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REGULARITY OF MILD SOLUTIONS TO FRACTIONAL
CAUCHY PROBLEMS WITH RIEMANN-LIOUVILLE

FRACTIONAL DERIVATIVE

YA-NING LI, HONG-RUI SUN

Abstract. As an extension of the fact that a sectorial operator can determine

an analytic semigroup, we first show that a sectorial operator can determine a

real analytic α-order fractional resolvent which is defined in terms of Mittag-
Leffler function and the curve integral. Then we give some properties of real

analytic α-order fractional resolvent. Finally, based on these properties, we

discuss the regularity of mild solution of a class of fractional abstract Cauchy
problems with Riemann-Liouville fractional derivative.

1. Introduction

Fractional differential equations are widely and efficiently used to describe many
phenomena arising in viscoelasticity, fractal, porous media, economic and science.
More details on this theory and its applications can be found in [2, 5, 9, 12, 13, 18,
19, 20, 21, 23, 25].

Recently, fractional abstract Cauchy problems have attracted much attention due
to their wide application. Bajlekova [3] defined a solution operator which extends
the classical semigroup to study the fractional abstract Cauchy problem. Under the
condition that the coefficient operator is the generator of a solution operator, some
authors got the existence and uniqueness of mild solution of the inhomogeneous
α-order abstract Cauchy problem [10, 14, 15, 16]. Under the condition that the
coefficient operator generates a C0-semigroup, there is another tool to deal with
the fractional abstract Cauchy problem, it is a new operator described by the
C0-semigroup and the probability density function. For more details, we refer to
[6, 7, 8, 24, 26, 27, 28].

However, these papers considered the fractional abstract Cauchy problem only
in the Cupto’s sense. Heymans and Podlubny [11] showed that in some examples
from the field of viscoelasticity, it is possible to attribute physical meaning to initial
conditions expressed in terms of Riemann-Liouville fractional derivative or integral.
Li, Peng and Jia [17] developed an operator theory to study fractional abstract
Cauchy problem with Riemann-Liouville fractional derivative. They proved that
a homogeneous α-order Cauchy problem is well posed if and only if its coefficient
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operator is the generator of an α-order fractional resolvent, and gave sufficient
conditions to guarantee the existence and uniqueness of weak solutions and strong
solutions of an inhomogeneous α-order Cauchy problem. On the other hand, it is
well known that a sectorial operator can determine an analytic semigroup. Thus, it
is natural to ask whether a sectorial operator can determine a real analytic α-order
fractional resolvent.

Our first aim in this paper is to show that a sectorial operator of angle θ ∈
[0, (1−α

2 )π) determines a real analytic α-order fractional resolvent {Tα(t)}t≥0 which
is defined in terms of Mittag-Leffler function and the curve integral. We also present
some properties of {Tα(t)}t≥0.

Our second purpose is to study the regularity of mild solution of an inhomoge-
neous α-order abstract Cauchy problem. To the best of the authors’ knowledge,
the regularity of mild solution of fractional abstract Cauchy problem is a subject
that has not been treated in the literature. So, in this paper, we will fill the gap in
this area. We discuss the regularity of mild solution of the problem

Dα
t u(t) +Au(t) = f(t), t ∈ (0, T ],

(g2−α ∗ u)(0) = 0, (g2−α ∗ u)′(0) = x,
(1.1)

where 1 < α < 2, A is a sectorial operator of angle θ ∈ [0, (1− α
2 )π), Dα

t is the α-
order Riemann-Liouville fractional derivative operator, g2−α(t) = t1−α

Γ(2−α) for t > 0
and g2−α(t) = 0 for t ≤ 0, f : [0, T ] → X, X is a Banach space, x ∈ X. We prove
that if f ∈ Lp((0, T );X) with p ∈ ( 1

α ,
1

α−1 ) then the mild solution of (1.1) is Hölder
continuous on (ε, T ] for every ε > 0. We also show that, the Hölder continuity of
f ensures that the mild solution u of (1.1) is a classical solution and Au, Dα

t u is
Hölder continuous.

The rest of this paper is organized as follows. In Section 2, we provide some
preliminaries of the fractional calculus and the Mittag-Leffler function. In Section
3, we introduce an operator family {Tα(t)}t≥0 and analyze its properties. The
regularity of mild solution of (1.1) is established in Section 4.

