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CHAOTIC OSCILLATIONS OF THE KLEIN-GORDON
EQUATION WITH DISTRIBUTED ENERGY PUMPING AND

VAN DER POL BOUNDARY REGULATION AND DISTRIBUTED
TIME-VARYING COEFFICIENTS

BO SUN, TINGWEN HUANG

Abstract. Consider the Klein-Gordon equation with variable coefficients, a

van der Pol cubic nonlinearity in one of the boundary conditions and a spa-
tially distributed antidamping term, we use a variable-substitution technique

together with the analogy with the 1-dimensional wave equation to prove that
for the Klein-Gordon equation chaos occurs for a class of equations and bound-

ary conditions when system parameters enter a certain regime. Chaotic and

nonchaotic profiles of solutions are illustrated by computer graphics.

1. Introduction

During the past decade, progress has been made in dynamical system theory in
proving the onset of chaos in the 1D wave equation and the Klein-Gordon equation
with a van der Pol cubic nonlinearity in one of the boundary conditions and a
spatially distributed antidamping term, see [1, 2, 3, 4, 5, 6]. The basic method is
characteristic reflections, by which discrete dynamical systems are extracted. We
first give a quick review of the work mentioned above, where the main motivating
interest was the significance in nonlinear feedback boundary control. For the wave
equation

wtt(x, t)− c2wxx(x, t) = 0, 0 < x < 1, t > 0, c > 0, (1.1)

we assume that at the left-end x = 0, the boundary condition is

wt(0, t) = −ηwx(0, t), t > 0, η > 0, η 6= c, (1.2)

and at the right-end x = 1, the boundary condition is of the van der Pol type:

wx(1, t) = αwt(1, t)− βw3
t (1, t), t > 0, 0 < α < c, β > 0. (1.3)

Then the energy functional

E(t) =
1
2

∫ 1

0

[
w2
x(x, t) +

1
c2
w2
t (x, t)

]
dx (1.4)
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rises if |wt(1, t)| is small, and falls if |wt(1, t)| is large. Thus, the van der Pol
boundary condition (1.3) has a self-regulating effect. This can cause chaos to occur
in wx and wt if the parameters α, c and η enter a certain regime.

The treatment in [3] relies heavily on the method of characteristics for linear
hyperbolic systems and simple wave-reflecting relations. Let c = 1, and

u(x, t) =
1
2

[wx(x, t) + wt(x, t)], v(x, t) =
1
2

[wx(x, t)− wt(x, t)]. (1.5)

Then

v(0, t) = Gη(u(0, t)) ≡ 1 + η

1− η
u(0, t), (1.6)

u(1, t) = Fα,β(v(1, t)), (1.7)

where Fα,β : R → R is a nonlinear mapping such that for each given v ∈ R,
u = Fα,β(v) is the unique solution of the cubic equation

β(u− v)3 + (1− α)(u− v) + 2v = 0. (1.8)

Therefore, u(x, t) and v(x, t) for x ∈ [0, 1] and t ∈ (0,∞) are determined by the
initial data u(x, 0), v(x, 0) and the iterative composition of Fα,β ◦Gη or Gη ◦Fα,β .
Finally, the chaotic dynamics in the 1D wave equation is reduced to the discrete
dynamical system generated by the interval map Fα,β ◦Gη or Gη ◦ Fα,β .

A generalization of the 1D wave equation is the Klein-Gordon equation described
as

wtt(x, t) + ηwt(x, t)− wxx(x, t) + k2w(x, t) = 0, 0 < x < 1, t > 0, (1.9)

where k 6= 0, η > 0. A special case is

wtt + 2kwt − wxx + k2w = 0, for (x, t) ∈ (0, 1)× (0,∞). (1.10)

We consider, for (1.10), the following boundary condition,

wt(0, t) + kw(0, t) = −λwx(0, t), t > 0, at x = 0, for given λ ∈ R; (1.11)

wx(1, t) = α[wt(1, t) + kw(1, t)]− β[wt(1, t) + kw(1, t)]3, t > 0, at x = 1,
(1.12)

where 0 < α < 1, β > 0; and the energy function

Ẽ(t) =
1
2

∫ 1

0

[w2
x + (wt + kw)2]dx. (1.13)

Then d
dt Ẽ(t) is indefinite, which is the sign of chaos.

The simple change of variable

w(x, t) = e−ktW (x, t) (1.14)

leads to
∂2

∂x2
W (x, t)− ∂2

∂t2
W (x, t) = 0. (1.15)

Define

u =
1
2

(wx + wt + kw), v =
1
2

(wx − wt − kw). (1.16)

Then

v(0, t) =
1 + λ

1− λ
u(0, t) ≡ Gλ(u(0, t)), (1.17)
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where Gλ is defined to be the linear operator of multiplication by (1 + λ)/(1− λ).
Also we have

β[u(1, t)− v(1, t)]3 + (1− α)[u(1, t)− v(1, t)] + 2v(1, t) = 0. (1.18)

For any v ∈ R, define g(v) to be the unique real solution to the cubic equation

βg(v)3 + (1− α)g(v) + 2v = 0, (1.19)

and
F (v) ≡ Fα,β(v) ≡ v + gα,β(v). (1.20)

Then for each given v(1, t), equation (1.18) has a unique solution u(1, t) given by

u(1, t) = Fα,β(v(1, t)).

It is easy to check that ektu(x, t) keeps constant along each characteristics x+t =
c, and ektv(x, t) keeps constant along each characteristics x− t = c. Therefore, we
have

u(1, t+ 2) = Fα,β(Gλ(e−2ku(1, t))),

v(0, t+ 2) = Gλ(e−kFα,β(e−kv(0, t))),
(1.21)

for any t > 0. Finally, the dynamics of

u =
1
2

(wx + wt + kw), v =
1
2

(wx − wt − kw) (1.22)

are determined by the iterative compositions of the functions Fα,β(Gλ(e−2k·)) or
Gλ(e−kFα,β(e−k·)).

One can imagine that there may be more chaos in the Klein-Gordon equation if
its constant coefficients are replaced by variable coefficients. So in this paper we
consider more general situations and problems below:

[
∂

∂t
− a(x)

∂

∂x
+ k1][

∂

∂t
+ b(x)

∂

∂x
+ k2]w(x, t) = 0, for x ∈ (0, 1), t > 0 (1.23)

with some linear and cubic nonlinear boundary condition, where a(x) > 0 and
b(x) > 0 are continuous real functions defined on [0, 1].

The organization of this article is as follows: In Section 2, we consider a simple
case with a(x) ≡ Kb(x), and k1 = k2 = 0, where K is a positive constant. In
Section 3, we consider some more cases with a(x) ≡ Kb(x), and k1, k2 ∈ R. In
Section 4, we prove the bifurcation from a stable fixed point to chaos. In Section
5, we consider some more general cases.

