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ASYMPTOTIC SPEED OF SPREADING IN A DELAY LATTICE
DIFFERENTIAL EQUATION WITHOUT QUASIMONOTONICITY

FUZHEN WU

Abstract. This article concerns the asymptotic speed of spreading in a delay
lattice differential equation without quasimonotonicity. We obtain the speed

of spreading by constructing an auxiliary undelayed equation, whose speed of

spreading is the same as that of the original equation. The minimal wave speed
of bounded positive traveling wave solutions is obtained from the asymptotic

spreading.

1. Introduction

In this article, we study the asymptotic speed of spreading of the delay lattice
differential equation

dun(t)
dt

= [Du]n(x) + run(t)[1− un(t)− aun(t− τ)], n ∈ Z, t > 0, (1.1)

where τ ≥ 0 and all the other parameters are positive, and

[Du]n(x) =
∑

i∈Z\{0}

di[un+i(t)− un(t)]

satisfying
(D1) di = d−i ≥ 0, i ∈ N and

∑
i∈Z\{0} di > 0;

(D2) there exists λ0 ∈ (0,∞] such that for any λ ∈ [0, λ0),
∑
i∈Z\{0} die

λi <∞.

The time delay in (1.1) leads to the deficiency of quasimonotonicity [29] in the
reaction term

F =: run(t)[1− un(t)− aun(t− τ)].
First we recall some results of the asymptotic speed of spreading in delay lattice

differential equations. For a reaction term of general form, namely
dun(t)
dt

= [Du]n(x) + f(un(t), un(t− τ)), n ∈ Z, t > 0, (1.2)

in which f is a continuous function, some results on asymptotic spreading have been
established. If f is nondecreasing with respect the second variable, the asymptotic
speed of spreading of (1.2) has been studied by Liang and Zhao [15], Ma et al
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[21], Thieme and Zhao [31], and Weng et al [33]. If f is only monotone near the
unstable steady state, then it is locally quasimonotone and its asymptotic spreading
has been studie by Fang et al [10], Yi et al [35]. If τ = 0, then the quasimonotone
condition holds and its dynamical behavior has been widely studied by Anderson et
al [1], Bates and Chmaj [3], Bell and Cosner [4], Chow [8], Keener [14], Mallet-Paret
[24, 25].

Since (1.1) does not satisfy the monotone conditions in the works mentioned
above, it does not admit proper comparison principle. Therefore, its study of
asymptotic spreading cannot be answered by the known conclusions. At the same
time, the reaction term F can be regarded as a special form of Logistic nonlinearity
with distributed delay, of which the dynamics is an important topic in literature.
The purpose of this paper is to estimate the asymptotic speed of spreading of un(t)
formulated by the initial value problem of (1.1), herein the asymptotic speed of
spreading is given as follows.

Definition 1.1. Assume that un(t) is well defined for n ∈ Z, t > 0. Then a
constant c1 > 0 is the asymptotic speed of spreading of un(t) if

(1) for any c > c1, limt→∞ sup|n|>ct un(t) = 0;
(2) for any c ∈ (0, c1), lim inft→∞ inf |n|<ct un(t) > 0.

In population dynamics, the speed formulates the evolutionary processes of in-
dividuals from the viewpoint of an observer. More precisely, if an observer were
to move to the right or left at a fixed speed greater than c1, the local population
density would eventually look like naught, and if an observer were to move to the
right or left at a fixed speed less than c1, the local population density would even-
tually look like positivity, and the population spreads roughly at the speed c1 [32].
In literature, the definition was first introduced by Aronson and Weinberger [2] for
the Fisher equation from the viewpoint of population dynamics. Since then, this
concept has been widely studied and some important results have been established
for reaction-diffusion equations, lattice differential equations, discrete-time recur-
sions and integral equations, see Berestycki et al [5], Berestycki et al [6], Diekmann
[9], Hsu and Zhao [11], Liang and Zhao [15], Thieme [30], Thieme and Zhao [31],
Weinberger et al. [32] and Zhao [36] for some important results.