2. Preliminaries

Throughout this paper, let X be a Banach space, B(X) denotes the space of
all bounded linear operators from X to X. If A is a closed linear operator, ρ(A)
and σ(A) denote the resolvent set and the spectral set of A respectively, R(λ,A) =
(λI − A)−1 denotes the resolvent operator of A. L1(R+, X) denotes the Banach
space of X-valued Bochner integrable functions.

For convenience, we recall the following known definitions. By ∗ we denote the
convolution of functions (f ∗g)(t) =

∫ t
0
f(t−τ)g(τ)dτ, t ≥ 0. Let gα(α > 0) denotes

the function

gα(t) =

{
tα−1

Γ(α) , t > 0,

0, t ≤ 0,
and g0(t) = δ0(t), the Dirac delta function.

The Riemann-Liouville fractional integral of order α > 0 of f is defined by

Jαt f(t) = (gα ∗ f)(t).

The Riemann-Liouville fractional derivative of order α > 0 of f can be written as

Dα
t f(t) =

dm

dtm
Jm−αt f(t),
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where m is the smallest integer greater than or equal to α. For more details about
fractional calculus, we refer to [13, 20, 21, 25].

The Mittag-Leffler function is defined by

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
, z, β ∈ C, Reα > 0.

The Mittag-Leffler function has the following properties (see [13]):∫ ∞
0

e−λttβ−1Eα,β(µtα)dt =
λα−β

λα − µ
, Reλ > |µ|1/α, (2.1)

dn

dtn
(tα−1Eα,α(µtα)) = tα−n−1Eα,α−n(µtα), n ∈ Z+. (2.2)

The following lemma gives asymptotic formulae for the Mittag-Leffler functions.

Lemma 2.1 ([21, Theorem 1.4]). If 0 < α < 2, β is an arbitrary real number, then
for an arbitrary integer N > 1,

Eα,β(z) = −
N−1∑
n=1

z−n

Γ(β − αn)
+O(|z|−N ),

πα

2
< | arg z| ≤ π, (2.3)

as |z| → ∞.

Remark 2.2. Since 1
Γ(−n) = 0, n = 0, 1, 2, . . ., from (2.3), we know if β −α = −n,

(n = 0, 1, 2, . . .),

|Eα,β(z)| ≤ C

1 + |z|2
,

πα

2
< | arg z| ≤ π, (2.4)

where C is a real constant.

Now, we present introduction to sectorial operators.

Definition 2.3 ([4, Definition 1.2.1]). Let A be a densely defined closed linear
operator on Banach space X, then A is called a sectorial operator of angle ω ∈ [0, π)
(A ∈ Sect(w), in short) if

(1) σ(A) ⊆ Σω, where

Σω :=

{
{z ∈ C : z 6= 0 and | arg z| < ω}, ω > 0,
(0,∞), ω = 0,

(2) for every ω′ ∈ (ω, π), sup{‖zR(z,A)‖ : z ∈ C \ Σω′} <∞.

For a closed linear operator A on a Banach space X, recall the following state-
ment.

Lemma 2.4 ([1, Proposition 1.1.7]). Let A be a closed linear operator on X and I be
an interval in R. Let f : I → X be Bochner integrable. Suppose that f(t) ∈ D(A)
for t ∈ I and Af : I → X is Bochner integrable. Then

∫
I
f(t)dt ∈ D(A) and

A
∫
I
f(t)dt =

∫
I
Af(t)dt.

The following definition is a direct consequence of [17, Definition 3.1 and Theo-
rem 3.12].

Definition 2.5. Let A be a closed linear operator defined on X and 1 ≤ α ≤ 2.
A family {Tα(t)}t≥0 ⊂ B(X) is called an α-order fractional resolvent generated by
A, if for every t ≥ 0, Tα(t) is strongly continuous and there exists ω ∈ R such that
{λα : Reλ > ω} ⊂ ρ(A) and (λα −A)−1x =

∫∞
0
e−λtTα(t)x dt, Reλ > ω, x ∈ X.
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{Tα(t)}t≥0 has the following property [17, Proposition 3.7]: If −A is the gen-
erator of {Tα(t)}t≥0, then for every t ≥ 0 and x ∈ X, (gα ∗ Tα)(t)x ∈ D(A),
and

Tα(t)x = gα(t)x−A(gα ∗ Tα)(t)x. (2.5)

Below the letter C denotes various positive constants, and Cα denote various
positive constants depending on α.

