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STURM-PICONE TYPE THEOREMS FOR SECOND-ORDER
NONLINEAR ELLIPTIC DIFFERENTIAL EQUATIONS

AYDIN TİRYAKİ

Abstract. The aim of this article is to give Sturm-Picone type theorems for

the pair of second order nonlinear elliptic differential equations

div(p1(x)|∇u|α−1∇u) + q1(x)f1(u) + r1(x)g1(u) = 0,

div(p2(x)|∇v|α−1∇v) + q2(x)f2(v) + r2(x)g2(v) = 0,

where | · | denotes the Euclidean length and ∇ = ( ∂
∂x1

, . . . , ∂
∂xn

)T (the super-

script T denotes the transpose). Our results include some earlier results and
generalize to n-dimensions well-known comparison theorems given by Sturm,

Picone and Leighton [26, 37] which play a key role in the qualitative behavior

of solutions. By using generalization of n dimensional Leigton’s comparison
theorem, an oscillation result is given as an application.

1. Introduction

In the qualitative theory of ordinary differential equations, the celebrated Sturm-
Picone theorem plays a crucial role. In 1836, the first important comparison theo-
rem was established by Sturm [36]. In 1909, Picone [33] modified Sturm’s theorem.
For a detailed study and earlier developments of this subject, we refer the reader
to the books [26, 37]. Sturm-Picone theorem is extended in several directions, see
[2] and [3] for linear systems, [30] for nonself adjoint differential equations, [40] for
implicit differential equations, [20, 29] for half linear equations, [7] for degenerate
elliptic equations,[48] for linear equations on time scales and [39, 41] for a pair of
nonlinear differential equations. On the other hand, we emphasize that the classi-
cal proof of Sturm-Picone theorem heavily depends on the Leighton’s variational
lemma [28] (see [37] also). Since when it was proved, it has been extended in
different contexts, see, for instance [16, 21, 25].

There is also a good amount of interest in the qualitative theory of differen-
tial equations to determine whether the given equation is oscillatory or not and
Sturm-Picone theorem also plays an important role in this direction. For earlier
developments, we refer to [26, 33, 36, 37] and for recent developments, we refer to
Yoshida’s book [44]. Sturm comparison theorems for half linear elliptic equations
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and Picone type identities have been studied in, for example [5, 6, 7, 8, 13, 15, 19,
22, 23, 24, 27, 38, 42, 43, 44, 45, 46, 47].

Recently, Tyagi [41] studied a pair of second order nonlinear elliptic partial
differential equations

−∆u = q1(x)f1(u) + b1(x)r1(u), (1.1)

−∆v = q2(x)f2(v) + b2(x)r2(v), (1.2)

under suitable conditions. By establishing a nonlinear version of Leighton’s vari-
ational lemma, he gave the generalization of Sturm-Picone theorem for (1.1) and
(1.2). But it is obvious that this result does not work for the half linear elliptic case.
A natural question now arises: Is it possible to generalize the Sturm comparison
results to the nonlinear elliptic partial differential equations that contain the half
linear case by using a nonlinear version of Leighton’s variational lemma?

Motivated by the ideas in [27, 39, 41], extending Tyagi’s results, we prove a non-
linear analogue for n-dimensional Leighton’s theorem and we give a generalization
of n-dimensional Sturm-Picone theorem by establishing a suitable nonlinear version
of Leighton’s variational lemma which contain the half linear and also linear elliptic
equations.

2. Main results

Let us consider a pair of second-order nonlinear elliptic type partial differential
operators:

`u := ∇ · (p1(x)|∇u|α−1∇u) + q1(x)f1(u) + r1(x)g1(u), (2.1)

Lv := ∇ · (p2(x)|∇v|α−1∇v) + q2(x)f2(u) + r2(x)g2(u), (2.2)

where | · | denotes the Euclidean length and ∇ =
(
∂
∂x1

, . . . , ∂
∂xn

)T (the super-
script T denotes the transpose). In this section, by establishing a nonlinear version
of Leighton’s variational Lemma, we focused on obtaining a generalization of n-
dimensional Sturm-Picone theorem for (2.1) and (2.2).