2. Klein-Gordon Equation with variable coefficients but no state
term

Let us consider a simple case of (1.23) with k1 = k2 = 0; i.e.,

[
∂

∂t
− a(x)

∂

∂x
][
∂

∂t
+ b(x)

∂

∂x
]w = 0, for x ∈ (0, 1), t > 0. (2.1)

Let

ξ =
∫ x

0

dx

a(x)
, η =

∫ x

0

dx

b(x)
, (2.2)

then it follows from a = Kb that η = Kξ, and thus
∂

∂ξ
= K

∂

∂η
.
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Let w̃(η, t) = w(x, t), then (2.1) is equivalent to

[
∂

∂t
−K ∂

∂η
][
∂

∂t
+

∂

∂η
]w̃ = 0, (2.3)

or
[
∂

∂t
+

∂

∂η
][
∂

∂t
−K ∂

∂η
]w̃ = 0. (2.4)

It follows immediately that

w̃η + w̃t = f(η +Kt),

Kw̃η − w̃t = g(t− η)

for some functions f and g depending on the initial data. Let

ũ(η, t) =
1
2

[w̃η + w̃t],

ṽ(η, t) =
1
2

[Kw̃η − w̃t].

Then ũ keeps constant along lines η + Kt = c, and ṽ keeps constant along lines
η − t = c.

We impose nonlinear boundary conditions as

w̃t(0, t) = −λw̃η(0, t), (2.5)

w̃η(L, t) = αw̃t(L, t)− βw̃3
t (L, t), (2.6)

where L =
∫ 1

0
dx
b(x) . Then

ṽ(0, t) = GK,λ(ũ(0, t)) =
K + λ

1− λ
ũ(0, t), (2.7)

ũ(L, t) = FK,α,β(ṽ(L, t)), (2.8)

where u = FK,α,β(v) is the unique real solution of the cubic equation
4β

(K + 1)2
(Ku− v)3 + (

1
K
− α)(Ku− v) + (

1
K

+ 1)v = 0. (2.9)

It follows from (2.2) that

dξ =
dx

a(x)
, dη =

dx

b(x)
, (2.10)

and thus
∂w

∂x
=
∂w̃

∂ξ

dξ

dx
=

1
a(x)

∂w̃

∂ξ
, (2.11)

∂w

∂x
=

1
b(x)

∂w̃

∂η
, (2.12)

or
∂w̃

∂ξ
= a(x)

∂w

∂x
, (2.13)

∂w̃

∂η
= b(x)

∂w

∂x
. (2.14)

So the boundary condition (2.5)-(2.6) is equivalent to

wt(0, t) = −λb(0)wx(0, t), (2.15)

b(1)wx(1, t) = αwt(1, t)− βw3
t (1, t). (2.16)
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Let

u(x, t) = ũ(η, t) =
1
2

[b(x)wx + wt],

v(x, t) = ṽ(η, t) =
1
2

[a(x)wx − wt],

then

v(0, t) = GK,λ(u(0, t)) =
K + λ

1− λ
u(0, t), (2.17)

u(1, t) = FK,α,β(v(1, t)). (2.18)

Therefore

u(1, t) = FK,α,β(GK,λ(u(1, t− L− L

K
)), (2.19)

v(0, t) = GK,λ(FK,α,β(v(0, t− L− L

K
)). (2.20)

The dynamics of u and v are reduced to the properties of G◦F and F ◦G. Define
a function ψ(x) =

∫ x
0

dx
b(x) on [0, 1], then ψ is one to one.

Lemma 2.1 (Solution representations for u(x, t) and v(x, t)). Assume (2.1),
(2.15) and (2.16). Then for any x: 0 < x < 1, and t > 0, we have, for t:
t = (1 + 1

K )jL+ τ , j = 0, 1, 2, . . . , τ > 0,

u(x, t) =


(Fα,β ◦Gλ,K)j(Fα,β(v0(ψ−1(1 + 1

K )L− τ − η
K ))),

if L ≤ Kτ + η ≤ (K + 1)L;

(Fα,β ◦Gλ,K)j+1(u0(ψ−1(Kτ + η − (K + 1)L)))),
if (K + 1)L ≤ Kτ + η ≤ (K + 2)L;

v(x, t) =


(Gλ,K ◦ Fα,β))j(G(u0(ψ−1(K(τ − η))))),

if t = (1 + 1
K )jL+ τ, 0 ≤ τ − η ≤ L

K ;

(Gλ,K ◦ Fα,β))j+1(v0(ψ−1(1 + 1
K )L− τ + η)),

if L
K ≤ τ − η ≤ (1 + 1

K )L.

Lemma 2.2 (Derivative Formulas). Let 0 < α ≤ 1
K , β > 0 and η > 0, η 6= 1,

where α and β are given and fixed, but η is a varying parameter. Define

f1(v, η) = G ◦ F (v) =
K + η

1− η
F (v), f2(v, η) = F ◦G(v) = F (

K + η

1− η
v), v ∈ R.

Let g(v) be the unique real solution of the cubic equation
4β

(K + 1)2
g(v)3 + (

1
K
− α)g(v) + (

1
K

+ 1)v = 0, (2.21)

for a given v ∈ R. Then
∂

∂v
f1(v, η) =

K + η

K(1− η)
[1− K + 1

12Kβ
(K+1)2 g(v)2 + 1−Kα

], (2.22)

∂

∂v
f2(v, η) =

K + η

K(1− η)
[1− K + 1

12Kβ
(K+1)2 g(K+η

1−η v)2 + 1−Kα
],

∂

∂η
f1(v, η) =

1 +K

K(1− η)2
[v + g(v)],
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∂

∂η
f2(v, η) =

1 +K

K(1− η)2
[1− K + 1

12Kβ
(K+1)2 g(K+η

1−η v)2 + 1−Kα
]v,

∂2

∂η∂v
f1(v, η) =

K + 1
K(1− η)2

[1− K + 1
12Kβ

(K+1)2 g(v)2 + 1−Kα
],

∂2

∂v2
f1(v, η) =

K + η

(1− η)
(−24)β · g(v)

[ 12Kβ
(K+1)2 g(v)2 + 1−Kα]3

,

∂3

∂v3
f1(v, η) =

K + η

1− η
24(K + 1)β

1−Kα− 60Kβ
(K+1)2 g(v)2

[ 12Kβ
(K+1)2 g(v)2 + 1−Kα]5

. (2.23)

Lemma 2.3 (Intersections with the Lines u− v = 0 and u+ v = 0). Let 0 < α ≤
1/K, β > 0, η > 0, η 6= 1 be given. Then

(i) u = G ◦ F (v) intersects the line u = v at the points

(u, v) = (−K + η

2η

√
1 + αη

βη
,−K + η

2η

√
1 + αη

βη
),

(0, 0),

(
K + η

2η

√
1 + αη

βη
,
K + η

2η

√
1 + αη

βη
);

(ii) u = G ◦ F (v) intersects the line u = −v at the points

(u, v) = (− (K + 1)(K + η)
2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

[2K + (1−K)η]β
,

(K + 1)(K + η)
2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

[2K + (1−K)η]β
),

(0, 0),

(
(K + 1)(K + η)

2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

[2K + (1−K)η]β
,

− (K + 1)(K + η)
2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

[2K + (1−K)η]β
);

(iii) u = F ◦G(v) intersects the line u = v at the points

(u, v) = (−1− η
2η

√
1 + αη

βη
,−1− η

2η

√
1 + αη

βη
),

(0, 0),

(
1− η

2η

√
1 + αη

βη
,

1− η
2η

√
1 + αη

βη
);

(iv) u = F ◦G(v) intersects the line u = −v at the points

(u, v) = (− (1− η)(K + 1)
2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

β[2K + (1−K)η]
,

(1− η)(K + 1)
2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

β[2K + (1−K)η]
),
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(0, 0),

(
(1− η)(K + 1)

2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

β[2K + (1−K)η]
,

− (1− η)(K + 1)
2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

β[2K + (1−K)η]
).

