
Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 200, pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
DIRICHLET PROBLEMS INVOLVING NONLINEARITIES WITH

ARBITRARY GROWTH

GIOVANNI ANELLO, FRANCESCO TULONE

Abstract. In this article we study the existence and multiplicity of solutions

for the Dirichlet problem

−∆pu = λf(x, u) + µg(x, u) in Ω,

u = 0 on ∂Ω

where Ω is a bounded domain in RN , f, g : Ω×R→ R are Carathèodory func-
tions, and λ, µ are nonnegative parameters. We impose no growth condition at

∞ on the nonlinearities f, g. A corollary to our main result improves an exis-

tence result recently obtained by Bonanno via a critical point theorem for C1

functionals which do not satisfy the usual sequential weak lower semicontinuity

property.

1. Introduction

In this article we study the Dirichlet problem

−∆pu = λf(x, u) in Ω
u = 0 on ∂Ω,

(1.1)

where p ∈]1,+∞[, ∆p(·) := div(|∇(·)|p−2∇(·)) is the p-laplacian operator, Ω is a
bounded smooth domain in RN , λ is a positive parameter, and f : Ω×R→ R is a
Carathèodory function. We will establish some existence and multiplicity results for
problem (1.1) for small values of the parameter λ by imposing only local conditions
on the nonlinearity f , allowing this latter to be of arbitrary growth at ∞. In
particular, our existence result improves and extends a recent result by Bonanno [5,
Theorem 8.1] obtained as application of a critical point theorem for C1 functionals,
which may fail to be sequentially weakly lower semicontinuous, established by the
same author. Here, we will apply classical variational methods, regularity theory
and truncation arguments. To establish the multiplicity of solutions, we will make
use of a Mountain Pass Theorem by Pucci-Serrin [12] which applies in the case
in which the energy functional possesses at least two (not necessarily strict) local
minima. In our case, the energy functional associated to problem (1.1), with f
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suitably truncated, admits a global minimum with negative energy, and a local
minimum at 0. Our multiplicity result extends to more general nonlinearities [4,
Theorem 1]. We refer the reader to [1, 2, 3, 7, 10] for other existence and multiplicity
results for problem (1.1) involving nonlinearities with arbitrary growth.

2. Main results

Throughout this section, Ω is a bounded smooth domain in RN , and f : Ω×R→
R is a Carathèodory function. The solutions of problem (1.1) will be understood in
the weak sense. Therefore, a function u ∈W 1,p

0 (Ω) is a (weak) solution of problem
(1.1) if and only if, for every v ∈W 1,p

0 (Ω):
(1) the function x ∈ Ω→ f(x, u(x))v(x) is summable in Ω;
(2)

∫
Ω
|∇u(x)|p−2∇u(x)∇v(x)dx− λ

∫
Ω
f(x, u(x))v(x)dx = 0.

2.1. Existence of solutions. The next Lemma follows by applying the well known
Moser’s iterative scheme ([6, 11]) and standard regularity results ([9]).

Lemma 2.1. Let γ > max{1, Np }. For each h ∈ Lγ(Ω) (resp. h ∈ L∞(Ω)) denote
by uh ∈W 1,p

0 (Ω) the (unique) weak solution of the problem

−∆pu = h(x) in Ω
u = 0 on ∂Ω.

Then uh ∈ C1(Ω) and

Cγ := sup
h∈Lγ(Ω)\{0}

max Ω |uh|

‖h‖
1
p−1
γ

(resp. C∞ := sup
h∈L∞(Ω)\{0}

maxΩ |uh|

‖h‖
1
p−1
∞

)

is a positive finite constant.

Our existence result reads as follows:

Theorem 2.2. Assume that the following conditions hold:
(i) there exist C > 0 and γ ∈] max{1, Np },+∞] such that sup|t|≤C |f(·, t)| ∈

Lγ(Ω).
(ii) there exist a closed ball Br(x0) ⊂ Ω and η ∈ R \ {0}, with |η| ≤ C, such

that

Λ1(η) := p
( r
|η|
)p ∫ 1

0

(1− t)N−1 ess infx∈Br(x0) f(x, ηt)dt

>
(Cγ
C

)p−1‖ sup
|t|≤C

|f(·, t)|‖γ =: Λ2.