3. The operator Tα(t)

For the rest of this article, let 1 < α < 2, A ∈ Sect(θ) with θ ∈ [0, (1 − α
2 )π)

and 0 ∈ ρ(A). Inspired by the expression of an analytic semigroup determined by
a sectorial operator A, we introduce an operator family {Tα(t)}t≥0 by

Tα(t) =
1

2πi

∫
Γπ−θ

tα−1Eα,α(µtα)(µI +A)−1dµ, (3.1)

where the integral path Γπ−θ := {R+ei(π−θ)} ∪ {R+e−i(π−θ)} is oriented counter
clockwise. First, we show some basic properties of {Tα(t)}t≥0.

Theorem 3.1. For every t ≥ 0, Tα(t) is well defined and {Tα(t)}t≥0 is a real
analytic α-order fractional resolvent. Moreover, there exists a constant Cα such
that

‖Tα(t)‖ ≤ Cαtα−1, t ≥ 0. (3.2)

Proof. A ∈ Sect(θ) implies that Σπ−θ ⊂ ρ(−A) and

‖(µI +A)−1‖ ≤ C

|µ|
, µ ∈ Γπ−θ \ {0}, (3.3)

which combines with Remark 2.2, we can get that, for every t ≥ 0, Tα(t) is well
defined. For µ ∈ Γπ−θ, since (µI +A)−1 is a bounded linear operator, it is easy to
see that Tα(t) is also a bounded linear operator.

Now, we show that {Tα(t)}t≥0 is an α-order fractional resolvent generated by
−A. We first show that, for every t ≥ 0, Tα(t) is a strongly continuous operator.
Fix t0 ≥ 0, then for t > 0, x ∈ X, we have

Tα(t)x− Tα(t0)x =
1

2πi

∫
Γπ−θ

(tα−1Eα,α(µtα)− tα−1
0 Eα,α(µtα0 ))(µI +A)−1xdµ.

Then by the continuity of tα−1Eα,α(µtα) and the dominated convergence theorem,
we know that limt→t0 Tα(t)x = Tα(t0)x.

Let θ0 ∈ (π2 ,
π−θ
α ), % > 0, and

lθ0 := {re−iθ0 , % ≤ r <∞} ∪ {%eiϕ, |ϕ| < θ0} ∪ {reiθ0 , % ≤ r <∞} (3.4)

be oriented counter clockwise. Then for λ ∈ lθ0 , λα ∈ Σπ−θ ⊂ ρ(−A), hence
{λα : Reλ > %} ⊂ ρ(−A). In view of (2.1), we know that

tα−1Eα,α(µtα) =
1

2πi

∫
lθ0

eλt(λα − µ)−1dλ, µ ∈ Γπ−θ. (3.5)
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For x ∈ X, from Fubini’s theorem, (3.5) and the Cauchy’s integral formula, we see
that

Tα(t)x =
1

2πi

∫
Γπ−θ

tα−1Eα,α(µtα)(µI +A)−1xdµ

=
1

2πi

∫
Γπ−θ

1
2πi

∫
lθ0

eλt(λα − µ)−1dλ(µI +A)−1xdµ

=
1

2πi

∫
lθ0

eλt
1

2πi

∫
Γπ−θ

(λα − µ)−1(µI +A)−1xdµdλ

=
1

2πi

∫
lθ0

eλt(λαI +A)−1xdλ.

(3.6)

Then taking Laplace transform on both sides, we obtain

(λαI +A)−1x =
∫ ∞

0

e−λtTα(t)x dt, Reλ > %, x ∈ X. (3.7)

Next, we prove that the estimate (3.2) holds. It is clear that Tα(0) = 0. For
t > 0, in view of (3.6) and (3.3), we deduce

‖Tα(t)‖ = ‖ 1
2πi

∫
lθ0

eλt(λαI +A)−1dλ‖

=
1

2π
‖
∫
l′θ0

eµ((
µ

t
)αI +A)−1 1

t
dµ‖

≤ C

2π

∫
l′θ0

|eµ| t
α−1

|µ|α
|dµ| = Cαt

α−1.