Remark 2.4. Conclusions (ii) and (iv) are based on the assumption that

(1 + 2α)K − 1 + [2 + α(1−K)]η
β[2K + (1−K)η]

≥ 0. (2.24)

So we assume K ≤ 1 and (1+2α)K ≥ 1 for conclusions (ii) and (iv). We also make
this assumption for some related results below, e.g., (ii) and (iv) in Lemma 2.7.

Lemma 2.5 (v-axis Intercepts). Let 0 < α ≤ 1
K , β > 0, η > 0, η 6= 1 be given.

Then
(i) u = G ◦ F (v) has v-axis intercepts v = −K+1

2

√
1+α
β , 0, K+1

2

√
1+α
β ;

(ii) u = F ◦G(v) has v-axis intercepts

v = − (K + 1)(1− η)
2(K + η)

√
1 + α

β
, 0,

(K + 1)(1− η)
2(K + η)

√
1 + α

β
.

Lemma 2.6 (Local Maximum, Minimum and Piecewise Monotonicity). Let 0 <
α ≤ 1

K , β > 0, η > 0, η 6= 1 be given. Then
(i) If 0 < η < 1, then G ◦ F has local extremal values

M = G ◦ F (−vc) =
K + η

1− η
1 + α

3

√
1 + α

3β
,

m = G ◦ F (vc) = −K + η

1− η
1 + α

3

√
1 + α

3β
,

where vc = 3+(1−2α)K
6

√
1+α
3β , and M , m are, respectively, the local maximum and

minimum of G ◦ F . The function G ◦ F is strictly increasing on (−∞,−vc) and
(vc,∞), but strictly decreasing on (−vc, vc).

On the other hand, if η > 1, then G ◦ F has local minimum (m) and maximum
(M) values

m = G ◦ F (−vc) =
K + η

1− η
1 + α

3

√
1 + α

3β
,

M = G ◦ F (vc) = −K + η

1− η
1 + α

3

√
1 + α

3β
,

where vc is the same as above. The function G ◦ F is strictly decreasing on
(−∞,−vc) and (vc,∞), but strictly increasing on (−vc, vc).

(ii) If 0 < η < 1, then F ◦G has local extremal values

M = F ◦G(−ṽc) =
1 + α

3

√
1 + α

3β
,

m = F ◦G(ṽc) = −1 + α

3

√
1 + α

3β
,
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where ṽc = 1−η
K+η

3+(1−2α)K
6

√
1+α
3β , and M , m are, respectively, the local maximum

and minimum of F ◦ G. The function F ◦ G is strictly increasing on (−∞,−ṽc)
and (ṽc,∞), but strictly decreasing on (−ṽc, ṽc).

On the other hand, if η > 1, then F ◦G has local extremal values

m = F ◦G(−ṽc) = −1 + α

3

√
1 + α

3β
,

M = F ◦G(ṽc) =
1 + α

3

√
1 + α

3β
.

The function F ◦ G is strictly decreasing on (−∞,−ṽc) and (ṽc,∞), but strictly
increasing on (−ṽc, ṽc).

Lemma 2.7 (Bounded Invariant Intervals). Let 0 < α ≤ 1
K , β > 0, η > 0, η 6= 1.

(i) If 0 < η < 1 and

M =
K + η

1− η
1 + α

3

√
1 + α

3β
≤ K + η

2η

√
1 + αη

βη
,

then the iterates of every point in the set

U ≡ (−∞,−K + η

2η

√
1 + αη

βη
) ∪ (

K + η

2η

√
1 + αη

βη
,∞)

escape to ±∞, while those of any point in R\Ū are attracted to the bounded invari-
ant interval I ≡ [−M,M ] of G ◦ F .

(ii) If η > 1 and

M = −K + η

1− η
1 + α

3

√
1 + α

3β

≤ (K + 1)(K + η)
2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

[2K + (1−K)η]β
,

then the same conclusion as in (i) holds, with

U ≡ (−∞,− (K + 1)(K + η)
2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

[2K + (1−K)η]β
)

∪ (
(K + 1)(K + η)

2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

[2K + (1−K)η]β
,∞)

and I ≡ [−M,M ] for G ◦ F .

(iii) If 0 < η < 1 and M = 1+α
3

√
1+α
3β ≤

1−η
2η

√
1+αη
βη , then the same conclusion

holds, with

U ≡ (−∞,−1− η
2η

√
1 + αη

βη
) ∪ (

1− η
2η

√
1 + αη

βη
,∞)

and I = [−M,M ] for F ◦G.
(iv) If η > 1 and

M =
1 + α

3

√
1 + α

3β
≤ − (1− η)(K + 1)

2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

β[2K + (1−K)η]
),
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then the same conclusion holds, with

U ≡ (−∞, (1− η)(K + 1)
2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

β[2K + (1−K)η]
)

∪ (− (1− η)(K + 1)
2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

β[2K + (1−K)η]
),∞)

and I ≡ [−M,M ] for F ◦G.

Now we try to set a period-doubling bifurcation theorem similar to our earlier
work.

Theorem 2.8 (Period-Doubling Bifurcation Theorem). Let α: 0 < α ≤ 1
K , β > 0

be fixed, and let η: 0 < η ≤ η be a varying parameter. Let h1(v, η) = −G ◦ F (v).
Then

(i) v0 = (K+1)(K+η)
2[2K+(1−K)η]

√
(1+2α)K−1+[2+α(1−K)]η

[2K+(1−K)η]β is a curve of fixed points of h1.
(ii) The algebraic equation

K − 2Kαη + 3η
6η

√
1 + αη

3βη

=
(K + 1)(K + η)

2[2K + (1−K)η]

√
(1 + 2α)K − 1 + [2 + α(1−K)]η

[2K + (1−K)η]β

(2.25)

has a solution η = η0 in (0, 1) for any given α: 0 < α ≤ 1
K and β > 0. We have

∂

∂v
h1(v0, η0) = −1.

