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MULTIPLE SOLUTIONS TO ASYMMETRIC SEMILINEAR
ELLIPTIC PROBLEMS VIA MORSE THEORY

LEANDRO RECOVA, ADOLFO RUMBOS

ABSTRACT. In this article we study the existence of solutions to the problem
—Au = g(z,u) in Q;
uw=0 on 01,

where Q is a smooth bounded domain in RN (N >2)and g: Q xR — R
is a differentiable function with g(x,0) = 0 for all z € . By using minimax
methods and Morse theory, we prove the existence of at least three nontrivial
solutions for the case in which an asymmetric condition on the nonlinearity
g is assumed. The first two nontrivial solutions are obtained by employing a
cutoff technique used by Chang et al in [9]. For the existence of the third non-
trivial solution, first we compute the critical group at infinity of the associated
functional by using a technique used by Liu and Shaoping in [19]. The final
result is obtained by using a standard argument involving the Morse relation.

1. INTRODUCTION

The goal of this article is to study the existence and multiplicity of solutions of
the boundary-value problem

—Au = g(z,u) in £
u=0 on 09, (1.1)

where €2 C R”™ is an open bounded set with smooth boundary, 02, and ¢ is a
differentiable function. By a solution of (1.1)) we mean a weak solution, i.e., a
function u € HJ () satisfying

/ Vu - Voudz = / g(x, u)vde, (1.2)
Q Q

for any v € H} (), where H} () is the Sobolev space obtained through completion
of C§° () with respect to the metric induced by the norm

9 1/2 .
Jul = ([ 19ufaz) " for allwe HY(@),
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We will denote by 0 < A\; < Ay < A3 < ... the distinct eigenvalues of the linear
problem

—Au = A u in Q;
=0 on 9.

The following conditions on g, and its primitive, G(z,s) = fos g(z,£)dg, for all
x € Q and s € R, will be assumed throughout this article:

(G1) g: Q x R — R is differentiable, g(z,0) = 0, and ¢'(x,0) = A, with m > 1.

(G2) There is A > 0 with A £ A1, and 0 < « < 1 such that

g(xz,8) — As _o.

lim
§——00 |S|a

(G3) There are 6 and sg with 0 < § < 1/2 and sy > 0 such that
0 < G(z,s) <Osg(x,s), fors>syandallze

(G4) im0 g(z,8)/57 =0, where $ — 1 <o < 2 if N >3, or 1 <0 < 00 if
N =2

(Gh) o8 < min{lJ%Cw 2

(G6) There exists s~ < 0 such that

2G(x,s) — g(x,s)s <0, forall s < s_.
The main result of this article is the following.

Theorem 1.1. Assume g satisfies (G1)—(G6) and there exists to > 0 such that
g(z,t0) = 0. Then problem (1.1) has at least three nontrivial solutions.

The work in this article was motivated by that of De Figueiredo’s in [I1I]. In
that paper, the author was interested in studying the solvability of the problem

—Au = u+ f(z,u) +to+h in
uv=0 on 01,

where ¢ is a positive eigenfunction associated with the the first eigenvalue A; of
(=A,Hg(), t e Rand h € C*(©), 0 < v <1, [, hede = 0. In [I1], the author
assumed the following conditions on the nonlinearity f and its primitive F:
(F1) f: QxR — Risa C! function.
(F2) There exists 0 < o < 1 such that lim,_,_o f(x,s)|s|"* = 0.
(F3) lims—,_oo fi(z,s) = 0.
(F4) There are § and s with 0 < 8 < 1/2 and so > 0 such that 0 < F(z,s) <
Osf(x,s), for s > sp and all x € Q.
(F5) lims— 400 f(x,8)s77 =0, where o < (N+2)/(N=2)if N >3o0orl <o < o0
if N =2.
(F6) fl(z,s) > —p where pr < XA — Ap.

(F7) o0 < min{ﬁ,% .

De Figueiredo proved that under the assumptions (F1)-(F7), there exists > 0 such
that, for all ¢ > ¢, problem has at least two solutions. De Figueiredo used
a generalized version of the mountain pass theorem (see [22] Theorem 5.3]) which
required the Palais-Smale (PS) condition to be verified. In [I1], the author proved
the (PS) condition for a general class of superlinear elliptic problems of the type
under the conditions (G1)—(G5), without the assumption that ¢'(x,0) = Ay,
with m # 1. In this articld, we will study the solvability of problem under

(1.3)
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the conditions (G1)—(G6) and for the case in which 0 is a degenerate critical point
of the associated functional of .

Many authors have studied problem under different assumptions on g (See
[4, 6, 8, 1T, 19] 2T], 22| 25]). Rabinowitz considered a similar problem in [22] where
condition (G3) was valid for all |s| > so and g(x,s) = o(|s]) for small values of s.
First, he proved the existence of a nontrivial solution by using the mountain pass
theorem. Next, by assuming that g is Lipschitz continuous, Rabinowitz proved the
existence of two nontrivial solutions u~,u" such that v~ < 0 < ut. Wang [25]
also assumed condition (G3) for |s| > sg, in addition to g(0) = 0 and ¢’(0) = 0. He
proved the existence of three nontrivial solutions by using a Morse theory approach.
In [21I], Perera approached this problem by assuming that condition (G3) is valid
for all |s| > sg, and the existence of a constant a > 0 such that g(0) = g(a) = 0,
and ¢’(0) = A. Perera proved the existence of four nontrivial solutions for the cases
where \ € (>‘j7)‘j+1)a A= >‘j < >‘j+17 and )‘j < A= )‘j+17 andj > 3. In this
article, we are only assuming condition (G3) for large positive values of s. For large
negative values of s we are assuming conditions (G2) and (G6). In this sense, g
is said to be an asymmetric nonlinearity. We will show that problem has at
least three nontrivial solutions by using variational methods and Morse Theory.

Another work on asymmetric nonlinearities related to the work in this article is
that of Liu and Shaoping [19]. In [I9], the authors considered the model problem

—Au=Au+ (uT)? in

1.4
u=0 on 01, (14)

where vt = max{0,u}, 1 <p < (N +2)/(N —2), and X\ # A;. Liu and Shaoping
proved that has at least one nontrivial solution. They used Morse theory
and computed the critical groups at infinity for the corresponding functional. The
computation of the critical groups at infinity in [I9] applies to the problem of this
article because of conditions (G3) and (G6). We will use some of the techniques
presented on [I9] to obtain the existence of multiple solutions for our problem.

This article is organized as follows: Section 2 has some results in Morse Theory
that will be used throughout the paper. In Section 3, we present some estimates for
g(z, s) and its primitive G(z, s). In Section 4, we prove the Palais-Smale condition
for the associated functional of problem . A local linking at the origin is
proved in Section 5. In Section 6 we show the existence of two nontrivial solutions
by employing the cutoff-technique used by Chang et al. in [9]. Finally, in Section
7, we prove the existence of at least three nontrivial solutions for problem as
stated in Theorem [T.1]

2. PRELIMINARIES
We will denote by H the Sobolev space H () obtained by completion of C°()
with respect to the metric induced by the norm

1/2
ul| = (/ |Vu|2dx) , forall ue H.
Q

Let J : H — R denote the functional associated with problem (L.1)) given by

J(u):%/Q|Vu|2dx—/QG(x,u)d;v, (2.1)
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for u € H. It is known that, by virtue of growth conditions on g imposed by the
assumptions (G2) and (G4), J € C?(H,R) with Fréchet derivatives given by

(J'(u),p) = / Vu - Vdr — / g(x,u)pdz, for p € H, (2.2)
Q Q
and
(J"(u)v, @) = / Vo - Veodr — / g (x,u)vpdz, for u,v,¢ € H.
) Q

In view of (2.2) and (1.2)), we see that critical points of J correspond to the weak
solutions of problem (|1.1)).
Let 0 < A\ < A2 < A3 < ... denote the distinct eigenvalues of the linear problem

—Au=Au in Q;
=0 on 9.