Then, for each λ ∈]Λ1(η)−1,Λ−1
2 ], problem (1.1) admits at least a weak solution

uλ ∈W 1,p
0 (Ω) ∩ C1(Ω) such that

1
p
‖uλ‖p < λ

∫
Ω

(∫ uλ(x)

0

f(x, t)dt
)
dx. (2.1)

Proof. Let C > 0 be as in the hypotheses and define

fC(x, t) =


f(x,−C) if (x, t) ∈ Ω×]−∞,−C[,
f(x, t) if (x, t) ∈ Ω× [−C,C],
f(x,C) if (x, t) ∈ Ω×]C,+∞[.

(2.2)
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Moreover, for each λ > 0, put

Ψλ(u) =
1
p
‖u‖p − λ

∫
Ω

(∫ u(x)

0

fC(x, t)dt
)
dx (2.3)

for every u ∈W 1,p
0 (Ω). From i) and the definition of fC , we have that Ψλ is of class

C1 in W 1,p
0 (Ω), sequentially weakly lower semicontinuous and coercive. Hence, it

admits a global minimum uλ ∈W 1,p
0 (Ω) which is a weak solution of the problem

−∆pu = λfC(x, u) in Ω,
u = 0 on ∂Ω.

From assumption (i) and Lemma 2.1 we have uλ ∈ C1(Ω) and

‖uλ‖∞ ≤ Cγλ
1
p−1 ‖ sup

|t|≤C
|f(·, t)|‖

1
p−1
γ .

In particular, if λ ≤ Λ−1
2 we obtain ‖uλ‖∞ ≤ C. Consequently, uλ is a weak

solution of problem (1.1). Now, let η and Br(x0) be as in the hypotheses. Let us
to show that, if λ > Λ−1

1 , then inequality (2.1) holds. To this end, it is sufficient to
show that Ψλ(ϕ) < 0 for some ϕ ∈W 1,p

0 (Ω). Define

ϕ(x) =

{
η
r (r − |x− x0|) if x ∈ Br(x0),
0 if x ∈ Ω \Br(x0).

Observe that ϕ(x) ∈ [0, C] for all x ∈ Ω. Thus, if we denote by ωN the volume
of the unit ball in RN and use the polar coordinates and the integration by parts
formula, we can compute Ψλ(ϕ) as follows

Ψλ(ϕ)

=
1
p
ωNr

N−p|η|p − λ
∫
Br(x0)

(∫ ϕ(x)

0

f(x, t)dt
)
dx

≤ 1
p
ωNr

N−p|η|p − λNωN
∫ r

0

(∫ η(1− ρr )

0

ess infx∈Br(x0) f(x, t)dt
)
ρN−1dρ

=
1
p
ωNr

N−p|η|p − λNωNrN
∫ 1

0

(∫ ηρ

0

ess infx∈Br(x0) f(x, t)dt
)

(1− ρ)N−1dρ

=
1
p
ωNr

N−p|η|p − λωNrN
∫ 1

0

(1− t)N ess infx∈Br(x0) f(x, ηt)dt

From λ > Λ−1
1 , we promptly obtain Ψλ(ϕ) < 0. �

Remark 2.3. Observe that the key inequality Λ1 > Λ2 in Theorem 2.2 is auto-
matically satisfied if lim supη→0 Λ1(η) = +∞. This is true, for instance, if

lim
ξ→0+

∫ ξ
0

ess infx∈Br(x0) f(x, t)dt
|ξ|p

= +∞. (2.4)

Indeed, putting F (ξ) =
∫ ξ

0
ess infx∈Br(x0) f(x, t)dt for short, we have∫ 1

0
(1− t)N ess infx∈Br(x0) f(x, ηt)dt

|η|p
= N

∫ η
0

(η − ξ)N−1F (ξ)dξ
|η|N+p

. (2.5)
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Moreover, one has

di

dηi

∫ η

0

(η − ξ)N−1F (ξ)dξ = (N − 1) · · · (N − i)
∫ η

0

(η − ξ)N−i−1F (ξ)dξ

for all i = 1, . . . , N − 1, and

dN

dηN

∫ η

0

(η − ξ)N−1F (ξ)dξ = (N − 1)!F (η).

