 2008.

[45] Yoshida, N.; Sturmian comparison and oscillation theorems for a class of half-linear elliptic

equations Nonlinear Analysis, Theory, Methods and Applications, 71(2009) e1354-1359.

[46] Yoshida, N.; A Picone identity for half-linear elliptic equations and its applications to oscil-

latory theory, Nonlinear Anal. 71 (2009), 4935-4951.

[47] Yoshida, N.; Sturmian comparsion and oscillation theorems for quasilinear elliptic equations

with mized nonlinearites via Picone-type inequality, Toyama Math. J. Vol. 33 (2010), 21-41.

[48] Zhang, C.; Sun, S.; Sturm-Picone comparison theorem of second-order linear equationson

time scales, Adv. Diff. Egs., (2009), pp. 12.

AYDIN TIRYAKI

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, FACULTY OF ARTS AND SCIENCES, [ZMIR
UNIVERSITY, 35350 UCKUYULAR, IZMIR, TURKEY

E-mail address: aydin.tiryaki@izmir.edu.tr



	1. Introduction
	2. Main results
	3. An application
	References