It is well-known that H can be decomposed as H = H~ @& H™, where
H™ =7 ker(-A - \;I), H"=(H")"

We will set dim H~ = d.

To study the multiplicity of solutions of problem (L.1]), it will be necessary to
compute the critical groups of isolated critical points of the functional J defined in
. Let X be a topological space. If Y C X is a subset of X, we will say that
(X,Y) is a topological pair. Denote by H,(X,Y) the ¢—singular relative homology
group of the pair (X, Y') with coefficients in Z. The critical groups basically describe
the local behavior of the functional J near its critical points. For an isolated critical
point ug of J, set ¢ = J(ug) and put J¢ = {u € H|J(u) < ¢}. The g-critical group
of J at ug with coefficients in Z is defined by

Cy(J,ug) = Hy(J N Uy, JC N Uy, \{uo}),

for all g =0,1,2,... (see Chang [6l Definition 4.1, page 32]), where U, is an open
neighborhood of g such that ug is the unique critical point of J in U,,,. According
to the excision property in singular homology theory, the critical groups of isolated
critical points are well-defined and they do not depend on a special choice of the
neighborhood U,,. We will denote by ﬁq(X ,Y) the g-singular reduced relative
homology group of the pair (X,Y) with coefficients in Z (see Hatcher [I3 page
110]).

Condition (G1) will allow us to compute the critical groups at the origin by using
the decomposition H = H~ @ H™'. This is related to the concept of local linking
at the origin introduced by Li and Liu [I5], which we present next.

Definition 2.1. Let J be a C! function defined on a Banach space H. We say
that J has a local linking near the origin if H has a direct sum decomposition
H=H & H?", with dim H~ < oo, J(0) = 0, and, for some § > 0,

J(u) <0, forue H,|ul <d;

(2.3)
J(u) >0, forue H',0< |lul| <6.

Assume w is a critical point of J such that J”(u) is a Fredholm operator. The
Morse index of u, denoted by po(u), is defined as the supremum of the dimensions
of the vector subspaces of H on which J”(u) is negative definite. The nullity of u,
denoted by vy = vy(u), is defined as the dimension of the kernel of J”(u).
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We say that a functional J satisfies the Palais-Smale (PS) condition if any se-
quence (u,) C H for which J(uy) is bounded and J'(u,) — 0 as n — oo possesses
a convergent subsequence. We will say that (u,) C H is a (PS) sequence for J if

|J(un)| < C, for all n and some constant C,

and J'(u,) — 0 as n — oo.

Based on the notion of local linking at the origin, and assuming that J satisfies
the (PS) condition, the critical groups C,(J, 0) can be calculated based on a result
from Su [24].

Proposition 2.2 ([24, Proposition 2.3]). Assume J satisfies the (PS) condition
and that it has a local linking at O with respect to H = H~ ® H*, where 0 has a
Morse index g and nullity vy. Set d = dim H—. Then

6q,ugZa Zfd = o5
6(17H0+VOZ7 Zfd = ‘LLQ + L.

Cy(J,0) = {

Thus, to compute the critical groups of J at the origin, we will show that the
functional J satisfies the (PS) condition and that .J satisfies a local linking condition
at the origin with respect to the decomposition H = H~ @& H', where H- =
O ker(—A — \;I) and HT = (H~)L. This will be the content of Section 4.

Let K = {u € H : J'(u) = 0} be the set of critical points of J and assume J
satisfies the (PS) condition; then, K is a finite set. Set a < inf J(K). The critical
groups of J at infinity are defined as in Bartsch and Li [4] by

Cy(J,00) = Hy(H,J%), ¢=0,1,2,.... (2.4)

Finally, we will need the Morse relation. Let J : H — R be a functional that
satisfies the (PS) condition. If the functional J : H — R has a finite number of
critical points, we can define the Morse-type number of the pair (H, J*) by

My = My(H,J%) =Y dimCy(J,u), q=0,1,2,.... (2.5)
uek

Applying the infinite dimensional Morse Theory developed in [6], 20], we can derive
the Morse relation

oo (oo} oo
D Mt =" Bt + (14+1)>  agt?, (2.6)
q=0 q=0 q=0

where 3, = dim Cy(J, 00), and a4 are non-negative numbers. The numbers 3, are
also called the Betti numbers of the pair (H,J%). As a consequence of equation
, if 8, # 0 for some ¢, then J must have a critical point, say w, with Cy(J, w) %
0. In fact, by expanding the equation , we have that

Mo+Myt+- -+ Mgt?+--- = (Bo+ao)+ (b1 +ai1+ao)t+- -+ (Bgtag+ag—1)t+. ..

Observe that the term 8,4+ a4+ aq—1 > 0 since §; # 0 and a4, aq—1 > 0. Therefore,
M, # 0. This implies that there is at least one critical point w € K such that
Cq(J,u) 2 0.
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3. ESTIMATES ON G(x,s) AND g(z, s)

In this section we establish some estimates for g(z, s) and G(z,s) that will be
used throughout this work. First, from condition (G2), there exists {_ < 0 such
that, for s < t_, it follows that

l9(z,8) = As| <[s]%,
so that
As — [s|® < g(z,s) < As+ [s|¥, fors<it_.
Then, there exists a constant C7 > 0 such that

—C1+ As— |s]* < g(x,s) < Cp+ As + |s]9, (3.1)
for all s <0 and x € . From (3.1)), we have
|sg(x,s) — \s*| < Cy|s| + |s|'T*, for s <0. (3.2)
Applying Young’s Inequality,
aP  bi
ab< —+ —, fora,b>0, (3.3)
p q
witha =1s,b=1,p=1+a, and ¢ = (1 + a)/c, we can rewrite (3.2) as
0104 01
— A% < —— + (14 ——)s|'T™ 3.4
[sg(@, 8) = As*| < g+ (L4 77 lsl (3.4)
Setting Cy = max (1 + S_la, &z) in (3.4), we obtain
lg(z, 5)s — As?| < Oy + Cols|'™,  for s <0, and z € Q. (3.5)
By integrating the inequality in (3.1 and using the definition of G, we obtain
A A 1
= Cils| + 552 - TH|S|@+1 < G(z,s) < Cils| + 582 + m|5|a+17 (3.6)
for all s <0 and a.e z € §, or,
A
|G(z,s) — §S2| < Cyls| + P |s|o Tt (3.7)
for s <0 and z € Q.
Next, we show that
|g(l‘,3)8—2G($,8)| < C4+C4|s|l+av (38)

for some constant Cy > 0, s < 0 and x € Q. In fact, multiplying (3.1) by s < 0, we
obtain

Cyls] 4+ s + |s|' T > g(x, 8)s > —C4|s| + As? — |s|* T (3.9
Similarly, from (3.6)), we have

2 2
2C1 5 — \s® + m|s|1+a > —2G(z,8) > —204|s| — As? — m|s|1+a. (3.10)

Then, adding (3.9) and (3.10), we obtain

2
3C[s| + (L4 ——)|s|'T™ > g(z,s)s — 2G(=z,s) > —3C4|s| — (1 +

2 1
14+« a)|3| e,

1+
so that

2
lg(x, s)s — 2G(z, s)| < 3C1|s| + (1 + ﬁ)|s|1+a7 for s < 0.
a
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Applying Young’s Inequality (3.3) witha = |s|,b=1,p=14¢«, and g = (1+a)/a,
we obtain
3C 24+ 3C
< 1 + ( 1¢
1+« l+a
for s < 0. Therefore, defining C5 by

lg(x, s)s — 2G(x, s)] +1)|5|1+°‘, (3.11)

3C7 24+ 3Cia n 1>’

Cy = ( ,
5 = Hhax 1+« 1+ao

we obtain (3.8) from (3.11)).
Combining (3.6) and condition (G4), we find a global estimate for G(z, s) given

by

A 1
G(z,s) < Cg|s| + 582 + s+ s+ (3.12)

1+ a
for all s € R and z € Q, and Cg = C7 + Cs.
Finally, from condition (G3), we can find C7,Cs > 0 such that

G(z,s) > Cr|s|t — Cs, (3.13)
for all s > 0, where u =1/6 > 2. In fact, from condition (G3) we have

o+1

oG 1
0< g(xa s) — @G(l‘,S), (3.14)
for s > so. Multiplying (3.14)) by the integrating factor s~'/¢ and integrating over
the interval [sg, s], we obtain
1
0< ———G(z,s0) +

1/6
So

1
mG(m,s), for all s > sp.