Therefore, using (2.4), (2.5) and the de L’Hopital rule, we easily obtain

lim
η→0

∫ 1

0
(1− t)N ess infx∈Br(x0) f(x, ηt)dt

|η|p
= +∞,

that is to say limη→0 Λ1(η) = +∞.
If f is nonnegative, i.e., if F is nondecreasing (and so nonnegative in [0,+∞[

and non-positive in ]−∞, 0]), then to guarantee the limit lim supη→0 Λ1(η) = +∞
it is sufficient requiring that

lim sup
ξ→0

F (ξ)
|ξ|p

= +∞. (2.6)

Indeed, let {ξn} ⊂ R \ {0} be a sequence such that ξn → 0 and

F (ξn)
|ξn|p

→ +∞. (2.7)

Without loss of generality, we can suppose ξn > 0, for all n ∈ N. Then, we have∫ 2ξn
0

(2ξn − ξ)N−1F (ξ)dξ
(2ξn)N+p

≥
∫ 2ξn
ξn

(2ξn − ξ)N−1F (ξ)dξ

(2ξn)N+p

≥ F (ξn)
(ξn)p

·
∫ 2ξn
ξn

(2ξn − ξ)N−1dξ

2N+pξNn

=
1

N2N+p

F (ξn)
(ξn)p

for all n ∈ N. Hence, in view of (2.5) and (2.7), we have

lim
n→+∞

∫ 1

0
(1− t)N ess infx∈Br(x0) f(x, 2ξnt)dt

|2ξn|p
= +∞,

that is to say lim supη→0 Λ1(η) = +∞.

Remark 2.4. For applications of Theorem 2.2, it is useful to have upper estimates
of the constant Cγ (γ ∈] max{1, Np },+∞]). For the constant C∞ an upper estimate
is easy to find. Indeed, let x̄ ∈ Rn and R > 0 such that BR(x̄) ⊇ Ω and define

uR(x) = R
p
p−1 − |x− x̄|

p
p−1 , for all x ∈ BR(x̄).

Then, uR ∈ C1
0 (BR(x̄)) and a simple computation shows that

−∆puR(x) = N
( p

p− 1
)p−1 for all x ∈ BR(x̄).

Now, let h ∈ L∞(Ω) and put M = ess supΩ |h| = ‖h‖∞. Also, let uh be the unique
solution of the problem

−∆pu = h(x) in Ω
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u = 0 on ∂Ω .

Then, we have

−∆p

( uh(x)

M
1
p−1

)
=
h(x)
M
≤ 1 =

1
N

(p− 1
p

)p−1(−∆puR(x)) = −∆p

( p− 1

pN
1
p−1

uR(x)
)
,

for all x ∈ Ω. Since
uh(x)

M
1
p−1
≤ p− 1

pN
1
p−1

uR(x), for all x ∈ ∂Ω,

by the comparison principle for the p-Laplacian, one has

uh(x) ≤ p− 1

pN
1
p−1

M
1
p−1uR(x) ≤ p− 1

pN
1
p−1

R
p
p−1 ‖h‖

1
p−1
∞ , for all x ∈ Ω.

It follows that

C∞ ≤
p− 1

pN
1
p−1

R
p
p−1 .

Remark 2.5. Note that, if f(x, t) = 0 for all (x, t) ∈ Ω×]−∞, 0] and f(x, t) ≥ 0
for all (x, t) ∈ Ω×]0,+∞], the nonzero solutions of problem (1.1) are positive in Ω
by the Strong Maximum Principle. Thus, if f satisfies the above condition, we can
compare Theorem 2.2 with [5, Theorem 8.1]. In our case, differently to [5], where a
polynomial growth up to the critical exponent on f was imposed (being the same
function independent of x ∈ Ω), to guarantee the existence of a positive solution
for small λ′s, besides (2.6) and the summability condition i), no other condition is
required on f .

2.2. Multiplicity of solutions. We now state and proof our multiplicity result.

Theorem 2.6. Assume that f satisfies (i) and (ii) of Theorem 2.2. Moreover,
suppose that there exists δ > 0 such that

ess supx∈Ω

∫ ξ

0

f(x, t)dt ≤ 0, for all ξ ∈ [−δ, δ]. (2.8)

Then, for each λ ∈]Λ1(η)−1,Λ−1
2 ], problem (1.1) admits at least two weak solutions

uλ, vλ ∈W 1,p
0 (Ω) ∩ C1(Ω) such that

1
p
‖uλ‖p < λ

∫
Ω

(∫ uλ(x)

0

f(x, t)dt
)
dx,

1
p
‖vλ‖p > λ

∫
Ω

(∫ vλ(x)

0

f(x, t)dt
)
dx.