Let G be a bounded domain in Rn with boundary ∂G having a piecewise con-
tinuous unit normal. Let also pi ∈ C(Ḡ,R), qi, ri ∈ Cµ(Ḡ,R), f1 ∈ C1(R,R),
f2 ∈ C(R,R), gi ∈ C(R,R), for i = 1, 2 where 0 < µ ≤ 1, qi’s are of indefinite sign
for i = 1, 2 and pi(x) > 0, ri(x) ≥ 0 for all x ∈ Ḡ and α is a positive real constant.

The domain D`(G) of ` is defined to be the set of all functions u of class C1(Ḡ,R)
with the property that p1(x)|∇u|α−1∇u ∈ C1(G; R)∩C(Ḡ,R). The domain DL(G)
of L is defined similarly. Note that such a function u ∈ D`(G) (and v ∈ DL(G))
exists for (2.1) (and (2.2)) [12, 34]. The principal part of (2.1) (and (2.2)) is reduced
to the p-Laplacian ∆pu := ∇· (|∇u|p−2∇u) (p = α+1, p1(x) ≡ 1). We know that a
variety of physical phenomena are modelled by equations involving the p-Laplacian
[4, 9, 10, 14, 31, 32, 35].

In what follows, we make the following hypotheses on fi and gi.
(H1) Let f1 ∈ C1(R,R) and there exist α0, α1 ∈ (0,∞) such that α0|u|α−1 ≤

f ′1(u) and α1|u|α−1u ≥ f1(u) 6= 0 for all 0 6= u ∈ R.
(H1*) Let f1 ∈ C1(R,R) and there exists a k > 0 such that f ′1(u)

|f1(u)|
α−1
α

≥ k for all

0 6= u ∈ R.
(H2) Let g1 ∈ C(R,R) and there exists a β ≥ 0 such that g1(u)

f1(u) ≥ β for all
0 6= u ∈ R.
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(H3) Let f2, g2 ∈ C(R,R) and there exists α2, α3, α4 ∈ (0,∞) such that
α3|v|α+1 ≤ f2(v)v ≤ α2|v|α+1 and g2(v)v ≤ α4|v|α+1

Remark 2.1. Assumption (H1) motivates us to study nonlinearities of the form

f1(u) = |u|α−1u(1∓ a nonlinear part)

where nonlinear part is decays at ∞.

Remark 2.2. Assumption (H3) simply says that f2(v)
|v|α−1v is bounded for all 0 6= v ∈

R.

Remark 2.3. Assumption (H1*) is a very common condition in the literature for
half linear equations.

We begin with a lemma and the definition of some concepts needed in this article.

Lemma 2.4 ([27]). Define Φ(ξ) = |ξ|α−1ξ, ξ ∈ Rn, α > 0. If X,Y inRn, then

XΦ(X) + αY Φ(Y )− (α+ 1)X · Φ(Y ) ≥ 0. (2.3)

where the equality holds if and only if X = Y .

Let U be the set of all real valued continuous functions defined on Ḡ which vanish
on ∂G and have uniformly continuous firs partial derivatives on G. Also define the
functions j, j∗ and J : U → R by

j(η) =
∫
G

{p1(x)|∇η|α+1 − C1

(
q1(x) + βr1(x)

)
|η|α+1}dx,

j∗(η) =
∫
G

{p1(x)|∇η|α+1 − C2

(
q1(x) + βr1(x)

)
|η|α+1}dx,

J(η) =
∫
G

{p2(x)|∇η|α+1 − (α2q
+
2 (x)− α3q

−
2 (x) + α4r2(x))|η|α+1}dx

(2.4)

where C1 = ( α0
α1α

)αα1, C2 = ( kα )α, q+2 = max{q2, 0} and q−2 = max{−q2, 0}. The
variation V (η) and V ∗(η) are defined as

V (η) = J(η)− j(η),

V ∗(η) = J(η)− j∗(η)
(2.5)

with domain D := Dj ∩DJ = Dj∗ ∩DJ .
To prove a nonlinear analogue of Leighton’s theorem we first establish a nonlinear

version of Leighton’s variational lemma (Generalization of n-dimensional Leighton’s
variational type lemma).