Then, setting C7 = -5 G(z, s0), we can find a constant Cg > 0 such that

"
Gla,s) > Crlsl* - Ci,

for all s > 0 and z € 2, which is (3.13).

The next lemma will be used in the proof of a local linking condition at the
origin.
Lemma 3.1. Assume that g satisfies condition (G1) and let € > 0 be such that
Am + € < Apg1. Then, there exists 61 > 0 such that

Gl s)l < (5P (315)

for |s| < 61 and x € Q, where m is as given in (G1).
Proof. Since g..(x,0) = A, for all € Q, there exists 6; > 0 such that, for |s| < dy,
lg(z,8) — Ams| < els|, forall x € Q;

then,
lg(z, 8)] < (Am +¢)|s|, for |s| < dn, (3.16)
Therefore, we can show that
Am
Gz, )] < (2mFE)[s]2, for |s| < &1, and z € Q,

2
which is (3.15]). O
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4. PALAIS-SMALE CONDITION

Assuming (G1)—(G5), we can show that the functional J : H — R defined in
satisfies the Palais-Smale (PS) condition. The proof was done by De Figueiredo in
[11] assuming that X # A; for all j € N. It turns out the result is true if we assume
that A # A;. We present the proof here for the reader’s convenience.

Lemma 4.1 ([II, Lemma 1, page 291]). If g and G satisfy (G1)—(G5), then the
functional J : H — R defined by

1
J(u):§/Q|Vu|2dm—/QG(x,s)dx7 foru e H,

satisfies the Palais-Smale condition.

Proof. In what follows, we use the same symbol C' to denote all constants that
come up in the estimates. Let (u,) be a (PS) sequence for J in H = H{(£); that
is, (uy) satisfies

1
[J(un)| = |§/ |V, |?de — / G(z,up)dz| < C, for all n, (4.1)
Q Q
and some constant C > 0, and
(T (un),v)| = |/ Vu, - Vodx — / 9(x, up)vde| <epllv|l, foralln,  (4.2)
Q Q

where €, — 0 as n — oo and v € H. By virtue of the subcritical growth condition
in (G4), it suffices to prove that (||u,||) is bounded ([23, Proposition 2.2, p.73]).
First, notice that

/ [g('ra un)un - 2G($, Un)]d.if
Q

- / (92, )t — [Vt + [Vian 2 — 26z, )] dz
Q

< | [ 190al? = gl v + 2470
Q
Thus, setting v = wu, in (4.2)) and using (4.1) we obtain
/ [9(z, up)un — 2G(x,up)] de < e ||lug|| + C,  for all n. (4.3)
Q

The integral on the left side of (4.3)) can be split in three parts,

/Q[g(x,un)un —2G(x, uy)|dx = {/n +/Q£{ —&-/Qi}[g(a:,un)un - 2G(z, uy,)|dz,

where Q, = {r € Q:u, <0}, A ={z€Q:0<u, <so},and O = {xr € Q:
Up > So}. The first integral is estimated using (3.8) as follows,

J

where 4~ = max{0, —u}. The second integral taken over Q2 is bounded uniformly
with respect to n. The third integral can be estimated using (G3) as follows:

/Q x[g(x,uuun—zc:(x,un)]dxz(;—z) / Glo,up)dz, foralln.  (45)

f

l9(z, upn)upn — 2G (2, up)|dx < C + C/ lu,, [*Tdz, for all n, (4.4)

n
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Thus, combining with and (4.4), we obtain
/m G(@, un)dz < C + enllunl| + Clluz 112, for all m, (4.6)
and some constz:nt C > 0. Set v =u, in ({£2). Then, it follows that
| /Q |Vu;|2dx — / g(z, un)undx| <epllu, |, for alln. (4.7)
U <0

Next, compute

|/|Vu;|2dw - 2/ G(m,un)d:r‘
upn <0
= | /|Vu;|2dx — / g(x, up)upde +/ [9(2, up)undz — 2G(z, uy)|dz|,
Up <0 Up <0
and use (3.8)) and (4.7) to obtain
| [1VunPde =2 [ Glaunde] < €+ zallug |+ Clu i, (48)
Un<So
for all n. Similarly, using (3.5]), we obtain
|/|vu;|2dx— )\/ g Pdz| < C 4 enllug | + Cllug[b4e., foralln.  (4.9)

There are two cases to consider: (i) (||u;,]|) is bounded, and (ii) ||u,, || — oo, passing
to a subsequence, if necessary. If case (i) holds, then the estimate (4.8]) implies that

/ G(z,up)dz < C, for all n. (4.10)
un <0
Indeed, using (4.8) we obtain
‘2/ Gz, up)dz| < ‘2/ G(x,un)dx—/ Vu, [d| —&-’/ |Vu, [*dz|
<0 <0 Q Q

< C+enllug |l + Cllug 1552, + [|ug ||

Thus, by the Sobolev inequality,
\2/ G(,un)dz| < C +enllug || + Cllug [ + [lug, |1
un <0

Hence, since we are assuming (||u,,||) is bounded, it follows that

|2/ G(z,up)dz| < C,  for all n,
un <0

which shows (4.10]).

Next, notice that
1 1
St = Tan) + [ Glaua)de = 5l |
2 o 2
1
= J(uy) +/ G(z,u,)dzx +/ G(x,up)dx — f||u;\|2.
Up >0 Un <0 2

Thus, using (4.1)), (4.6) and (4.10)), we have
uf|? < C+ 2enlut |, (4.11)
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since we are assuming that (||lu;, ||) is bounded. It follows from that ||u;}] is
bounded, since €,, — 0 as n — oo. It then follows that (|juy,]|) is bounded.

Next, consider the case (ii) in which ||u,, || — oo, and let us show that this cannot
hold, completing in this way the proof of the lemma.