(iii) For η = η0 satisfying (2.25), we have

A =
∂2

∂η∂v
h1 +

1
2
∂h1

∂η

∂2h1

∂v2

= −
(

(K + 1){[(K + 1)α(2α+ 3) + 3]η3
0 + (6K + αK + α− 3)η2

0

− (7K − 2)η0 + 3K}
)
/
(

3(1− η0)3(K + η0)2
)
.

for η = η0 and v = v0(η0).
(iv)

B =
1
3
∂3h1

∂v3
+

1
2

(
∂2h1

∂v2
)2

=
8(K + 1)βη4

(1− η0)2(K + η0)5
[
(3α− 3Kα+ 1)η3

0 + (9Kα− 3K2α−K + 2)η2
0

+K(6Kα− 2K + 7)η0 + 5K2
]
.

Proof. (i) This is an immediate consequence of Lemma 2.3.
(ii) We first determine the point(s) v > 0 such that ∂h1

∂v = −1. By (2.22), with
a change of sign for f1, we obtain

K + η

K(1− η)
[1− K + 1

12Kβ
(K+1)2 g(v)2 + 1−Kα

] = 1.
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Therefore,

12Kβ
(K + 1)2

g(v)2 =
K

η
+Kα,

g(v) = ±K + 1
2

√
1 + αη

3βη
. (2.26)

We choose positive v and thus the “−” sign in (2.26). Hence

g(v) = −K + 1
2

√
1 + αη

3βη
. (2.27)

Since g(v) satisfies (2.21), from (2.27) we obtain

v = − K

K + 1
[

4β
(K + 1)2

g(v)3 + (
1
K
− α)g(v)]

=
K − 2Kαη + 3η

6η

√
1 + αη

3βη
= LHS of (2.25).

(2.28)

Further setting (2.28) equal to v0(η) in (i), we obtain the RHS of (2.25).
Now we show that (2.25) has a solution. It is easy to see that the LHS tends to

+∞, but the RHS keeps bounded as η → 0+. So the LHS is greater than the RHS
for some η close to 0. On the other hand, it is easy to verify that the LHS is smaller
than the RHS for some η close to 1. It follows from the Mean Value Theorem
of continuous functions that (2.25) has a solution in (0, 1). (iii) and (iv) are also
immediate consequences of Lemma 2.3. However, it is hard to judge whether A 6= 0
in (iii) and B 6= 0 in (iv) without knowledge of η0. So we can not conclude the
period-doubling bifurcation so far. We will try other methods in next section. �

Theorem 2.9 (Homoclinic Orbits for the Case 0 < η < 1). Let K > 0, α: 0 <
α ≤ 1

K and β > 0 be fixed, and let η ∈ (0, 1) be a varying parameter such that

K + 1
2

√
1 + α

β
<
K + η

1− η
1 + α

3

√
1 + α

3β
, (2.29)

then the repelling fixed point 0 of G ◦ F and F ◦G has homoclinic orbits.

Proof. By (2.22) and (2.29), we easily obtain

∂

∂v
fi(v, η)|v=0 =

K + η

K(1− η)
(1− K + 1

1−Kα
)

= − (α+ 1)(K + η)
(1− η)(1−Kα)

< −1, i = 1, 2.

Therefore 0 is a repelling fixed point of G ◦F and F ◦G. For a homoclinic to exist,
the local maximum of G ◦ F (resp., F ◦G) must be larger than the positive v-axis
intercept of G ◦ F (resp., F ◦G); i.e.,

K + 1
2

√
1 + α

β
<
K + η

1− η
1 + α

3

√
1 + α

3β
. (2.30)

This is exactly (2.29). �
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3. Klein-Gordon equation with variable coefficients

In this section, we consider (1.23) with a(x) ≡ Kb(x), where K > 0 is a constant.
Let W = e−ct−dηw, where w satisfies (2.1). Then w = ect+dηW , and

wt = ect+dη(Wt + cW ),

wη = ect+dη(Wη + dW ).

Then it follows immediately that

[
∂

∂t
−K ∂

∂η
+ c−Kd][

∂

∂t
+

∂

∂η
+ c+ d]W = 0. (3.1)

Let k1 = c−Kd, k2 = c+ d, then (3.1) becomes

[
∂

∂t
− a(x)

∂

∂x
+ k1][

∂

∂t
+ b(x)

∂

∂x
+ k2]W = 0. (3.2)

Reversely, for any k1 and k2, there exist a unique pair of c and d such that k1 =
c−Kd, k2 = c+ d. Note that (3.2) is just our original problem (1.23).

It follows immediately that
1
2

(wη + wt) = ect+dη
Wη +Wt + k2W

2
= c′1,

along each characteristics η +Kt = c1; and
1
2

(Kwη − wt) = ect+dη
KWη −Wt − k1W

2
= c′2,

along each characteristics η − t = c2. Let

u =
Wη +Wt + k2W

2
=
b(x)Wx +Wt + k2W

2
,

v =
KWη −Wt − k1W

2
=
a(x)Wx −Wt − k1W

2
.

Then ect+dηu keeps constant along lines η + Kt = c, and ect+dηv keeps constant
along lines η − t = c.

We impose boundary conditions such that

v(0, t) = GK,λ(u(0, t)) =
K + λ

1− λ
u(0, t),

u(1, t) = FK,α,β(v(1, t)).

Then it is easy to deduce the corresponding boundary conditions:

Wt(0, t) = −λb(0)Wx(0, t)− (1− λ)k1 + (K + λ)k2

K + 1
W (0, t), (3.3)

(K + 1)b(1)Wx(1, t) + (k2 − k1)W (1, t)
2

= α
(K + 1)Wt(1, t) + (k1 +Kk2)W (1, t)

2

− 4β
(K + 1)2

[
(K + 1)Wt(1, t) + (k1 +Kk2)W (1, t)

2
]3 .

(3.4)

It is easy to verify the following reflective iterations:

u(1, t) = F (G(e−(1+ 1
K )cLu(1, t− L− L

K
)), (3.5)
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v(0, t) = G(e(d−
c
K )LF (e−(c+d)Lv(0, t− L− L

K
)). (3.6)

Lemma 3.1 (Solution representations for u(x, t) and v(x, t)). Assume (3.1), (3.3)
and (3.4). Then for any x: 0 < x < 1, and t > 0, we have, for t = (1 + 1

K )jL+ τ ,
j = 0, 1, 2, . . . , τ > 0,

u(x, t) =



(
F (G(e−(1+ 1

K )cL·))
)j(

F (e−(c+d)(τ−L−ηK )v0(ψ−1(1 + 1
K )L− τ − η

K ))
)
,

if L ≤ Kτ + η ≤ (K + 1)L;(
F (G(e−(1+ 1

K )cL·))
)j(

Fα,β

(
e−(c+d)LG(e(Kd−c)(τ+

η
K−(1+ 1

K )L)

×u0(ψ−1(Kτ + η − (K + 1)L)))
))
,

if (K + 1)L ≤ Kτ + η ≤ (K + 2)L;

v(x, t) =



(
G(e(d−

c
K )LF (e−(c+d)L·))

)j(
G
(
e(Kd−c)(τ−η)u0(ψ−1(K(τ − η)))

))
,

if 0 ≤ τ − η ≤ L
K ;(

G(e(d−
c
K )LF (e−(c+d)L·))

)j(
Ge(d−

c
K )LF

(
e−(c+d)(τ−η− L

K )

×v0(ψ−1((1 + 1
K )L− τ + η))

))
,

if L
K ≤ τ − η ≤ (1 + 1

K )L.