Finally, we verify that Tα(t) is real analytic. From the dominated convergence
theorem and (2.2), we have, for n ∈ N+,

T (n)
α (t) =

1
2πi

∫
Γπ−θ

tα−n−1Eα,α−n(µtα)(µI +A)−1dµ

=
1

2πi

∫
Γ′π−θ

tα−n−1Eα,α−n(ξ)(
ξ

tα
I +A)−1 1

tα
dξ.

This combined with (3.3), yields

‖T (n)
α (t)‖ ≤ Cαtα−n−1, t ≥ 0. (3.8)

Let c̃ := infn∈N+{C−
1
n

α }, where Cα is given in (3.8). For fixed z ∈ R+, denote z̃ :=

infn∈N+{z1+ 1−α
n }. Choose |t− z| ≤ Kc̃z̃, 0 < K < 1, then |t− z| ≤ KC−

1
n

α z1+ 1−α
n .

Thus, the series

Tα(z) +
∞∑
n=1

T
(n)
α (z)
n!

(t− z)n

is convergent by means of the operator topology. So Tα(t) is real analytic. �

Theorem 3.2. For t > 0 and x ∈ X, we have Tα(t)x ∈ D(A) and ‖ATα(t)‖ ≤ C
t .

Proof. From A(λαI +A)−1 = I − λα(λαI +A)−1, for t > 0 and x ∈ X, we have∫
lθ0

eλtA(λαI +A)−1x dλ
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=
∫
lθ0

eλtxdλ−
∫
lθ0

eλtλα(λαI +A)−1x dλ

=
∫
l′θ0

eµ
1
t
xdµ−

∫
l′θ0

eµ(
µ

t
)α((

µ

t
)αI +A)−1 1

t
x dµ,

where lθ0 is given by (3.4). Since θ0 <
π−θ
α , for µ ∈ l′θ0 , we have µα ∈ Σπ−θ ⊂

ρ(−A), and

‖((µ/t)αI +A)−1‖ ≤ Ctα

|µ|α
. (3.9)

Consequently,

‖
∫
lθ0

eλtA(λαI +A)−1xdλ‖ ≤ C

t

∫
l′θ0

|eµ||dµ| ≤ C

t
. (3.10)

Thus, by (3.6), (3.10), the closeness of A and Lemma 2.4, we conclude that for
every x ∈ X and t > 0, Tα(t)x ∈ D(A) and ‖ATα(t)‖ ≤ C

t . �

4. Main results

In this section, we apply the theory developed in Section 3 to discuss the reg-
ularity of mild solution of the following linear inhomogeneous fractional Cauchy
problem

Dα
t u(t) +Au(t) = f(t), t ∈ (0, T ],

(g2−α ∗ u)(0) = 0, (g2−α ∗ u)′(0) = x,
(4.1)

where f ∈ L1((0, T );X) and x ∈ X.
To present definition of mild solution of problem (4.1), we give the following

lemmas.

Lemma 4.1. Suppose u ∈ C([0, T ];X) such that (g2−α ∗ u) ∈ C2((0, T ];X), u(t) ∈
D(A) for t ∈ [0, T ], Au ∈ L1((0, T );X) and u satisfies (4.1). Then

u(t) = Tα(t)x+
∫ t

0

Tα(t− s)f(s)ds. (4.2)

Proof. If u satisfies the assumptions, we can write u as

u(t) = gα(t)x−A(gα ∗ u)(t) + (gα ∗ f)(t), t ∈ [0, T ]. (4.3)

Applying the Laplace transform to (4.3), then, for λ > 0,

û(λ) = λ−αx− λ−αAû(λ) + λ−αf̂(λ);

that is
û(λ) = (λαI +A)−1x+ (λαI +A)−1f̂(λ), λ > 0. (4.4)

Then taking inverse Laplace transform to (4.4) and by (3.7), we obtain the conclu-
sion. �

Lemma 4.2. If f ∈ L1((0, T );X), then the integral
∫ t

0
Tα(t− s)f(s) ds exists and

defines a continuous function.