Lemma 2.5. Assume that there exists a nontrivial function η ∈ U such that j(η) ≤
0 (or j∗(η) ≤ 0 ). Then under the hypotheses (H1) (or (H1*)) and (H2), every
solution u ∈ Dj of `(u) = 0 vanishes at some points of Ḡ.

Proof. Let us give the proof under the conditions j(η) ≤ 0, (H1) and (H2). Similarly
proof holds for j∗(η) ≤ 0, (H1*) and (H2). Assume on the contrary that the
statement is false. Suppose that there exists a solution u ∈ D`(G) of `(u) = 0
satisfying u 6= 0 on Ḡ. By (H1), we have f1(u(x)) 6= 0, ∀x ∈ Ḡ. Then for η ∈ U ,
the following equality is valid in G:

∇ ·
( αηΦ(η)
f1(u(x))

p1(x)|∇u|α−1∇u
)
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=
n∑
i=1

{ ∂

∂xi
(αηΦ(η))

p1(x)|∇u|α−1∇u
f1(u(x))

+ αηΦ(η)(
∂

∂xi

1
f1(u(x))

)p1(x)|∇u|α−1∇u

+
αηΦ(η)
f1(u(x))

∂

∂xi
(p1(x)|∇u|α−1∇u)}

= p1(x)
|f1(u(x))|α−1

(f ′1(u(x)))α
|α∇η|α+1 − αq1(x)|η|α+1 − αr1(x)

g1(u(x))
f1(u(x))

|u|α+1

− p1(x)
|f1(u(x))|α−1

(f ′1(u(x)))α
F
(η∇uf ′1(u(x))

f1(u(x))
, α∇η

)
,

where

F (
η∇uf ′1(u(x))
f1(u(x))

, α∇η)

= |α∇η|α+1 + α
∣∣η∇uf ′1(u(x))

f1(u(x))

∣∣α+1 − (α+ 1)α∇η · Φ
(η∇uf ′1(u(x))

f1(u(x))

)
By (H1) and (H2), we obtain

p1(x)|∇η|α+1 − C1(q1(x) + βr1(x))|η|α+1

≥ C1∇ ·
( ηΦ(η)
f1(u(x))

p1(x)|∇u|α−1∇u
)

+
C1

α
p1(x)

|f1(u(x))|α−1

f ′1(u(x))α
F
(η∇uf ′1(u(x))

f1(u(x))
, α∇η

)
.

(2.6)

We integrate (2.6) over G and then apply the divergence theorem to obtain

j(η) ≥ C1

α

∫
G

p1(x)
|f1(u(x))|α−1

f ′1(u(x))α
F
(α∇uf ′1(u(x))

f1(u(x))
, α∇η

)
dx ≥ 0 .

Therefore, ∫
G

p1(x)
|f1(u(x))|α−1

f ′1(u(x))α
F
(η∇uf ′1(u(x))

f1(u(x))
, α∇η

)
= 0.

From Lemma 2.4, we see that
η∇uf ′1(u(x))
f1(u(x))

= α∇η or ∇(
|η(x)|α

|f1(u(x))|
) = 0 in G.

Since η ∈ U , there exists a nonzero constant K such that

|η(x)|α = |Kf1(u(x))|
in G and hence on Ḡ by continuity. This is not possible because η(x) = 0 on ∂G
but f1(u(x)) 6= 0 on ∂G (u(x) 6= 0 on ∂G). This implies that j(η) > 0, which is
a contradiction and hence every solution u of `u = 0 vanishes at some point of Ḡ.
This completes the proof. �

Lemma 2.5 plays a crucial role to establish the following Generalization of n-
dimensional Leighton’s theorem.

Theorem 2.6. Let (H1) (or (H1*)), (H2) and (H3) hold. If there exists a nontrivial
solution v ∈ D of Lv = 0 in Ḡ such that v = 0 on ∂G and V (v) ≥ 0 (or V ∗(v) ≥ 0),
then every solution u of `u = 0 vanishes at some point of Ḡ.
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Proof. As in the proof of Lemma 2.5 , let us give the proof under the conditions
(H1), (H2) and V (v) ≥ 0. Since v is a solution of Lv = 0 and v = 0 on ∂G so by
an application of Green’s theorem we have∫

G

(
q2(x)f2(v)v + r2(x)g2(v)v

)
dx

= −
∫
G

v∇ · (p2(x)|∇v|α−1∇v)dx

= −v(p2(x)|∇v|α−1∇v) |∂G +
∫
G

p2(x)|∇v|α+1dx

=
∫
G

p2(x)|∇v|α+1dx.