Over all, the dynamics of u and v are determined by iterative compositions of
functions f1 and f2 as:

f1(v, η) = Gη(e(d−
c
K )LF (e−(c+d)Lv)) =

K + η

1− η
e(d−

c
K )LF (e−(c+d)Lv)),

f2(v, η) = F (G(e−(1+ 1
K )cLv)) = F (

K + η

1− η
(e−(1+ 1

K )cLv)),

where F = FK,α,β is as defined in previous section.
The proof of bifurcations depend on the analysis of the derivatives of f1 or f2 with

respect to v and η. One can imagine that it is a hard work, since the formulations
of f1 and f2 are so complicated.

Chaos and bifurcations are determined by the reflection maps F (G(e−(1+ 1
K )cL·))

or G(e(d−
c
K )LF (e−(c+d)L·)). Since the two maps are conjugate to each other, it

suffices to consider either one of them.
Let us look at F (G(e−(1+ 1

K )cL·)). Given α, β and K, F is fixed, then the
map varies with G(e−(1+ 1

K )cL·). In a word, the dynamics depend on the value of
K+λ
1−λ e

−(1+ 1
K )cL. So it may be reasonable to define the factor as a parameter. Let

η = K+λ
1−λ e

−(1+ 1
K )cL, then the reflective map f2 can be simplified as

f2(v) = Fα,β,K(ηv). (3.7)

Of course, it should be much easier to calculate the derivatives of f2 with respect
to v and the new parameter η, so we will easily get the regime of η where f2 is
chaotic or bifurcated. Then the corresponding regime of λ can be obtained by
simple calculations. Let us do it as follows:

Lemma 3.2 (Derivative Formulas). Let 0 < α ≤ 1
K , β > 0 and η ∈ R, where α and

β are given and fixed, but η is a varying parameter. Define f(v, η) = Fα,β,K(ηv),
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v ∈ R. Let g(v) be the unique real solution of the cubic equation
4β

(K + 1)2
g(v)3 + (

1
K
− α)g(v) + (

1
K

+ 1)v = 0, (3.8)

for a given v ∈ R. Then

(i) ∂
∂vf(v, η) = η 12βg(ηv)2−(α+1)(K+1)2

12Kβg(ηv)2+(1−Kα)(K+1)2 ,

(ii) ∂
∂ηf(v, η) = v 12βg(ηv)2−(α+1)(K+1)2

12Kβg(ηv)2+(1−Kα)(K+1)2 ,

(iii) ∂2

∂η∂vf(v, η) = 12βg(ηv)2−(α+1)(K+1)2

12Kβg(ηv)2+(1−Kα)(K+1)2 −
24β(K+1)6ηg(ηv)v

[12Kβg(ηv)2+(1−Kα)(K+1)2]3 ,

(iv) ∂2

∂v2 f(v, η) = − 24β(K+1)6η2g(ηv)
[12Kβg(ηv)2+(1−Kα)(K+1)2]3 ,

(v) ∂3

∂v3 f(v, η) = −24β(K + 1)9η3 60Kβg(ηv)2−(1−Kα)(K+1)2

[12Kβg(ηv)2+(1−Kα)(K+1)2]5 .

Lemma 3.3 (Intersections with the Lines u − v = 0 and u + v = 0). Let α:
0 < α ≤ 1

K , β > 0, η ∈ R be given. Then
(i) If η > K or η < − 1−Kα

1+α , then u = f(v) intersects the line u = v at the points

(u, v) = (− K + 1
2(η −K)

√
1−Kα+ (α+ 1)η

β(η −K)
,− K + 1

2(η −K)

√
1−Kα+ (α+ 1)η

β(η −K)
),

(0,0),

(
K + 1

2(η −K)

√
1−Kα+ (α+ 1)η

β(η −K)
,
K + 1

2(η −K)

√
1−Kα+ (α+ 1)η

β(η −K)
);

(ii) If η < −K or η > 1−Kα
1+α , then u = f(v) intersects the line u = −v at the

points

(u, v) = (− K + 1
2(η +K)

√
(α+ 1)η + αK − 1

β(η +K)
,
K + 1

2(η +K)

√
(α+ 1)η + αK − 1

β(η +K)
),

(0, 0),

(
K + 1

2(η +K)

√
(α+ 1)η + αK − 1

β(η +K)
,− K + 1

2(η +K)

√
(α+ 1)η + αK − 1

β(η +K)
).

Lemma 3.4 (v-aixs Intercepts). Let α: 0 < α ≤ 1
K , β > 0, η > 0, η 6= 1 be given.

Then u = f(v) has v-axis intercepts

v = −K + 1
2η

√
1 + α

β
, 0,

K + 1
2η

√
1 + α

β
.

Lemma 3.5 (Local Maximum, Minimum and Piecewise Monotonicity). Let α:
0 < α ≤ 1

K , β > 0, η ∈ R be given. Then If η > 0, then f has local extremal values

M = f(−vc) =
1 + α

3

√
1 + α

3β
,

m = f(vc) = −1 + α

3

√
1 + α

3β
,

where vc = 3+(1−2α)K
6η

√
1+α
3β , and M , m are, respectively, the local maximum and

minimum of f . The function f is strictly increasing on (−∞,−ṽc) and (ṽc,∞),
but strictly decreasing on (−ṽc, ṽc).
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On the other hand, if η < 0, then f has local extremal values

m = f(−vc) = −1 + α

3

√
1 + α

3β
,

M = f(vc) =
1 + α

3

√
1 + α

3β
.

The function f is strictly decreasing on (−∞,−vc) and (vc,∞), but strictly increas-
ing on (−vc, vc).

Lemma 3.6 (Bounded Invariant Intervals). Let 0 < α ≤ 1/K, β > 0, η ∈ R.
(i) If η > K, and

1 + α

3

√
1 + α

3β
<

K + 1
2(η −K)

√
1−Kα+ (α+ 1)η

β(η −K)
,

then the iterates of every point in the set

U ≡ (−∞,− K + 1
2(η −K)

√
1−Kα+ (α+ 1)η

β(η −K)
)

∪ (
K + 1

2(η −K)

√
1−Kα+ (α+ 1)η

β(η −K)
,∞)

escape to ±∞, while those of any point in R\Ū are attracted to the bounded invari-
ant interval I ≡ [−M,M ] of f ;

(ii) If η < −K, and

1 + α

3

√
1 + α

3β
< − K + 1

2(η +K)

√
(α+ 1)η + αK − 1

β(η +K)
,

then the iterates of every point in the set

U = (−∞, K + 1
2(η +K)

√
(α+ 1)η + αK − 1

β(η +K)
)

∪ (− K + 1
2(η +K)

√
(α+ 1)η + αK − 1

β(η +K)
,∞)

escape to ±∞, while those of any point in R\Ū are attracted to the bounded invari-
ant interval I ≡ [−M,M ] of f .