Using the fact that u,} = u,, + u,,, we obtain

1 1 1
f/ |V |?de = f/ |Vun|2dx—f/ |V, |*dx
2 Jo 2 Ja 2 Jo

1 1
= gllual? = 5l P+ [ Glasuade — [ Glaua)do

which we can write as

1 1

7/ |V |2de = J(upn) + 7/ [2G(z,up) — |Vu, |?] dz,

2 Ja 2 Jo
so that, by (L), (6) and (L),

1 - —l+a

3 /Q |Vu)|Pde < C +enlluy || + Clluy, |12, for all n. (4.12)

Next, use the fact that u,, = u,| — u,, to estimate
‘/Vu;-Vvdm—)\/u;ﬂ < ‘/Vun~Vvdac—/g(x7un)vdx|

+/\Vu,f-Vv|dac+/ lg(z, up)v|dx
Up >0

[ lgtoun)o = ol
Up <0
so that, by (4.2)),
| /Vu; - Vodx — )\/u;v| <ep|v|| + 1+ 2+ I3, foralln, (4.13)

where

I :/|VUI~Vv|dx, I :/ lg(x, up)v|de,
Up >0

I; = / lg(x, un)v — Au,, v|de.
Un <0

We will estimate I1, Is, and I3 separately. To estimate I, use Holder’s inequality
to get

1= [ 196t Vode < uf o] (4.14)
To estimate I, apply Holder’s inequality with
2N
=— 4.15
P= N2 (4.15)

and ¢ = 2N/(N —2) for N > 3. If N = 2, take 1 < p < 1/(00) which can be done
since (G5) implies 06 < 1. Then,

B[ atwwide < ([ lgtenr) ()"

1/p
< ([1c+cruzer) v,
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so that,
L < (C+Clluf 3o ) [V o (4.16)
Finally, use (3.1) to obtain the following estimate for I3:

I :/ (@, un)o — Auvdelde < (C + Clluz ||l (4.17)
Up <0

Combining (4.14)), (4.16), and (4.17) into (4.13)), we have the estimate

| [ V- Vode = [ue] < (€ + 1+ Clla 15+ Clug [, (4.9
for all n. Set
K, =C+|ut]| + Cllut||9pe + Clluy, ||, for all n; (4.19)
then (4.18) can be written as
]/Vu; - Vodz — )\/u;v’ < K,|v|, forall n. (4.20)

The goal next is to show that
n
[ |

where K, is as given by (4.19)). First, from (4.12]), and the fact that o < 1, it
follows that

—0 asn— oo. (4.21)

+
Hu’j” — 0, asn— oo. (4.22)
[[un |
Secondly, we claim that
+|lo
W — 0 asn — oo. (4.23)
Un

In fact, using the estimates in and , we obtain the estimate
/(u;)l/"dx < C+ enllunl] + Cllug 552, for all n. (4.24)
Now, by the Sobolev inequality, we obtain from that
([ ear) < (©+ enlln + Cllug )’

< C+ Cepllun | + Clluy, [P0+,

(4.25)

Choose o/ € (a,1), and divide both sides of [@.25) by [Ju; [|??+2"), to obtain

+ 0
|1|13T|(l|(L1::;/) < |u"||i1+a’) ||z:||||z("1lﬂa,) + Hun”ga,_a), for all n,
so that, in view of ,
m —0, asn— oo. (4.26)
We claim that
" — 0 asn — oo in the LP? norm; (4.27)

[ [V
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this will establish (4.23]). To show (4.27)), set p; = 1/(pof), where p is as given in
(4.15), and note that p; > 1 by (G5). Next, use Holder’s inequality to obtain

k| \r N
/n(ml::ni) dwgc(/nnzr:néedm)

C +|1/0 pod
< © e
lun [P\ Jo flug [[FHe 5"

+ o +1/6 T
( |un|1 )P dz < C”u—Hpae(Ha’)—p( %//dxy) 0, (4.28)
Q Un || Q |[Un
Juz | i Jua ]+

so that

By using (4.26)), we see that the term in parenthesis in (4.28]) approaches zero as
n — oo.
Next, notice that

g [[PPO0F07P =0, as n— oo,

by condition (G5), since we are assuming ||u,, || — oo as n — co. Hence,

um | \P@
(” _H1> dr — 0, asn — oo,
Q Un || @

which is (4.27)). We have therefore established (4.23)).
(#.19)

Use to obtain
K C "y 9 o 1
IL — - + ||u7i|| _'_CHun NLP +C —, (429)
unll  llunll  [lun|] [[un || [ [
where
+
||u71|| — 0 asn — oo,
Joum |
by (4.22), and
+|lo
7Hu” !Lp” —0 asn — o0
[[un ||

by (4.23). Hence, since o < 1 and ||u,, || — oo as n — oo, we obtain from (4.29)

that
K,

[ |

— 0 asn— oo,

which is (4.21]).

Next, combine (4.20) and (4.21] to obtain

lim ( Vi, -Vvda:—)\/ UE
Q

n=oo \Jg [lun | [[un

i v) =0, forallveH. (4.30)

Set w, = u,, /||lu;, || for all n. Since ||w,| = 1, for all n, passing to a subsequence
if necessary, we may assume that there exists wy € H such that w,, — wy (weakly)
in H}(Q) and w,, — wy strongly in L?(Q). We may also assume that w,,(z) — w(x)
for a.e z € €. It follows from with v = w,, that

/wg =4
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since we are assuming that A > 0. It then follows from (4.30) that
/ Vwg - Vodz — )\/ wovdz = 0, for all v € H}(Q);
Q Q

that is, wp is a nontrivial weak solution of the problem
—Awg = Awgin Q;
wog =0 on IN.
By the maximum principle, wy < 0 in 2. Thus, wy is an eigenfunction of
that does not change sign in 2. Hence, A = A1, the first eigenvalue of , which

is the case we are excluding. Therefore, we obtain a contradiction. The proof of
Lemma is now completed. [

(4.31)

5. LOCAL LINKING AT THE ORIGIN

The notion of local linking at the origin was introduced by Li and Liu in [15]
and [16]. We present the definition given in Li and Willem [I4].

Definition 5.1 ([T4, Section 0]). Let J be a C' function defined on a Banach
space H. We say that J has a local linking near the origin if H has a direct sum
decomposition H = H~ & H™ with dim H~ < oo, J(0) =0, and, for some § > 0,

J(u) <0, forue H™, ||lu]| <0;

(5.1)
J(u) >0, forue H" 0<|ul <é.

Lemma 5.2. Assume (G1)—(G5) hold. Then, J has a local linking at 0 with respect
to the decomposition H = H~ @& HT, where H™ = ®j<y ker(—A — \;I), and
H* = (H™)*.

Proof. The proof is based on arguments presented in papers by Li and Willem in
[T4, Theorem 4], and by Li and Liu in [I7, Theorem 3.1].

First, let us show that there exists § > 0 such that J(u) < 0 for u € H~ if
lu|]| < é. In fact, by the definition of H~ = @<, ker(—A — \;I), we have

/ |Vul?de < N\, | w?dz, forue H™. (5.2)
Q Q
Since H~ is finite—dimensional, there exists C' > 0 such that

[ulloo < Cllull, forue H™, (5.3)
where ||ufo = sup{|u(z)| : € Q}. Select u € H~ such that |jul| < %, so that

lu(z)| < 01, for a.e x € Q, where ¢; is given in Lemma Then, from Lemma
it follows that

Am Am
— (* ) @) < Glaw) < (M@, for fu(a) < 8. (5.4)
It follows from (5.2)) that
)\m. — 5
J(u) < / [71} — G(z,u(z))]dz, forue H™,|u| < 61 (5.5)
Q

Hence, using the estimate in ((5.4)), we obtain from (5.5)) that

J(u) < —%/Qqux <0, forue H™ and |Ju < % (5.6)



14 L. RECOVA, A. RUMBOS EJDE-2014/207

Next, we need to show that J(u) > 0 for 0 < |Ju|| < §, for u € HT, where § will be
chosen shortly. Since we already have the estimate in Lemma for |s| < 01,
we need an estimate for |s| > ;. In fact, using the estimate , for ‘(;—il > 1, and
the assumption that 0 < o < 1 in (G1), we have that

L|S|a+1

1+ oc+1
o B 51>\ i 2 5%4_0‘ B 14+« 5(174_1 B o+1
=(C4; + ) 1—}—04(51) (51)

A
G(xs)<C’||+fs+ |s]tTe 4+

51 7(51
2 1+« o+1
1 ( oA | o T o7 )|s|a+1

< 08, + A2
= gott 1+2+1—|—a o+ 1

so that
G(x,s) < Cc|s|”Tt,  for all |s| > 61, (5.7)

where C; is given by

52)\ 6%-&-04 557-1—1
6"“ (Cél+7+ 1+a o+1)'