Proof. Let fC be as in (2.2) and, for λ ∈]Λ1(η)−1,Λ−1
2 ], let Ψλ be as in (2.3). From

the proof of Theorem 2.2, we know that Ψλ is a C1-functional that admits a global
minimum uλ ∈ W 1,p

0 (Ω) such that Ψλ(uλ) < 0. Moreover, again from the proof of
Theorem 2.2, we have that every critical point of Ψλ is a weak solution of problem
(1.1). Thus, if we show that u = 0 is a local minimum for Ψλ, conclusion follows by
the mountain pass theorem of Pucci-Serrin [12]. To this end, it is sufficient to show
that u = 0 is a local minimum for Ψλ in the C1

0 (Ω) topology (see [8, Theorem 3.1]).
Indeed, for each sequence {un}n∈N in C1

0 (Ω) such that limn→+∞ ‖un‖C1(Ω) = 0,
we have, thanks to (2.8), Ψλ(un) ≥ 0 for n ∈ N large enough. Hence, 0 is a local
minimum for Ψλ. �

Here is a consequence of Theorem 2.6.
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Corollary 2.7. Let R > 0 be the radius of the smallest ball containing Ω and let
h, g : [0,+∞[→ R be two continuous functions such that h(0) = g(0) = 0 and

lim
ξ→0+

∫ ξ
0
h(t)dt
ξp

= +∞, (2.9)

lim
ξ→0+

∫ ξ
0
g(t)dt
ξs

= +∞, for some s ∈]0, p[. (2.10)

Finally, let

M = sup
C>0

{ N
Rp
( Cp

p− 1
)p−1( sup

0≤t≤C
|h(t)|

)−1}
.

Then, for each λ ∈]0,M [, there exists µλ > 0 such that, for each µ ∈]0, µλ[, the
problem

−∆pu = λ(h(u)− µg(u)) in Ω,
u = 0 on ∂Ω

admits at least two nonzero and nonnegative solutions.

Proof. Let λ ∈]0,M [ and let C > 0 be such that

λ <
N

Rp

( Cp

p− 1

)p−1(
sup

0≤t≤C
|h(t)|

)−1

.

Put f(x, t) = h(t) for each (x, t) ∈ Ω × [0,+∞[ and f(x, t) = 0 for each (x, t) ∈
Ω × [−∞, 0[. Let Br(x0) be a closed ball contained in Ω. Thanks to (2.9) and
Remark 2.3, we have

lim
η→0+

Λ1(η) = lim
η→0+

p
( r
|η|
)p ∫ 1

0

(1− t)N−1h(ηt)dt = +∞.

Therefore, we can find η0 ∈]0, C[ and µλ > 0 such that[
p
( r
η0

)p ∫ 1

0

(1− t)N−1(h(η0t)− µg(η0t))dt
]−1

< λ <
N

Rp
( Cp

p− 1
)p−1

(
sup

0≤t≤C
|h(t)− µg(t)|

)−1

.

for all µ ∈]0, µλ[. From Remark 2.4, it turns out that

N

Rp
( Cp

p− 1
)p−1

(
sup

0≤t≤C
|h(t)− µg(t)|

)−1

<
[(C∞

C

)p−1 sup
0≤t≤C

|h(t)− µg(t)|
]−1

.

Moreover, from (2.9) and (2.10), for each µ ∈]0, µλ[, there exists δµ > 0 such that∫ ξ

0

(h(t)− µg(t))dt ≤ 0,

for each ξ ∈ [0, δµ]. Conclusion now follows from Theorem 2.6 applied to the
function h(t) − µg(t), extended by continuity to the whole real axis by putting
h(t)− µg(t) = 0 for all t ∈]−∞, 0[, and from the maximum principle. �

Example 2.8. Let R > 0 be as in Corollary 2.7. Moreover, let s ∈]1, p[ and
r ∈]1, s[. Then, Corollary 2.7 can be applied to the functions h(t) = ts−1et and
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g(t) = tr−1et. In this case, the constant M can be explicitly computed and one
has:

M = sup
C>0

{ N
Rp
( Cp

p− 1
)p−1

(
sup

0≤t≤C
|h(t)|

)−1}
=

N

Rp
( p

p− 1
)p−1(p− s

e

)p−s
.

We conclude that, for each λ ∈]0,M [, there exists µλ > 0 such that for each
µ ∈]0, µλ[, the problem

−∆pu = λ(us−1 − µur−1)eu in Ω,
u = 0 on ∂Ω

admits at least two nonzero and nonnegative solutions.
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