Theorem 3.7 (Period-Doubling Bifurcation Theorem). Let K > 0, α: 0 < α ≤
1
K ≤ 2α+ 1, β > 0 be fixed, and let η: η > 0 be a varying parameter. Then

(i) For 0 < η < 1−Kα
1+α , 0 is the unique fixed point of f , and it is stable;

(ii) With the same α, β and K as in (i), but η > 1−Kα
1+α , then 0 becomes unstable,

and there appear stable period-2 orbit

{ K + 1
2(η +K)

√
(α+ 1)η + αK − 1

β(η +K)
,− K + 1

2(η +K)

√
(α+ 1)η + αK − 1

β(η +K)
}

of f ;
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(iii) The curve of the period-2 points:

v = ± K + 1
2(η +K)

√
(α+ 1)η + αK − 1

β(η +K)

is smooth in the η-v plane, and tangent to the line { 1−Kα
1+α }×R at point ( 1−Kα

1+α , 0);
(iv) The period-2 orbit becomes unstable when η increases through

K + 1 +
√

(K + 1)2 − (α+ 1)(1−Kα)K
α+ 1

.

Proof. (i) It follows from Lemma 3.2 (i) that

f ′(0) = η
12βg(0)2 − (α+ 1)(K + 1)2

12Kβg(0)2 + (1−Kα)(K + 1)2

= η
−(α+ 1)(K + 1)2

(1−Kα)(K + 1)2

= −η α+ 1
1−Kα

.

So −1 < f ′(0) < 0, for 0 < η < 1−Kα
1+α . So the origin point is a stable fixed

point of f . As is shown in Lemma 3.3, there are no other fixed points of f when
0 < η < 1−Kα

1+α ≤ K, so 0 is the unique fixed point of f .
(ii) Let

v0 =
K + 1

2(η +K)

√
(α+ 1)η + αK − 1

β(η +K)
;

i.e., the positive intersection of f with the line u = −v. Then

F (ηv0) = −v0,
ηv0 + g(ηv0)

K
= −v0,

g(ηv0) = −(K + η)v0.

So

g(ηv0)2 = (η +K)2v2
0 =

(K + 1)2[(α+ 1)η + αK − 1]
4β(η +K)

.

Furthermore,

∂f

∂v
|v=v0 = η

12β (K+1)2[(α+1)η+αK−1]
4β(η+K) − (α+ 1)(K + 1)2

12Kβ (K+1)2[(α+1)η+αK−1]
4β(η+K) + (1−Kα)(K + 1)2

= η
3[(α+ 1)η + αK − 1]− (α+ 1)(η +K)

3K[(α+ 1)η + αK − 1] + (1−Kα)(η +K)

= η
2(α+ 1)η + 2αK −K − 3

(2αK + 3K + 1)η + 2(αK − 1)K
.

(3.9)

On the other hand,

2(α+ 1)η + 2αK −K − 3 > 2(1− αK) + 2αK −K − 3 > −K − 1,

and thus
|2(α+ 1)η + 2αK −K − 3| < K + 1 (3.10)
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for η greater than 1−αK
α+1 and close to 1−αK

α+1 enough,

(2αK + 3K + 1)η + 2(αK − 1)K

= 2K(α+ 1)η + (K + 1)η + 2(αK − 1)K

> 2K(1− αK) + (K + 1)η + 2(αK − 1)K

> (K + 1)η,

(3.11)

for η greater than 1−αK
α+1 .

Combining (3.9), (3.10) and (3.11), we have

|f ′(v0)| < 1

for η greater than 1−αK
α+1 and close to 1−αK

α+1 enough. By similar arguments we have

|f ′(−v0)| < 1

for η greater than 1−αK
α+1 and close to 1−αK

α+1 enough.
Combining the two aspects above, we conclude that the new emerging period-2

orbit ares stable. This completes the proof of the period-2 bifurcations of f at the
origin.

(iii) It is easy to verify that

v = ± K + 1
2(η +K)

√
(α+ 1)η + αK − 1

β(η +K)

is differentiable with respect to η for η in ( 1−αK
α+1 ,∞). The derivative is ∞ at

η = 1−αK
α+1 . This shows that the curve is smooth in the η-v plane, and tangent to

line { 1−Kα
1+α } × R at point (1−Kα

1+α , 0).
(iv) Let

∂f

∂v
= η

2(α+ 1)η + 2αK −K − 3
(2αK + 3K + 1)η + 2(αK − 1)K

> 1,

and then it follows that

η >
K + 1 +

√
(K + 1)2 − (α+ 1)(1− αK)K

α+ 1
,

or

η <
K + 1−

√
(K + 1)2 − (α+ 1)(1− αK)K

α+ 1
.

So the period-2 orbit becomes unstable when η increases through

K + 1 +
√

(K + 1)2 − (α+ 1)(1− αK)K
α+ 1

.

�

Remark 3.8. We just conclude that 0 is stable by |f ′(0)| < 1 when 0 < η < 1−Kα
1+α .

However, |f ′(0)| < 1 just implies the local stability of 0. In fact, it follows from
Lemma 3.3 that u = f(v) does not intersect with line u = v or u = −v at other
points except the origin, so we have |f(v)| < |v| for v 6= 0. Therefore, 0 attracts
(−∞,+∞), illustrated by Figure 3.1:
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f

Figure 3.1. Global attraction diagram of 0 for f , where α = 0.5,
β = 1, K = 0.7, η = 0.4.

Remark 3.9. The stable period-2 orbit in Theorem 3.7 (ii) attracts (−∞, 0) ∪
(0,+∞) for η larger than and close to 1−Kα

1+α . Since −f(−f(v)) = f(f(v)), so the
period-2 stability under f is equivalent to that under −f . The global attraction of
its period-2 orbit can be easily illustrated by its graph, e.g., Figure 3.2.
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u=−f(v)

Figure 3.2. Global attraction diagram of the period-2 orbit for
f , where α = 0.5, β = 1, K = 0.7, η = 0.8.

Theorem 3.10 (Homoclinic Orbits for the Case η > 0). Let K > 0, α: 0 < α ≤
1/K and β > 0 be fixed, and η ≥ 3

√
3(K+1)

2(1+α) , then the repelling fixed point 0 of f has
homoclinic orbits.

Proof. For a homoclinic orbit of 0 to exist, the local maximum of f must be no less
than the positive v-axis intercept of f , i.e.,

K + 1
2η

√
1 + α

β
<

1 + α

3

√
1 + α

3β
,
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which is equivalent to

η >
3
√

3(K + 1)
2(1 + α)

. (3.12)

On the other hand, it follows from Lemma 3.2 (i) that

∂

∂v
f(v, η)|v=0 = −η α+ 1

1−Kα
.