Combining (3:15) and (5.7), it follows that
Am + € o
G(z,s) < ( 5 )Is|? + Cels|ott, (5.8)

C. =

for all s € R and = € . Then, for u € H' and using (5.8)), we have

1
T(w) = 5l - / Gz, u)de
plull? = (22555 [ wdo - [ urtia.
Q Q

Thus, applying the Sobolev inequality, and the fact that ||u[|? > Ayq1]jul?. for
u € HT, we obtain

Am €
J(U)Z%[l_( )\m::-_l )

Next, choose p > 0 such that
1 Am + € o1
<la5 (- )
P 20 ( Am—i—l >)

Then, for w € HT such that ||u| < §, where § = min{%,p}, we obtain from ([5.9)
that

— C’EHuH"_l] ||u||2 forue HT. (5.9)

J(u) >0, forue HT,0< |ul <4,
and the lemma is proved. O

By Lemma J satisfies a local linking condition at the origin with respect to
the decomposition H = H~ @ H™T. In this case, 0 has Morse Index p¢ and nullity
vy given by

m—1

Lo = Z dimker(—A — A\, 1), (5.10)
j=1

= dimker(—A — A\, 1), (5.11)
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respectively, where we are assuming that m > 1 by (G1). Therefore, using Propo-

sition (5.10)), , and since dim H~ = pg + v = d, we obtain
Cq(J,0) = 04,4Z. (5.12)

6. EXISTENCE OF TWO NONTRIVIAL SOLUTIONS

In this section we prove the existence of two nontrivial solutions of problem (|1.1))
under the assumptions (G1)—(G5) and g(z,t) = 0 for all x € Q and some to > 0.
We will employ the cutoff technique used by Chang, Li and Liu in [9, Theorem BJ.

Proposition 6.1. Assume g satisfies (G1)—(Gb5) and suppose there exists tg > 0
such that g(z,to) = 0 for all x € Q. Then, problem has a nontrivial solution,
ug, such that

Cq(J, UO) = 5qon. (61)

Proof. Define g: Q x R — R by
if 0,t];
g(x,s): g(xas)a 1 SE[ 5 0]7
0, if s ¢ [0, to].
Define the functional J : H — R by
_ 1 _
T(w) = 5 ull? —/G(x,u)dz, for u € H, (6.2)
Q

where G(z,s) = fos g(z,&)d¢E, for x € Q, s € R. In order to show the existence of a
nontrivial solution for problem , we will first show that J has a minimizer.

Let M = sup,cq sc0.1] [g(x, s)|; then, using Holder and Poincaré’s inequalities
we have

— 1
T(w) > Lul? - M / fulde
2 Q

1
> Slull® - M2 |l 22 )
1
> §Hu||2 —clju|, forallue H,

which shows that .J is coercive and bounded below. Also, J is weakly lower semi-
continuous. Thus, there exists a global minimizer uy of J such that

J(ug) = uuelg J(u).
(See Evans [10, Page 488]). The function g is locally Lipschitz continuous; thus, it
follows that ug is a classical solution of the problem
—Au=7g(z,u) in

u=0 on 0.

(See Agmon [1]). Let Q_ = {x € Q: ug(x) < 0}. Then, by the definition of g, u
solves the BVP,

(6.3)

—Au=0 inQ_;
u=0 on0f_,

which has only the trivial solution v = 0. It then follows that Q_ = (). Similarly,
if we consider the set Q;, = {x € Q : ug(z) > to}, it can be shown that Q. = 0.

(6.4)



16 L. RECOVA, A. RUMBOS EJDE-2014/207

Therefore, we have 0 < ug < tg in 2. Using the strong maximum principle, we can
show that

0 <wup(z) <ty, forallzeQ, (6.5)
%(z) <0, ondQ, (6.6)

where v is the outward unit normal vector on 0.

We claim that ug is also a local minimizer for J. It follows from and
that there exists § > 0 such that v € C}(Q) and |Ju — ugl|cx < & imply that
0 < u(z) < to. Thus, there is a C! neighborhood of ug on which J(u) > J(uo);
so that ug is a C! local minimizer of .J. Then, using a result due to Brézis and
Nirenberg [5], we conclude that ug is also a minimizer in the H} topology.

Finally, using Chang [6, Example 1, page 33], we see that

Cq(J, Uo) = 5qon. (67)
Notice that this implies that ug # 0 by comparison with (5.12), since d > 1 by
virtue of (Gy). O

Before we prove the next theorem, we will need the following variant of the
Mountain Pass Lemma in Chang [7].

Proposition 6.2 (|7, Corollary 1.2]). Suppose that J € C?>~(H,R) satisfies the
(PS) condition, with ug a local minimum. If there exists vo € H such that vy # ug
and J(vo) = J(ug), then J has at least a nontrivial critical point.

Next, we show that there is an additional critical point of J of mountain pass
type.

Theorem 6.3. Assume g satisfies the hypotheses of Proposition|6.1] Then, problem
has two nontrivial solutions ug and uy such that 0 < ug < uy, where ug s
given by Proposition . Moreover, if the critical points at level ¢ = J(uy) are
isolated, there exists a critical point uy with

Cyo(J 1) = 0412, forq=1,2,3,.... (6.8)

Proof. Let ug be the local minimizer of the functional J defined in that is
given by Proposition [6.1} Assume that ug is isolated. It follows from the result
of Proposition that ug is a C? solution of the boundary-value problem in
satisfying

0 < up(x) <tg, forallzel. (6.9)

We will prove the existence of a mountain pass critical point, u;, of the functional
J with the property that

uo(x) <wuyp(z), forall z e . (6.10)

Consider the modified functional J : H — R given by

J(v) = %/ﬂ |Vo|2dx — /Q[G(x,v +ug) — G(z,up) — g(x, ug)v]de, (6.11)

for all v € H. This functional was obtained by setting
J(v) = J(ug 4 v) — J(up), forall ve H, (6.12)
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and observing that the fact that ug is a critical point of J implies that
/ Vug - Vo = / g(x,up(x))v(x)dr, forallve H.
Q Q

It follows from (/6.12)) and the assumption that J has an isolated local minimum at
up that the functional J defined by (6.11)) has an isolated local minimum at 0.
Put

5((1778):g(I,UO(I)+S)*g(I,Uo($), IEQ, 5€R7 (613)
and set G(z,s) = Jo 9(x,€)dE, so that

G(z,s) = G(z,s + up(x)) — G(z,up(z)) — sg(x,up(z)), xz€Q, seR. (6.14)
In view of (6.11]) and (6.14)), we see that

~ 1 ~
T() = §/ Vol2de —/ G(z,v(x)) dz, forve H, (6.15)
Q Q
Next, define the truncated versions of g and G in (6.13) and (6.14), respectively:
~ g(z,s), =€, s>0;
,8) = 6.16
g+(,9) {0, r e, s<O0; ( )
and N
=~ G(z,s), x€Q, s>0
Gola,s) = 6.17
+(@) {0, r e, s<0. ( )
We can then define the truncated version of J as follows
~ 1 ~
Ji(v) = 5/ |Vo|?dz —/ Gy(z,v(x))dx, forve H. (6.18)
Q Q

We note that the truncated functional in (6.18)) can be written in terms of J as
follows:

- - 1
Ji(v) =Jh) + §||v7H2 for v € H, (6.19)

where v (z) = max{v(z),0}, for z € Q, is the positive part of v in Q, and v~ =
(—v)* the negative part.