However, these results only hold for (local) quasimonotone systems and cannot
be applied to (1.1) if aτ > 0. Very recently, Lin [16] and Pan [27] have investigated
the asymptotic spreading of a delayed equation without (local) quasimonotonicity.
The current paper is motivated by the studies of those in [16, 27]. More precisely, we
shall first estimate the growth of unknown functions, then calculate the asymptotic
speed of spreading of (1.1). Under proper conditions, we find that the speed of
spreading of (1.1) with τ > 0 is the same as that of (1.1) with τ = 0. Note that the
time delay leads to the failure of comparison principle, then our conclusions imply
the persistence of asymptotic speed of spreading with respect to time delay leading
to the deficiency of quasimonotonicity.

The minimal wave speed of traveling wave solutions in evolutionary systems is
also an important threshold formulating the dynamical properties. For quasimono-
tone systems, the minimal wave speed has been widely studied, and one general
method is to confirm the nonexistence of traveling wave solutions by the theory
of asymptotic spreading. In this article, applying our conclusions of asymptotic
spreading, we obtain the nonexistence of traveling wave solutions, and formulate
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the minimal wave speed of traveling wave solutions in (1.1), which is the same as
the asymptotic speed of spreading.

2. Initial value problem

We first introduce some notation. Let

l∞ = {un : n ∈ Z and un is uniformly bounded for all n ∈ Z}.
Then it is a Banach space equipped with the standard supremum norm. Consider
the initial value problem

dun(t)
dt

= [Du]n(x) + run(t)[1− un(t)], n ∈ Z, t > 0,

un(0) = φ(n), n ∈ Z.
(2.1)

Note that [Du]n(x) : l∞ → l∞ is a bounded linear operator, then it generates an
analytic semigroup T (t) : l∞ → l∞. Moreover, the semigroup is also positive. By
Fang et al [10], Ma et al [21] and Weng et al [33], we have the following two lemmas.

Lemma 2.1. If 0 ≤ φ(n) ≤ 1, n ∈ Z, then (2.1) has a solution un(t) for all
n ∈ Z, t > 0. If wn(t) satisfies

dwn(t)
dt

≥ (≤)[Dw]n(t) + rwn(t)[1− wn(t)], n ∈ Z, t > 0,

wn(0) ≥ (≤)φ(n), n ∈ Z,
(2.2)

then wn(t) ≥ (≤)un(t) for all n ∈ Z, t > 0. In particular, wn(x) is called an upper
(a lower) solution of (2.1). On the other hand, if w(t) : [0,∞)→ l∞ such that

w(t) ≥ (≤)T (t− s)w(s) +
∫ t

s

T (t− θ)[rw(θ)[1− w(θ)]]dθ

for any 0 ≤ s ≤ t < ∞, then w(t) ≥ (≤)u(t) for all t > 0 in the sense of standard
partial ordering of l∞.

Lemma 2.2. Let c2 =: infλ>0

(∑
i∈Z\{0} di(e

λi − 1) + r
)
/λ.

(1) c2 > 0;
(2) φ(n) ≥ 0 for all n ∈ Z, if there exists M > 0 such that φ(n) = 0, |n| > M

and φ(n) > 0 holds for some n ∈ Z, then c2 is the asymptotic speed of
spreading of un(t) defined by (2.1);

(3) φ(n) ≥ 0 for all n ∈ Z and φ(n) > 0 holds for some n ∈ Z, for any given
c ∈ (0, c2), we have

lim inf
t→∞

inf
|n|<ct

un(t) = lim sup
t→∞

sup
|n|<ct

un(t) = 1;

(4) c2 is continuous in r;
(5) c2 is strictly decreasing in r.

Consider the initial value problem
dun(t)
dt

= [Du]n(x) + run(t)[1− un(t)− aun(t− τ)], n ∈ Z, t > 0,

un(s) = ψ(n, s), n ∈ Z, s ∈ [−τ, 0].
(2.3)

Applying the theory of abstract functional differential equations [26], we have the
following conclusions.
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Lemma 2.3. Assume that 0 ≤ ψ(n, s) ≤ 1 for all n ∈ Z, s ∈ [−τ, 0] and for each
n ∈ Z, ψ(n, s) is continuous in s ∈ [−τ, 0].