Therefore 0 is a repelling fixed point of f for η larger than 1−Kα
α+1 , which is implied

by (3.12). This completes the proof. �

For η = 3
√

3(K+1)
2(1+α) , vc (or −vc) lies on a degenerated homoclinic orbit. When η <

3
√

3(K+1)
2(1+α) , f has maximum less than the v-axis intercept. Hence there are no points

homoclinic to 0 for these η-values. On the other hand, when η > 3
√

3(K+1)
2(1+α) , there

are infinitely many distinct homoclinic orbits. Consequently, f is not structurally
stable when η = 3

√
3(K+1)

2(1+α) , i.e., a small change in f can change the number of
homoclinic orbits.

Example 3.11. The parameters chosen are α = 0.5, β = 1, λ = 0.85, k1 = k2 =
0.7, K = 0.7, b(x) = 1 + 3x2,

w(x, 0) = sin2(πx), wt(x, 0) = 0.

Figures 3.3–3.6 show the spatiotemporal profiles of u, v, wx and wt for x ∈ [0, 1]
and t ∈ [7.34, 8.80] respectively; Figures 3.7 and 3.8 illustrate the reflection maps
F (G(e−(1+ 1

K )cL·)) and G(e(d−
c
K )LF (e−(c+d)L·)) respectively.

Figure 3.3. The spatiotemporal profile of u(x, t) for x ∈ [0, 1]
and t ∈ [7.34, 8.80].
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Figure 3.4. The spatiotemporal profile of v(x, t) for x ∈ [0, 1] and
t ∈ [7.34, 8.80].

Figure 3.5. The spatiotemporal profile of wx(x, t) for x ∈ [0, 1]
and t ∈ [7.34, 8.80].

Figures 3.7 and 3.8 show that H1 and H2 are topologically transitive, so probably
they are chaotic according to Devaney’s definition [8].
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Figure 3.6. The spatiotemporal profile of wt(x, t) + kw(x, t) for
x ∈ [0, 1] and t ∈ [7.34, 8.80].
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0.6

0.8

1

Figure 3.7. Orbits of H1 = F (G(e−(
k1
K +k2)L·)), α = 0.5, β = 1,

λ = 0.85, k1 = k2 = 0.7, K = 0.7.

4. Period doubling bifurcation and pitchfork bifurcation route to
chaos

The mapping fη (or H1, H2) has a unique fixed point or periodic point (0),
which is stable when η > 0 is small enough. As η increases, the fixed point 0
becomes unstable, and there appears a stable periodic-2 orbit, then the period-2
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Figure 3.8. Orbits of H2 = G(e−
k1
K LF (e−k2L·)), α = 0.5, β = 1,

λ = 0.85, k1 = k2 = 0.7, K = 0.7.

orbit becomes unstable, too. Finally, homoclinic orbits appear when η is large
enough. We have proved these facts in Theorem 3.7 and 3.10. In this section, we
try to explore more about the bifurcation routes.

Let us start by a bifurcation diagram, we take α = 0.5, β = 1, K = 0.7, and let
η vary from 0.4 to 3. The stable fixed point 0 bifurcates into a stable symmetric
period-2 orbit at η ≈ 0.43, then the symmetric period-2 orbit bifurcates into two
new stable period-2 orbits at η ≈ 2.2, then they bifurcate into two period-4 orbits
at η ≈ 2.6. The bifurcations are illustrated by Figures 4.1 and 4.2. To distinguish
the pitchfork period-2 bifurcation from the period doubling bifurcation of period-4,
we start our iteration at v = 0.3 and v = −0.3 respectively, and found that they
are stablized by different period-2 orbits.

It is easy to see that there is a pitchfork bifurcation of period-2 following the
period doubling bifurcation of period-2 described by Theorem 3.7.

Let us compare this experiment results with Theorem 3.7.
• The first bifurcation: from the fixed point to period-2 orbit. According to

Theorem 3.7 (i)-(ii), the first bifurcation parameter value is

η =
1−Kα
1 + α

. (4.1)

Substitute the experiment parameter values α = 0.5 and K = 0.7 to (4.1), we
obtain

η =
1−Kα
1 + α

= 0.4333,

which agrees with the bifurcation diagrams.
• The second bifurcation: from the symmetric period-2 orbit to the nonsym-

metric period-2 orbits. According to Theorem 3.7 (iv), the second bifurcation
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Figure 4.1. Bifurcation diagram of f , where α = 0.5, β = 1,
K = 0.7, iteration starts at v = 0.3.
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Figure 4.2. Bifurcation diagram of f , where α = 0.5, β = 1,
K = 0.7, iteration starts at v = −0.3.

parameter value is

η =
K + 1 +

√
(K + 1)2 − (α+ 1)(1−Kα)K

α+ 1
. (4.2)

Substitute the experiment parameters to (4.2), we obtain η = 2.1238, which agrees
with the bifurcation diagrams.
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The old period-2 points ± K+1
2(η+K)

√
(α+1)η+αK−1

β(η+K) of f are fixed points of −f .
Suppose −f has a period-doubling bifurcation at

η =
K + 1 +

√
(K + 1)2 − (α+ 1)(1−Kα)K

α+ 1
,

then the period-2 orbits of −f are just the new period-2 orbits of f . Let us check
it as follows.

Proof. Let h = −f , we have found the parameter value and the fixed point for
which ∂h

∂v = −1. So it suffices to verify that

A ≡
[ ∂2h

∂η∂v
+

1
2

(
∂h

∂η
)
∂2h

∂v2

]
6= 0,

B ≡ 1
3
∂3h

∂v3
+

1
2

(
∂2h

∂v2
)2 6= 0,

for

v = v0 ,
K + 1

2(η +K)

√
(α+ 1)η + αK − 1

β(η +K)
, (4.3)

η = η0 ,
K + 1 +

√
(K + 1)2 − (α+ 1)(1−Kα)K

α+ 1
. (4.4)

It follows from Theorem 3.2 that

A = − 12βg(η0v0)2 − (α+ 1)(K + 1)2

12Kβg(η0v0)2 + (1−Kα)(K + 1)2

+
24β(K + 1)6η0g(η0v0)v0

[12Kβg(η0v0)2 + (1−Kα)(K + 1)2]3

− 12β(K + 1)6η2
0g(η0v0)v0[12βg(η0v0)2 − (α+ 1)(K + 1)2]

[12Kβg(η0v0)2 + (1−Kα)(K + 1)2]4
,

(4.5)

and

B = 8β(K + 1)9η3
0

60Kβg(η0v0)2 − (1−Kα)(K + 1)2

[12Kβg(η0v0)2 + (1−Kα)(K + 1)2]5

+
288β2(K + 1)12η4

0g(η0v0)2

[12Kβg(η0v0)2 + (1−Kα)(K + 1)2]6
.

Combing Theorem 3.2 (i) and the fact that ∂f
∂v = 1 for η = η0, v = v0, we have

12βg(η0v0)2 − (α+ 1)(K + 1)2 > 0.

Noting that g(ηv) and v have opposite sign, so all the terms in the RHS of (4.5)
are negative. Therefore A < 0.

By similar arguments we have B > 0. This completes the proof. �

The old period-2 orbit {p(η),−p(η)} becomes unstable after the second bifur-
cation, and a pair of stable period-2 orbits appear. Denote them by {p1(η), q1(η)}
and {p2(η), q2(η)} respectively, where p1 and p2 are around p, q1 and q2 are around
−p. Let

p1 > p, p2 < p.