(2.7)

In view of (H3), one can see that∫
G

(
q2(x)f2(v)v + r2(x)g2(v)v

)
dx ≤

∫
G

[(α2q
+
2 (x)− α3q

−
2 (x)) + α4r2(x)]|v|α+1dx.

(2.8)
By (2.7) and (2.8), we have J(v) ≤ 0. Since V (u) ≥ 0, this implies

j(v) ≤ J(v) ≤ 0

and hence by application of Lemma 2.5 every nontrivial solution u of `u = 0 vanishes
at some point of Ḡ. This completes the proof. �

Remark 2.7. If the condition V (v) ≥ 0 (or V ∗(v) ≥ 0) is strengthened to V (v) > 0
(or V ∗(v) > 0), the conclusion of Theorem 2.6 holds also in the domain G.

From Theorem 2.6. we immediately have the following Corollary which is an n-
dimensional extension of Sturm-Picone comparison theorem for the operators (2.1)
and (2.2).

Corollary 2.8. Let (H1) (or (H1*)), (H2) and (H3) hold. Suppose there exists a
nontrivial solution v of Lv = 0 in Ḡ such that v = 0 on ∂G. If p2(x) ≥ p1(x) and

C1(q1(x) + βr1(x)) ≥ [α2q2(x)− (α3 − α2)q−2 (x) + α4r2(x)],(
or C2(q1(x) + βr1(x)) ≥ [α2q2(x)− (α3 − α2)q−2 (x) + α4r2(x)]

)
,

for every x ∈ Ḡ. Then every nontrivial solution u of `u = 0 vanishes at some point
of Ḡ.

From Lemma 2.5, Theorem 2.6 and Corollary 2.8 we easily obtain the following
results which are straightforward extensions of the variational Lemma, Leighton’s
theorem and the celebrated Sturm-Picone theorem from [26, 37] valid for linear
second order ordinary differential equations to half linear elliptic partial differential
equations that contain linear case.

Corollary 2.9. Let f1(u) = |u|α−1u and either r1(x) ≡ 0 or g1(u) ≡ 0 in (2.1). If
there exists a nontrivial function η ∈ U such that∫

G

{p1(x)|∇η|α+1 − q1(x)|η|α+1}dx ≤ 0 (2.9)

then every nontrivial solution u of half linear elliptic equation

∇ · (p1(x)|∇u|α−1∇u) + q1(x)|u|α−1u = 0 (2.10)
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vanishes at some point in Ḡ.

Corollary 2.10. Suppose that there exists a nontrivial solution v of

∇ · (p2(x)|∇v|α−1∇v) + q2(x)|v|α−1v = 0 (2.11)

in Ḡ such that v = 0 on ∂G. If∫
G

{(p2(x)− p1(x))|∇v|α+1 + (q1(x)− q2(x))|v|α+1}dx ≥ 0 (2.12)

then every nontrivial solution u of (2.10) vanishes at some point of Ḡ.

Corollary 2.11. Let p2(x) ≥ p1(x) and q1(x) ≥ q2(x) for every x ∈ Ḡ. If there
exists a nontrivial solution v of (2.11) in Ḡ such that v = 0 on ∂G, then any
nontrivial solution u of (2.10) vanishes at some point of Ḡ.

Note that the Corollaries 2.9–2.11 were also obtained in [15, 18, 23, 27, 44]. But
their proofs depend on the Picone-type and Wirtinger type inequalities.

Recently Bal [11] gave a nonlinear version of the Sturmian comparison principle
for a special case of (2.1) and (2.2) as the follows.

Theorem 2.12 ([11]). Let q1 and q2 be the two weight functions such that q2 < q1

and f1 satisfies f ′1(u) ≥ (p−1)
(
f1(u)

p−2
p−1
)
. If there is a positive solution v satisfying

−∆pv = q2(x)|v|p−2v for Ω∗, v = 0 on ∂Ω∗, (2.13)

then any nontrivial solution u of

−∆pu = q1(x)f1(u) for x ∈ Ω∗ (2.14)

must change sign, where Ω∗ denotes any domain in Rn, 1 < p < ∞ and f1 :
(0,∞)→ (0,∞) is a C1 function.