(1) (2.3) admits a mild solution un(t), n ∈ Z, t > 0 satisfying 0 ≤ un(t) ≤ 1,
n ∈ Z, t > 0. In particular, for u(t) : [0,∞)→ l∞, it takes the form

u(t) = T (t− s)u(s) +
∫ t

s

T (t− θ)[ru(θ)[1− u(θ)− au(θ − τ)]]dθ ,

for any 0 ≤ s ≤ t <∞;
(2) if t > τ , then un(t) is a classical solution satisfying (1.1);
(3) if ψ(n, 0) > 0 for some n ∈ Z, then un(t) > 0 for all n ∈ Z, t > 0.

Moreover, un(t) satisfies the following nice properties.

Lemma 2.4. Assume that 0 ≤ ψ(n, s) ≤ 1 for all n ∈ Z, s ∈ [−τ, 0] and for each
n ∈ Z, ψ(n, s) is continuous in s ∈ [−τ, 0]. If t > τ , then

|dun(t)
dt
| ≤ max

{ ∑
i∈Z\{0}

di +
r

4
,
∑

i∈Z\{0}

di + ra
}

=: L

for any n ∈ Z and t > τ .

Proof. Since un(t) is a classical solution when t > τ , we have

dun(t)
dt

= [Du]n(x) + run(t)[1− un(t)− aun(t− τ)]

=
∑

i∈Z\{0}

diun+i(t) + run(t)[1− un(t)]

− un(t)
∑

i∈Z\{0}

di − raun(t)un(t− τ).

Note that ∑
i∈Z\{0}

diun+i(t) + run(t)[1− un(t)] ≤
∑

i∈Z\{0}

di +
r

4
,

un(t)
∑

i∈Z\{0}

di + raun(t)un(t− τ) ≤
∑

i∈Z\{0}

di + ra.

Then

|dun(t)
dt
| ≤ max

{ ∑
i∈Z\{0}

di +
r

4
,
∑

i∈Z\{0}

di + ra
}

for any n ∈ N, t > τ . The proof is complete. �

3. Asymptotic speed of spreading

In this section, we investigate the asymptotic speed of spreading of un(t) defined
by (2.3). When a ≥ 1, the result is formulated as follows.

Theorem 3.1. Assume that a ≥ 1 such that L =
∑
i∈Z\{0} di+ra. Further suppose

that the initial value satisfies
(I1) 0 ≤ ψ(n, s) ≤ 1 for all n ∈ Z, s ∈ [−τ, 0];
(I2) for each n ∈ Z, ψ(n, s) is continuous in s ∈ [−τ, 0];
(I3) there exists some n ∈ Z such that ψ(n, 0) > 0;
(I4) there exists some M ∈ N such that ψ(n, s) = 0 for all |n| > M , s ∈ [−τ, 0].
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If aLτ < 1, then c2 is the asymptotic speed of spreading of un(t) defined by (2.3).

We now prove the result by several lemmas, through which the conditions of
Theorem 3.1 hold without further clarification.

Lemma 3.2. If c > c2, then limt→∞ sup|n|>ct un(t) = 0.

Proof. By Lemma 2.3, we see that un(t) ≥ 0 for t > 0, n ∈ Z, and so u(t) : [0,∞)→
l∞ satisfies

u(t) ≤ T (t− s)u(s) +
∫ t

s

T (t− θ)[ru(θ)[1− u(θ)]]dθ

for any 0 ≤ s ≤ t <∞. Then

u(t) ≤ w(t), t > 0

where w(t) : [0,∞) → l∞ is defined by (2.1) with φ(n) = ψ(n, 0). By the second
item of Lemma 2.2, we have what we want. The proof is complete. �

By Lemma 2.3, we have the following conclusion.

Lemma 3.3. For any ε > 0, consider the initial value problem

dun(t)
dt

= [Du]n(x) + run(t)[1− aLτ − (1 + a)un(t)],

u0(0) = ε, un(0) = 0, n ∈ Z \ {0}.
(3.1)

Then there exists δ = δ(ε) > 0 such that u0(τ) = δ.

Since the asymptotic speed of spreading is concerned with the long time behavior
of the unknown function, we consider only t ≥ 2τ + 1, such that un(t) is a clas-
sical solution satisfying the differential equation (1.1); we consider the differential
equation.

Lemma 3.4. For any ε > 0, there exists M = M(ε) > 1 such that

dun(t)
dt

≥ [Du]n(x) + run(t)[1− ε−Mun(t)]

for n ∈ Z, t > 2τ + 2.