Then
q1 > −p, q2 < −p,
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since f is increasing around p and −p. This pair of stable period-2 orbits can be
illustrated by Figure 4.1 and Figure 4.2 (curves over η ∈ (2.12, 2.55)).

Let us look at the period-4 bifurcation. By period doubling bifurcation theorems,
it occurs where ∂

∂v (f ◦ f)|v=pi = f ′(pi)f ′(qi) = −1, i = 1, 2.
On the other hand,

∂

∂v
(f ◦ f) = f ′(p)f ′(−p) = 1

at the pitchfork bifurcation point of period-2. Since ∂
∂v (f ◦ f) varies continuously

with respect to parameters and arguments, so ∂
∂v (f ◦f) must vanish at some period-

2 point before period-4 bifurcation. Since ∂
∂v (f ◦ f) = 0 if and only if the period-2

cycle contains extremal point vc or −vc, the extremal point vc or −vc must be
contained in a period-2 orbit before period-4 bifurcation. This process can be
illustrated by the following experiment results and figures:

We take α = 0.5, β = 1, K = 0.7, η = 1.8, then Theorem 3.7 (ii) tells that the
unique symmetric period-2 orbit is {0.3079,−0.3079}. Figure 4.3 illustrates this
fact.
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u=f(v)

Figure 4.3. Stable symmetric period-2 orbit of f , where α = 0.5,
β = 1, K = 0.7, η = 1.8.

Then we take larger η = 2.2, the symmetric period-2 orbit bifurcates into two
branches of stable period-2 orbits, illustrated by Figure 4.4.

Take η = 2.3, the two branches of period-2 orbits go apart, and pass by the
extremal points, illustrated by Figure 4.5

Take η = 2.6, each period-2 orbit bifurcates into a stable period-4 orbit, illus-
trated by fig. 4.6.

It is well known that a discrete dynamical system is chaotic if it has a homoclinic
orbit. According to Theorem 3.10, f has homoclinic orbits and chaos when η ≥
3
√

3(K+1)
2(1+α) . For α = 0.5 and K = 0.7, the condition is as η ≥ 2.9445, which agrees

with bifurcation diagrams Figure 4.1 and Figure 4.2.
In addition to homoclinic orbits, period three is a classical criteria for chaos.

Theorem 4.1. Given α, β and K, there exists η3 such that F (η3·) has period 3.
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Figure 4.4. Two branches of stable period-2 orbits of f , where
α = 0.5, β = 1, K = 0.7, η = 2.2.
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Figure 4.5. Two branches of period-2 orbits of f , where α = 0.5,
β = 1, K = 0.7, η = 2.3, period-2 orbits pass by extremal points
±vc.

Proof. It is easy to verify that F (η̄·) has period three, where η̄ is the critical value
of η such that the local maximum equals to the positive intercept with line u = v.
Let d = M , c = −vc, b ∈ (0, vc) such that

F (η̄b) = −vc, (4.6)

and a ∈ (vc,M ] such that
F (η̄a) = b. (4.7)

It is easy to see that c < b < a < d. Then the period three follows from the
Li-York’s Theorem. �

Remark 4.2. By continuity, there exists a ∈ (vc,M ] such that

f2
η (a) < fη(a) < a < f3

η (a)
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Figure 4.6. Two branches of stable period-4 orbits of f , where
α = 0.5, β = 1, K = 0.7, η = 2.6.

for η around η̄. So fη has period three for η in a neighbor of η̄. This is why we
often see Period Three Windows in bifurcation diagrams. Of course, a rigorous
proof must include the stability of the period-3 orbits in the window, e.g., an
extremal point is in one of the period-3 cycles. We omit the rigorous proof here.

We give the period-3 orbit for α = 0.5, β = 1, K = 0.7 and η = 4.1 in Figure
4.7.
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Figure 4.7. The period-3 orbit of f , where α = 0.5, β = 1,
K = 0.7, η = 4.1.

We give the bifurcation diagram of f for α = 0.5, β = 1 and η ∈ [3.5, 4.1]
in Figure 4.8. Two windows of period-6 seem emerge, over η = 3.77 and 3.92
respectively.
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Figure 4.8. The bifurcation diagram of f , where α = 0.5, β = 1,
K = 0.7, η ∈ [3.5, 4.1]. Two windows of period-6 seem emerge.

5. A more general case

Let W = e−ct−
R η
0 d(η)dηw, where d(η) is a real function defined on [0, L], and w

satisfies (2.1). Then w = ect+
R η
0 d(η)dηW , and

wt = ect+
R η
0 d(η)dη(Wt + cW ),

wη = ect+
R η
0 d(η)dη(Wη + d(η)W ).

Then it follows immediately that

[
∂

∂t
−K ∂

∂η
+ c−Kd(η)][

∂

∂t
+

∂

∂η
+ c+ d(η)]W = 0, (5.1)

or

[
∂

∂t
− a(x)

∂

∂x
+ c−Kd(ψ(x))][

∂

∂t
+ b(x)

∂

∂x
+ c+ d(ψ(x))]W = 0. (5.2)

Let k1(x) = c−Kd(ψ(x)), k2(x) = c+ d(ψ(x)), then

[
∂

∂t
− a(x)

∂

∂x
+ k1(x)][

∂

∂t
+ b(x)

∂

∂x
+ k2(x)]W = 0. (5.3)

On the other hand, given k1(x) and k2(x), assume that k1(x) + Kk2(x) is a
constant. Then

d(η) =
−k1(ψ−1(η)) + k2(ψ−1(η))

K + 1
, c =

k1 +Kk2

K + 1
.

Let

u =
1
2

[b(x)Wx +Wt + k2(x)W ], v =
1
2

[a(x)Wx −Wt − k1(x)W ].
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Lemma 5.1 (Constancy along characteristics).

ect+
R η
0 d(η)dηu = c′1, along each characteristic η +Kt = c1,

ect+
R η
0 d(η)dηv = c′2, along each characteristic η − t = c2.

(5.4)

We impose boundary conditions

Wt(0, t) + cW (0, t) = −λ[b(0)Wx(0, t) + d(0)W (0, t)],

b(1)Wx(1, t) + d(L)W (1, t) = α[Wt(1, t) + cW (1, t)]− β[Wt(1, t) + cW (1, t)]3,

and obtain the following result.

Lemma 5.2 (Composite reflection relations).

u(1, t) = Fα,β,K(Gλ(e−(1+ 1
K )cLu(1, t− (1 +

1
K

)L))),

v(0, t) = Gλ(e
R L
0 d(η)dη−c LK Fα,β(e−cL−

R L
0 d(η)dηv(0, t− (1 +

1
K

)L))),

for any t > 0.

Then the dynamics of u and v are determined by the iterative compositions of
Fα,β,K(Gλ(e−(1+ 1

K )cL·)) and Gλ(e
R L
0 d(η)dη−c LK Fα,β(e−cL−

R L
0 d(η)dη·)).
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