From the hypothesis of f1 this conclusion is not true. Because for u ∈ (0,∞),
f1(u) > 0 but for u < 0 f1(u) is not defined.

This result can be corrected by using Corollary 2.8, for the bounded domain Ḡ
in Rn and we can give the following Sturmian comparison result for the equations
(2.13) and (2.14) as follows:

Corollary 2.13. Let (H1*) hold with k = α = p − 1. If there exists a nontrivial
solution v ∈ D of (2.13) in Ḡ such that v = 0 on ∂G and q1(x) ≥ q2(x), then every
solution u of (2.14) vanishes at some point of Ḡ.

3. An application

This section deals with an application of Theorem 2.6. This theorem enables us
to develop some oscillation criteria for the equation `u = 0.

Let Ω be an exterior domain in Rn, that is, a domain such that Ω ⊃ {x ∈ Rn :
|x| ≥ r0} for some r0 > 0, and consider the nonlinear elliptic equation

∇ · (p1(x)|∇u|α−1∇u) + q1(x)f1(u) = 0 (3.1)

in Ω where α > 0 is a constant, p1 ∈ C(Ω,R+), q1 ∈ C(Ω,R) and f1 satisfy the
hypothesis (H1) (or (H1*)).

A nontrivial solution of (3.1) is said to be oscillatory if it has a zero in Ω∩ {x ∈
Rn : |x| > r∗} for any r∗ > r0. For brevity, (3.1) is called oscillatory if all of its
nontrivial solutions are oscillatory.
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We will show that an explicit oscillation criterion for (3.1) can be obtained via
the comparison principle proven in the preceding section. Our main idea is to
compare (3.1) with suitably chosen equations with radial symmetry of the type

∇ · (p̃1(|x|)|∇v|α−1∇v) + q̄1(|x|)f1(v) = 0 (3.2)

in {x ∈ Rn : |x| ≥ r0} and employ information about the oscillatory behavior of
radially symmetric solutions of (3.2).

It is easily verified that if v = y(|x|) is radially symmetric solution of (3.2), then
the function y(r) satisfies the differential equation

(rn−1p̃1(r)|y′|α−1y′)′ + rn−1q̄1(r)f1(y) = 0, r ≥ r0 (3.3)

We note that (3.3) is a special case of the equation

(p(r)|y′|α−1y′)′ + q(r)f1(y) = 0, r ≥ r0 (3.4)

the oscillatory behavior of which has been intensively investigated in recent years
by numerous authors [1, 17].

Suppose that p(r) and q(r) are continuous functions defined on [r0,∞) such that
p(r) > 0 on [r0,∞). A solution of (3.4) is a function y : [r0,∞) → R which is
continuously differentiable on [r0,∞) together with p|y′|α−1y′ and satisfies (3.4)
at every point of [r0,∞). A nontrivial solution is said to be oscillatory if it has a
sequence of zeros clustering ar r = ∞, and nonoscillatory otherwise. Now we give
an oscillation criterion for (3.4). Its proof can be found, for example, in [1].

Lemma 3.1. Let (H1) (or (H1*)) hold. Suppose that p ∈ C([r0,∞),R+) and
q ∈ C([r0,∞),R) satisfies ∫ r

r1

(∫ s

r0

p(u)du
)−1/α

ds =∞

and

lim
r→∞

1
r

∫ r

r0

(∫ s

r0

q(u)du
)
ds =∞.

Then (3.4) is oscillatory.

We first establish a principle which enables us to deduce the oscillation of (3.1)
from the one-dimensional oscillation of (3.3).

Theorem 3.2. If there exist functions p̃1 ∈ C([r0,∞),R+) and q̃1 ∈ C([r0,∞),R)
such that

p̃1(r) ≥ max
|x|=r

p1(x)

and
α2q̃1

+(r)− α3q̃1(r) ≤ C1 min
|x|=r

q1(x) (3.5)(
or α2q̃1

+(r)− α3q̃1(r) ≤ C2 min
|x|=r

q1(x)
)

where α2, α3, C1 and C2 are defined as before, and the ordinary differential equation
(3.3) is oscillatory, then (3.1) is oscillatory in Ω.