Proof. If un(t− τ) < ε/a, then

1− un(t)− aun(t− τ) < 1− ε− un(t).

If un(t− τ) ≥ ε/a, then Lemma 3.3 implies

un(t) ≥ δ(ε/a) > 0

by the comparison principle. Therefore, there exists M > 1 such that

(M − 1)un(t) ≥ (M − 1)δ(ε/a) > a

and so
(M − 1)un(t) ≥ aun(t− τ).

The proof is complete. �

Lemma 3.5. For any fixed c < c2, we have lim inft→∞ inf |n|<ct un(t) > 0.
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Proof. Let ε > 0 be such that

inf
λ>0

∑
i∈Z\{0} di(e

λi − 1) + r(1− 2ε)

λ
=: c3 > c,

then ε is admissible by Lemma 2.2. From Lemma 3.4, we see that

dun(t)
dt

≥ [Du]n(x) + run(t)[1− ε−Mun(t)].

Therefore, if t > 2τ + 2, then

dun(t)
dt

≥ [Du]n(x) + run(t)[1− ε−Mun(t)], n ∈ Z, t > 2τ + 2,

un(2τ + 2− s) > 0, s ∈ [−τ, 0], n ∈ Z.

By Lemma 2.2, we see that

lim inf
t→∞

inf
|n|<c3t

un(t) ≥ 1− ε
M

> 0,

which implies what we wanted. The proof is complete. �

Remark 3.6. Lemma 3.5 remains valid if (I4) does not hold.

Summarizing Lemmas 3.2-3.5, we complete the proof of Theorem 3.1.
Note that in Theorem 3.1, a ≥ 1 is assumed. If a < 1, then we have

dun(t)
dt

≥ [Du]n(x) + run(t)[1− a− un(t)]

by Lemma 2.3. Replacing aLτ by a in (3.1), and we have the following conclusions
after a discussion similar to the proof of Theorem 3.1.

Theorem 3.7. Assume that a < 1 holds and (I1)–(I4) from Theorem 3.1 hold.
Then c2 is the asymptotic speed of spreading of un(t) defined by (2.3).

Theorem 3.7 was also proved by Pan [28].

4. Applications

In this part, we consider the traveling wave solutions. Hereafter, a traveling wave
solution of (1.1) is a special solution with form un(t) = ρ(n+ ct), in which c > 0 is
the wave speed and ρ ∈ C1(R,R) is the wave profile that propagates in Z. Thus, ρ
and c satisfy

c
dρ(ξ)
dξ

=
∑

i∈Z\{0}

di[ρ(ξ + i)− ρ(ξ)] + rρ(ξ)[1− ρ(ξ)− aρ(ξ − cτ)], ξ ∈ R. (4.1)

To better reflect the evolutionary processes, we also require

lim
ξ→−∞

ρ(ξ) = 0, lim inf
ξ→∞

ρ(ξ) > 0. (4.2)

In population dynamics, a positive solution satisfying (4.1)-(4.2) could formulate
the successful invasion of individuals. The existence of traveling wave solutions in
lattice differential equations with time delay have been widely studied, e.g. [10, 12,
13, 15, 17, 18, 20, 21, 22, 23, 31, 33, 34, 35]. We now present that c2 is the minimal
wave speed such that (4.1)-(4.2) does not have a bounded positive solution if c < c2
while (4.1)-(4.2) has a bounded positive solution if c ≥ c2.
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Lemma 4.1. If ρ(ξ) is a nonzero bounded positive solution of (4.1), then 0 ≤
ρ(ξ) ≤ 1 for ξ ∈ R.

Proof. Denote
ρ = sup

ξ∈R
ρ(ξ), ρ = inf

ξ∈R
ρ(ξ),

then both ρ and ρ are bounded and nonnegative. If there exists ξ0 such that
ρ = ρ(ξ0), then

c
dρ(ξ)
dξ

∣∣
ξ=ξ0

= 0,
∑

i∈Z\{0}

di[ρ(ξ0 + i)− ρ(ξ0)] ≤ 0,

which further implies that

1− ρ(ξ0)− aρ(ξ0 − cτ) ≥ 0,

and so ρ ≤ 1.
If ρ = lim supξ→∞ ρ(ξ), then there exists {ξm} such that ξm → ∞, ρ(ξm) → ρ,

m→∞, and

lim
m→∞

[
c
dρ(ξ)
dξ

∣∣
ξ=ξm

−
∑

i∈Z\{0}

di[ρ(ξm + i)− ρ(ξm)]
]
≥ 0,

which indicates that 1− ρ ≥ 0 and so ρ ≤ 1.
Moreover, if ρ = lim supξ→−∞ ρ(ξ), then the discussion is similar to that of