It follows from and the assumption that that J has an isolated local
minimum at 0 that the functional L_ defined b! and has an isolated
local minimum at 0. We will next show that J, satisfies the (PS) condition and
the assumptions of Proposition (which is [7, Corollary 1.2]).

First, notice that J, € C2~°(H,R). Next, we will see that .J, satisfies the (PS)
condition. Thus, let (v,) be a (PS) sequence for J, in H. To show that (v,)
has a convergent subsequence in H, it is sufficient to show that (v,) is a bounded
sequence (see [23, Chapter 2, Proposition 2.2]). We have that

|J(v,)] < C, for all n, (6.20)
T, (v,) =0, asn — oo. (6.21)
It follows from (6.21)) that

|<j’+(vn)7v>| = | /(an Vv — g4 (z,vp)v)da| < eqlv]l, for all n, (6.22)
Q
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where €, — 0 as n — oo. Let ny € N be such that ¢, < 1 for all n > ny. Set

v = v, in (6.22) to get
on] > \/ |an|2dx—/§+(m,vn)vndm
Q Q

Therefore, using (6.20) and (6.23) we obtain, for n > nq,
C+ pHonll
2 j—i—(vn) - U71<"f-’|—(vn)a Un)

> j+(vn) —,u_l(/ﬂ |V, |2de — /S]§+(x,vn)vndx>,

;@QW%HJLW%Dm—m%Ammf—mm%mma,

1 1
> (5= DIl + [ Tuda

, forn>n. (6.23)

where T}, = 11§+ (2, vy )vn — G4 (2, v,). Note that
sg4(z,8) — G4 (z,5) =0, forall s <O0. (6.24)

Let Q = Qy ,, Uy, where

D ={zeQ:v(x) <so}, Qon={xeQ:v,(x)> s},
for all n, where s¢ is given by (G3). Then,

i ol 2 (5 = ) enl? +/ T, dz +/ Tods.  (6.25)

7 Qum Qn

Note that we have also used (6.24). By (G3), (27! — ') > 0, and the second
integral in is nonnegative. Define

Ko= max |Gy (s,5) — G (o,9))
z€Q,s<sp
Then,

|/ Todx| < K»|Q| for all n.
Q1n

Thus, (6.25) becomes
1 1

1
C+ ;anH > (5 — ;)||1;n||2 — K5|Q, forn>mn. (6.26)

Therefore, it follows from (6.26) that (v,,) is bounded. Hence, J, satisfies the (PS)
condition.

Before we proceed with the proof, we will derive an estimate for G(x,s) for
positive values of s.

Apply (3.13)) to (6.14]), using the estimate in , to get that

G(x,8) = Csls +uo(2)[" — Cs — |G, uo(x))[ — [s]lg(, uo ()],

for s > 0 and x € 2. Thus, there exists a constant Cy > 0 such that

G(ZC, S) Z Cg|8|“ — Cg|’u,o(££)|p’ — Cﬁ — ClO — 011|S|, (627)
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for s > 0 and x € Q, where we have set

Cio = _nax ‘G(xagﬂv Cn = _max |g(x,£)|
z€9,0<E<t, z€Q,0<E<t,

Thus, setting

we obtain from (6.27) that

G(l‘,S) Z Cngl“ - 011|S| — 012 (628)

Hence, using the assumption that p > 2, we deduce from (6.28)) the existence of
positive constants C13 and C74 such that

G(z,s) > Cia|s|* — C14, for s>0and z € Q. (6.29)
Next, we show that
tlim Ji (L) = —0c0. (6.30)
In fact, use the estimate on (6.29) to obtain

t2 ~
Tulton) = SlealP = [ Gutatior)do

12 tH
< —lloll® - 013*/ 1| dx + C14]€QY,
2 2 Jo

so that _
lim Jy (te1) = —o0,
t—o0

since p > 2, which is (6.30).

We have already noted that, since we are assuming ug is a strict local minimizer
of J, it follows that 0 is a strict local minimizer of J.. It then follows from (6.30)

a~nd the intermediate value theorem that there exists vy € H such that vy # 0 and
J4+(vg) = 0. Then, by the variant of the Mountain Pass Lemma in Chang [6] (See
Proposition , J4 has a nontrivial critical point v; of mountain—pass type. We
note that v; is a solution to the boundary-value problem
—Av =gy (z,v(x)), forxeQ
v=0, on JN.
It then follows from the definition of g, in (6.16]), elliptic regularity theory, and
the maximum principle that vi(x) > 0 for all z € Q. Consequently, v, solves the
boundary-value problem
—Av =g(z,v(z)), forxz e Q;
v=0, on Jf.
Hence, in view of the definition of g in (6.13]), the function u; = wg + v1 is the
critical point of J of mountain-pass type satisfying

uo(x) < wuyp(z), forall z e .

Moreover, if the critical points of the level set K.,, with ¢; = J(uq), are isolated,
then, using |20, Corollary 8.5], there exists u; € K., such that

Co(J, 1) 22 541 2. (6.31)
O



20 L. RECOVA, A. RUMBOS EJDE-2014/207

7. CRITICAL GROUPS Cy(J, 00)

In this section we compute the critical groups Cy(J,00), for ¢ = 1,2,..., as
defined in (2.4). We will assume that conditions (G1)—(G6) are satisfied. We will
use the technique outlined by Liu and Shaoping in [19, Proposition 3.1].

Let a = inf J(K), where K = {u € H : J'(u) = 0} is the critical set of J.
First, we will show that any compact set A C J~ is contractible in J~, for
some constant M > —a. This will imply that H,(J=*) = 0 for all ¢ € Z. Then,
by using the exact homology sequence of the pair (H,J M), we will show that
Hy(H,J=M) =0 for all ¢ € Z.

First, note that, by combining the conditions (G3) and (G6), we can find a
constant K7 > 0 such that

2G(x,s) — sg(x,s) < K;, forall se€ R and z € Q. (7.1)

The following proposition is based on a result from Liu and Shaoping in [I9, Propo-
sition 3.1].

Proposition 7.1. Under the conditions (G1)—(G6), any compact subset A of the
sublevel set J~M ={u € H : J(u) < —M} is contractible in J=M for

M > max{K:|Q|, —a},
where K1 is given in (7.1).

Proof. Step 1: Let A be a compact subset of J =™ where M > max{K; ||, —a}.
First, we show how to deform A to a subset A; € J~2 in J=M_ Compute

T(tu) = §||u||2 —/QG(:U,tu)dx, for t € R, (7.2)
and u € A. Then, using , we can show that
;t[J(tu)] [QJ(tu) + / (QG(:v,tu) —g(z, tu)tu)daz}, (7.3)
for ¢ > 0. Using (7.1)) and ( we obtain from ) that

d 2 Kl\Q|
au(tu)] - EJ(tU) s —

for all ¢ > 1. Multiply (7.4) by the integrating factor 1/¢* and integrate from 1 to
t > 1 to obtain

(7.4)

2 1
J(tu) < 2 (u) + 5K1\Q| - §K1|Q|» (7.5)

for all ¢ > 1. Define a map n; on [0,1] x A by
m(t,u) = (1+t)u, forue A (7.6)

Then, 7, is continuous. Also, 0y (t,u) € J~M for all t € [0,1]. In fact, from (7.5),
we have | |

Tm(t,w) < (1+6)°J(w) + —5 [(1+t) 1]. (7.7)
Since K1|QY| < —M, and J(u) < —M, we obtain from (7.7)) that
J(m(tu) < A+ 62T (w) + MA+)* =M < -M

Thus,
J(1+t)u) < —M, forall0 <t <1.
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Therefore, 1, defines a continuous map from [0,1] x A to J=M. Set A; = n,(1, A).
Then, A; is a compact set. We claim that A; C J2M. In fact, setting ¢t = 1
in (7.5), and using the assumption that K;|Q| < M, we obtain J(2u) < —2M.
Therefore, Ay C J2M. Thus, n; defines a deformation from A to A; in J M.