Proof. By hypothesis there exists an oscillatory solution y(r) of (3.3) on [r0,∞).
Let {ri} be the set of all zeros of y(r) such that r0 ≤ r1 < r2 < · · · < ri < . . . ,
limi→∞ ri = ∞. Then the function v(x) = y(|x|) is a radially symmetric solution
of (3.2) which is defined in {x ∈ Rn : |x| ≥ r0} and has the spherical nodes
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|x| = ri, i = 1, 2, . . . . Let us compare (3.1) with (3.2) in the annular domains
Gi = {x ∈ Rn : ri < |x| < ri+1}, i = 1, 2, . . . . For each i, v is a solution of (3.2) in
Gi such that v 6= 0 in Gi and v = 0 on ∂Gi. Since (3.5) implies

p̃1(|x|) ≥ p1(x)

and
α2q̃1

+(|x|)− α3q̃1
−(|x|) ≤ C1q1(x)(

or α2q̃1
+(|x|)− α3q̃1

−(|x|) ≤ C2q1(x)
)

in {x ∈ Rn : |x| ≥ r0}, we obtain

V (v) ≡
∫
Gi

{(p̃1(|x|)− p1(x))|∇v|α+1 + [C1q1(x)

− (α2q̃1
+(|x|)− α3q̃1

−(|x|))]|v|α+1}dx ≥ 0(
or V ∗(v) ≡

∫
Gi

{(p̃1(|x|)− p1(x))|∇v|α+1 + [C2q1(x)

− (α2q̃1
+(|x|)− α3q̃1

−(|x|))]|v|α+1}dx ≥ 0
)
.

Consequently from Theorem 2.6, it follows that every solution u of (3.1) has a zero
in Gi, i = 1, 2, . . . , which shows that u is oscillatory in Ω. This completes the
proof. �

Remark 3.3. An immediate consequence of Theorem 3.2 is that (3.2) with p̃1 ∈
C([r0,∞),R+) and ã1 ∈ C([r0,∞),R) is oscillatory in {x ∈ Rn : |x| ≥ r0} if it has
one radially symmetric solution which is oscillatory there.

Combining Theorem 3.2 with Lemma 3.1 applied to (3.3) gives the following
oscillation criteria for (3.1).

Theorem 3.4. Let p̃1 ∈ C([r0,∞),R+) and q̃1 ∈ C([r0,∞),R) be functions satis-
fying (3.5). Let also (H1) (or (H1*)) hold. If the functions p̃1 and q̃1 satisfy∫ r

r1

(
∫ s

r0

un−1p̃1(u)du)−1/αds =∞

and

lim
r→∞

1
r

∫ r

r0

(∫ s

r0

un−1q̃1(u)du
)
ds =∞,

then (3.1) is oscillatory in Ω.
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[21] Jaroš, J.; Kusano, T.; Yoshida, N.; Forced superlinear oscillations via Picone’s identity, Acta

Math. Univ. Comenianae, LXIX (2000), 107-113.
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[27] Kusano, T., Jaroš, J.; Yoshida, N.,; A Picone-type identity and Sturmain comparison and
oscillation theorems for a class of half-linear partial differential equations of second order,

Nonlinear Analysis, Theory, Methods and Applications 40 (2000), 381-395.

[28] Leighton, W.; Comparison theorems for linear differential equations of second order, Proc.
Amer. Math. Soc. 13 (1962), 603610.

[29] Li H. J.; Yeh, C. C.; Sturmian comparison theorem for half-linear second order differential
equations, Proc. Roy. Soc. Edinburgh 125A (1995), 11931204.

[30] Müller-Pfeiffer, E.; Sturm Comparison theorems for non-selfadjoint differential equations on

non-compact intervals, Math. Nachr., 159 (1992), 291-298.

[31] Oden, J. T.; Existence theorems and approximations in nonlinear elasticity, in: E. Laksh-
mikantham (Ed.), Nonlinear Equations in Abstract Space, North-Holland, 1978.
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