ρ = lim supξ→∞ ρ(ξ). The proof is complete. �

Theorem 4.2. Assume that either a < 1 or a ≥ 1 with aLτ < 1. If c < c2, then
(4.1)-(4.2) does not have a bounded positive solution.

Proof. Were the statement false, then for some c4 ∈ (0, c2), (4.1)–(4.2) has a
bounded positive solution ρ(ξ). Then Lemma 4.1 implies that 0 ≤ ρ(ξ) ≤ 1, ξ ∈ R,
and un(t) = ρ(n+ c4t) is a solution of

dun(t)
dt

= [Du]n(x) + run(t)[1− un(t)− aun(t− τ)], n ∈ Z, t > 0,

un(s) = ρ(n+ cs), n ∈ Z, s ∈ [−τ, 0],

where the initial value satisfies (I1)–(I3). By Theorems 3.1 and 3.7 (also see Remark
3.6), we see that

lim inf
t→∞

inf
|2n|=(c2+c4)t

un(t) = lim inf
t→∞

inf
|2n|=(c2+c4)t

ρ(n+ ct) > 0.

Let −2n = (c2 + c4)t, then t→∞ leads to ξ = n+ c4t→ −∞ such that

ρ(n+ c4t)→ 0, t→∞,

which implies a contradiction. The proof is complete. �

Moreover, we can also prove the existence of traveling wave solutions when c ≥ c2,
of which the proof is similar to that in Pan [28].

Theorem 4.3. Assume that a ≥ 1 such that aLτ < 1. If c ≥ c2, then (4.1)–(4.2)
has a bounded positive solution.
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Proof. We shall prove the conclusion by the idea in Pan [28], in which the authors
studied the problem if a < 1. For each c > c2, define λ1(c) be the smaller root of∑

i∈Z\{0}

di(eλi − 1)− cλ+ r = 0

Define the continuous functions

ρ(ξ) = min{eλ1(c)ξ, 1}, ρ(ξ) = max{eλ1(c)ξ − qeηλ1(c)ξ, 0},

in which η − 1 > 0 is small and q > 1 is large. Similar to Pan [28, Lemma 3.3], we
can prove that (4.1)–(4.2) has a bounded positive solution satisfying

ρ(ξ) ≥ ρ(ξ) ≥ ρ(ξ), ξ ∈ R

and

lim inf
ξ→∞

ρ(ξ) >
1− aLτ

2 + a
. (4.3)

We now prove the result for c = c2 by passing to a limit function [19]. Let
ci → c∗, i ∈ N, be strictly decreasing, then for each fixed ci, (4.1)-(4.2) has a
positive fixed point ρi(ξ) such that

0 < ρi(ξ) < 1, lim inf
ξ→∞

ρi(ξ) >
1− aLτ

2 + a
, lim

ξ→−∞
ρi(ξ) = 0, i ∈ N.

Without loss of generality, we assume that

ρi(0) =
1− aLτ

4 + a
, ρi(ξ) <

1− aLτ
4 + a

, ξ < 0.

It is clear that ρi(ξ) and ρ′i(ξ) are equicontinuous and uniformly bounded. By
Ascoli-Arzela and a nested subsequence argument [7], (4.1) with c = c2 has a
bounded solution ρ̃ satisfying

0 < ρ̃(ξ) < 1, lim inf
ξ→∞

ρ̃(ξ) >
1− aLτ

2 + a
,

ρ̃(0) =
1− aLτ

4 + a
, ρ̃(ξ) ≤ 1− aLτ

4 + a
, ξ < 0.

If lim supξ→−∞ ρ̃(ξ) > 0, then the invariant form of traveling wave solutions implies
that

ρ̃(0) >
1− aLτ

2 + a
by the asymptotic speed of spreading. This is a contradiction occurs; therefore,
limξ→−∞ ρ̃(ξ) = 0. The proof is complete. �
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