In what follows, we will use the fact that, if w € J=M then

J(tu) < —M, fort>1; (7.8)

this is a consequence of ([7.5)).

The remainder of the argument follows the same steps as in Liu and Shaoping
in [T9] Proposition 2.1].
Step 2: In this step, we show how to deform the set A; obtained in Step 1 to a
subset of smooth functions.

Since the functional J : H — R is continuous on H and A; is compact, there
exists € > 0 such that, for all u € Ay,

M
lv — ull <£:>\J(v)—J(u)|<7. (7.9)

On the other hand, since the set C(£2) is dense in H, for each u € A1, there exists
u® € C}(Q) such that

lu—u®|| <e. (7.10)
Note that {B.(u®)}yca, is an open cover for A;. Thus, since A; is compact, there
exist smooth functions u§, us, ..., us, such that

Ay C U, B ().

Let {0}, be a partition of unity subordinate to the cover { B (u$)}"_;, where the
functions {8;}?_, are Lipschitz continuous. Then, for any v € Ay,

n

1> Bitwyu; —ul =11 Bi(wus =Y Biwull < [lus —ull,  for some j.
i=1 i=1

i=1

Hence,
n
1> Bilw)u; —ul| <e, (7.11)
i=1
where we used (7.10) and the fact > ., 3;(u) = 1. Let u*(u) = Y, Bi(u)us, for all
u € Aj. Then, u* is continuous. Let 12 be a map defined on [0,1] x A; by
na(t,u) = (1 —t)u + tu*(u), fort e [0,1] and u € A;. (7.12)

Note that 7 is continuous. Next, we show that 1y (¢, u) € J=2M for all ¢ € [0, 1]

and v € A;. Indeed, setting v = (1 — t)u + tu*(uw) and using (7.11)) and (7.12), we
obtain

lv—ul = tlu* —ul <e. (7.13)
Then, using (7.9) we obtain
M
[J(v) — J(u)| < - (7.14)
in view of (7.13)). Since J(u) < —2M, we obtain from (7.14)) that
3M

J(v)<77, for all t € [0,1], and u € A;.
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Define A = 12(A1,1). We have Ay C J—3M NC(2). Therefore, we have deformed
the set Ay into a compact subset Az of JEM N clQ).
Note that there exists a constant M > 0 such that

|Vu(x)| < M, for all u € As. (7.15)

In fact,

M = max max |Vu ().
1<i<n zeq

Step 3: In this step, we will deform the subset A, from Step 2 to a subset of
functions with nonzero positive part. First, note that, since J : H — R is continuous
and A, is compact, there exists 1 > 0 such that, for all u € Az,

o —ul| < &1 = |J(0) = J(u)| < % (7.16)

Let d(z) = dist(z,09), for x € Q. By [12] Lemma 14.16], there exists v > 0 such
that d is smooth in the set I', = {x € Q : d(z) < v}. Define . : 2 — R by

2Md(z), if z € T¢;
pe(x) =1 57 PRS-
2Me, if x € O\I'e,

where € > 0 is such that ¢ < v and

/ \Vd|*dx < ﬁQ. (7.17)
. 4M
It follows from that
el < 1. (7.18)
Furthermore, for every u € Ay, we have
u(z) + e (x) >0, for x near ON. (7.19)

In fact, if u(xz) > 0 for x near 9%, the statement in ((7.19)) is true. If not, there
exists zo € 0§ such that u(z) < 0 for x € B, (x) N for some dyp > 0. Let 7 be a
unit normal vector to 9 that points towards 2. Define f: R — R by

f@t) =u(xo +ti), forallteR.

By the intermediate value theorem, there exists £ € (0,¢) such that f(¢) = f'(£)t,
for ¢ > 0 in some neighborhood of 0; then,
u(zo +ti) = (Vu(zo + &) - i)t, for t > 0 small enough.
Since u(xg + t77) < 0, |u(xg + t7)| = —u(xo + ¢77), for t > 0 small enough. Then,
using (|7.15)), we obtain
—u(zo + tit) = |Vu(xg + i) [t < Mt, for t > 0 small enough.

So that,

—u(xo +ti) < 2Mt, for t > 0 small enough. (7.20)
Observe that, for ¢ > 0 small enough, d(zg + ti) = t. We can therefore rewrite

T20) as

—u(wg + ti1) < 2Md(zo + i), for t > 0 small enough;
so that
—u(xo + 1) < pe(xo +t7), for ¢t > 0 small enough.
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Therefore, v(xg + t1) > 0 for ¢ > 0 small enough. Thus, v = u + ¢, has a positive

part, vt.
Define a map 73 on [0,1] x Ay by

n3(t,u) = u+tp., forallue As,tel0,1].

Then, 73 is continuous. We claim that n3(¢t,u) € J~M, for u € Ay and ¢ € [0, 1].

Indeed, for v = u 4 tp., and 0 < ¢ < 1, using (7.18)), we obtain

o —ull = tfleell < [lpe|| < e
Then, it follows from (7.16) that

1J(0) — J(u)| < %

Since J(u) < —3 M, we obtain

M M M

Thus 73 : [0,1] x Ay — J~M is a continuous map. Put Az = n3(1, A3). Therefore,
As is a compact subset of the level set J~™ whose elements have nonzero positive

part. This concludes the proof of Step 3.

Step 4: In this step, our goal is to deform the set A3 into a set of functions u, for

which J(u™) < 0. For each element u € A3, we have

t2

Tty = St - / Gla, tut)da

2 Q0
Noting that As is compact, we set

M; = max |72

1 = s e

Similarly, [, G(x,u")dx attains a minimum m; in As given by

mp = inf /G(x,fﬂdm.
Q

EteAs

It follows from ([7.22f), (7.23)) and ([7.21) that
M
J(tut) < P[5 - %1, for u € A, and ¢ > 0.
Next, choose T > 0 such that
my M
=——-——>0
=gz =5~

Then, by virtue of (7.24) and (7.25)),
J(tu™) < —pt?, for u € Az, and t > T.
Since we want J(tu+) < —M, we can choose t such that

M 172

tz(ﬂ) .

Put v
T :max{Tl,(?)lm}.

Now, define a map 714 on [0,1] x Az by

na(t,u) = [(1 —t) + tTy]u, fort e [0,1], and u € As.

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)
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Then, 74 is continuous, and n4(t,u) € J~M by (7.8). Thus, 7, defines a continuous
map from [0,1] x Az to J~M. Put Ay = n4(1, A3). Then, A4 is a compact set.
Also, Ay € J™M  and J(ut) < —M, for all u € Ay. This concludes the proof of
Step 4.

Step 5: In this step, the goal is to deform the set A4 to a set of functions, u, in
J~M such that J(u') is negatively large enough. First, notice that, for 0 < s < 1,

J(—su™) = —/ [[Vu™|? = G(x, —su™)]dx

2 e
S 2 geAy, 0<s<1’/ (IVE™? = Gz, —s¢7)]da|.

Set 1
_ ! e L
O = 5 e 8%, | /Q“Vf ? — Gz, —s6))da|.
Then,
J(—su™) < Cyy, for s€]0,1], and u € Ay. (7.27)

This estimate will also be used in Step 6.
Next, using the estimate , we obtain

C

J(tu™) < || #12 = St - el

So that
J(tut) — —oo, ast— oo,
since u > 2. Thus, we can choose T5 large enough such that
J(Tsu™) < =M — Cyq, forall u € Ay.
Define a map 75 on [0,1] x A4 by
ns(t,u) = [(1 —t) + tT5)ut —u~, foru € Ay, and t € [0,1].

Then, 75 is continuous and 75(t,u) € J~M for all t € [0,1] and u € A4 by (7.8).
Thus, 75 defines a map from [0,1] x A4 to J~M. Put A5 = n5(1, A4). Thus, Aj is
a compact set and

As C J_MQ{UEA4‘J(U+) < —M—Cll}, (728)
and 7; defines a deformation from A4 to As. This concludes the proof of Step 5.

Step 6: In this step, we will deform the set A5 obtained in Step 5 to a subset of
nonnegative functions in J~™. For each element u € As, we have

J(u+fsu*):J( N+ J(—su”) forall u € As.

So that, using and -, we obtain

J(uJr —su”) < —M, forallsecl0,1], and u € As. (7.29)
Define a map ng on [0,1] x A5 by

ne(t,u) =ut — (1 —t)u~
Then 7 is continuous and 1g(t,u) € J~M for all t € [0,1] and u € As, by virtue of
(7-29). Thus, 16 defines a map from [0, 1] x A5 to J~M. Put Ag = (1, As). Then,
Ag is a compact set and its elements are nonnegative functions. This concludes the
proof of Step 6.
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Step 7: Define B = {u € H|||u|| = 1 and u > 0}. We saw in Step 6 that Ag is
compact and
Agc T Mn{ueH:u>0}.

We show that J=™ N {u € H :u >0} and B]" are homotopic.
Observe that for every u € H\{0} such that « > 0 on Q, there exists a unique
t*(u) > 0 such that
J(t (uw)u) = =M. (7.30)
Furthermore, the map u — ¢*(u) is continuous for u € {u € H : v > 0}. In fact, it

follows from ([3.13) that
t2
Ttu) < 5l + Csl0)] - cw/ fulFdz.
Q

So that, since p > 2, we have that

tlim J(tu) = —oo0, for w € H\{0}, u >0 in Q. (7.31)
Also, J(0) = 0. Tt then follows by the intermediate value theorem and (7.31]) that,
for each v € H\{0} with u > 0, there exists t* > 0 such that,

J(t'u) = —M.
So that, using (7.4)),
d 1

Hence, by the implicit function theorem, ¢t* is unique and is a continuous function

of u for u € H\{0}, v > 0 in Q, which proves (7.30). Furthermore, J(tu) < —M
for all t > t*(u).

Next, set
B={tv:ve B and t > t*(v)}. (7.32)
We show that
B=JMn{uecH:u>0inQ}. (7.33)
To see why is true, take uw € H with v > 0 in Q, and J(u) < —M; so that
u = |lufluy, whereu; = ﬁu € By,

and ||u|l > t*(uq), since J(||u|lur) < —M. Hence,
JMA{ueH:u>0inQ} C B. (7.34)

Next, let u € B. Then, there exists v € B} and t > ¢*(v) such that u = tv, where
v € Bf and t > t*(v). Then, by the definition of ¢*(v) it follows that

J(tv) < —M,
which shows that v € J=M. Hence, u € J™ N{u € H :u >0 in Q}. Thus
BCJ Mn{ueH:u>0, in Q}. (7.35)

The inclusion ([7.34)) and (|7.35|) establish ([7.33)).

Next, we show that B and Bfr are homotopic. This will imply that
JMA{ue H:u>0in Q} = Bf.



26 L. RECOVA, A. RUMBOS EJDE-2014/207

Define f : B — Bj as follows: For each u € B, u € J~™ and u > 0 in , so that
u # 0; thus, we can define

1
flw)=—u, forallue B.
[l
Define g : B — B by g(u) = t*(u)u for all u € B;. Then,

foglu) = ﬁ(t*(u)u) _

|ull

for all u € Bfr. So, fog= idB;f. On the other hand, for u € B,

u U
of(u) =t (+—)—. 7.36
We claim that )
u
* = —¢t"(—). 7.37
00 =t () (7.37)

By the definition of t*, we have J(¢*(u)u) = —M. Similarly,

J(t*(ﬁ)n—zu) —_

Then, by the uniqueness of t* we obtain (|7.37]). Therefore, we can rewrite ((7.36|) as

go f(u) =t"(u)u. (7.38)
Next, we build a homotopy from g to idg by H : [0,1] x B — B given by
H(s,u) = [st"(u) + (1 — s)]u. (7.39)

Then, H(0,u) = v and H(1,u) = t*(u)u = g o f(u). Note that
t*(u) < st*(u)+ (1 —s) <1, forallsel0,1],

since t*(u) < 1 for u € B, by virtue of (7.33) Hence, J(H(s,u)) < —M for all
s €[0,1]. Tt follows that B and B;" are homotopic. Therefore, since

B=JMn{ueH:u>0}
we obtain that J=™ N{u € H : u > 0} and By are homotopic.

Step 8: In this step, we show that Bf' is contractible. Let ug be any element in
By, so that |Jug|| = 1 and ug > 0. Define H : [0,1] x Bf — B} by

tu 1—-1t)u

H(t,u) = M te0,1],uc Bt
Note that, for any ¢ € [0,1] and u € By, tug + (1 — t)u > 0. Furthermore,
tuo + (1 — t)u|| #0, forall ¢t € [0,1], and u € By .

Otherwise there would exist t; € [0,1] and u; € B; such that

lt1uo + (1 —t1)uq || = 0.
Then, t1ug + (1 — t1)u; = 0. So that

tiug = —(1 —t1)us,

where tiug > 0 and uq > 0, so that t;ug < 0. Thus, t; = 0, so that u; = 0, which
is impossible. Thus, H : [0,1] x Bf" — By defines a homotopy with H(0,u) = u,
that is, H(0,.) = idBj’ and H(1,u) = ug for all u € B
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Step 9: By Step 6 we have that
As Cc J M {uec Hlu>0}.

In Step 7, we showed that J=™ N {u € H|u > 0} is homotopic to Bi". In Step 8,
we showed that By is contractible in J~. Therefore, A is contractible in J =M.
This concludes the proof of Proposition O

The previous proposition implies that I;Tq(J*M) = 0, for all ¢ € Z. Then, it
follows from the exactness of the homology sequence of the pair (H, J~M),

5 Hypr (H) = {0} 25 Hypo(H, J~M) &5 Hy(JM)
~ {0} B HH) = {0t S
that 9, is an isomorphism. Therefore,
Cy(J,00) = Hy(H,J M) =0, (7.40)

for all g € Z.
Now we present the proof of the main result.

Proof of Theorem[1.1l Let ug be as given in Theorem [6.1 and u; as given in Theo-
rem (6.3). Assume by way of contradiction that 0,ug, and u; are the only critical
points of J. Then, K = {0, up,u;}. Using the Morse relation (2.6) with t = —1, we
obtain

D M (1)1 =) By(-1)7, (7.41)
q=0 q=0

where M, are the Morse type numbers defined in (2.5) and 5, = dim Cy(J, 00) are
the Betti numbers for ¢ = 0,1,2,.... First, the left side of (7.41) is given by

> My(—1)T = My — My + (—1)* My,
q=0
where
My =dimCy(J,0) =1, M= dimCo(J,ug) =1,
M1 = dlmCl(J, ul) = 1,
where we have used (5.12)), (6.7)), and (6.1]), respectively.

The Betti numbers are given by 3, = dim C,(.J, 00), where the critical groups at
infinity were computed in (7.40)), so that

Cy(J,0) =0, forgq=0,1,2,....
Then, B, =0 for all ¢ =0,1,2,.... Hence, substituting (7.42) in (7.41)), we obtain

(7.42)

(71)d = 07
which is a contradiction. Therefore, .J must have at least four critical points; that
is, problem (1.1)) must have at least three nontrivial weak solutions. ]
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