Proof. Since f ∈ L1((0, T );X), Tα(t) ∈ B(X) for t ∈ (0, T ), by [22, Theorem 1.3.4],
we know that (Tα ∗ f)(t) =

∫ t
0
Tα(t − s)f(s) ds exists and defines a continuous

function. �
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Definition 4.3. The function u ∈ C([0, T ], X) given by

u(t) = Tα(t)x+
∫ t

0

Tα(t− s)f(s)ds

is called a mild solution of the Cauchy problem (4.1).

By Definition 4.3 and Lemma 4.1, for f ∈ L1((0, T );X), we know the Cauchy
problem (4.1) has a unique mild solution.

Definition 4.4. A function u ∈ C([0, T ], X) is called a classical solution of (4.1)
if Dα

t u ∈ C((0, T ], X), and for all t ∈ (0, T ], u(t) ∈ D(A) and satisfies (4.1).

Theorem 4.5. Let u be the mild solution of (4.1). If f ∈ Lp((0, T );X) with
1
α < p < 1

α−1 , then u is Hölder continuous with exponent αp−1
p on [ε, T ] for every

ε > 0.

Proof. By (3.8), we have ‖T ′α(t)‖ ≤ Cαtα−2, then from the mean value theorem, we
know that Tα(t)x is Lipschitz continuous on [ε, T ] for every ε > 0. If 1

α < p < 1, we
show the Hölder continuity of Tα(t)x at 0, 1

α < p < 1 implies that α − 1 ≥ αp−1
p ,

thus ‖Tα(t)x‖ ≤ Cα‖x‖tα−1 ≤ Cα‖x‖t
αp−1
p .

Now we show that v(t) :=
∫ t

0
Tα(t−s)f(s)ds is Hölder continuous with exponent

αp−1
p . For h > 0 and t ∈ [0, T − h], we have

v(t+ h)− v(t) =
∫ t+h

0

Tα(t+ h− s)f(s)ds−
∫ t

0

Tα(t− s)f(s)ds

=
∫ t+h

t

Tα(t+ h− s)f(s)ds+
∫ t

0

(Tα(t+ h− s)− Tα(t− s))f(s)ds

= I1 + I2.

By (3.2) and p > 1/α, we have

‖I1‖ ≤ Cα
∫ t+h

t

(t+ h− s)α−1‖f(s)‖ds

≤ Cα
(∫ t+h

t

(t+ h− s)
p(α−1)
p−1 ds

) p−1
p ‖f‖Lp

≤ Cα‖f‖Lph
αp−1
p .

To estimate I2, we use that (3.2) implies

‖Tα(t+ h)− Tα(t)‖ ≤ CαTα−1.

On the other hand, from the mean value theorem and (3.8), we obtain

‖Tα(t+ h)− Tα(t)‖ ≤ Cαtα−2h.

Therefore,

‖Tα(t+ h)− Tα(t)‖ ≤ µ(h, t) := Cα min{Tα−1, tα−2h}. (4.5)

Using (4.5) and the Hölder’s inequality, we have

‖I2‖ ≤ Cα
∫ t

0

µ(h, t− s)‖f(s)‖ds

≤ Cα‖f‖Lp
(∫ t

0

µ(h, t− s)
p
p−1 ds

) p−1
p
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= Cα‖f‖Lp
(∫ t

0

µ(h, τ)
p
p−1 dτ

) p−1
p

≤ Cα‖f‖Lp
(∫ ∞

0

µ(h, τ)
p
p−1 dτ

) p−1
p

= Cα‖f‖LpTα−1h+ Cα‖f‖Lp
(∫ ∞

h

τ
p(α−2)
p−1 ds

) p−1
p

h

= Cα‖f‖LpTα−1h+ Cα‖f‖Lph
pα−1
p

≤ Cα‖f‖Lph
αp−1
p .

�

Theorem 4.6. Suppose f ∈ Cγ([0, T ];X) for γ ∈ (0, 1); that is, there is a constant
k > 0 such that

‖f(t)− f(s)‖ ≤ k|t− s|γ , 0 < t, s ≤ T.
Then for every x ∈ X, the mild solution of (4.1) is a classical solution.

Proof. We first show that, for x ∈ X, Tα(t)x is a classical solution of (4.1) with
f = 0 and x ∈ X. By (2.5) and Theorem 3.2, we have

Tα(t)x = gα(t)x−A(gα ∗Tα)(t)x = gα(t)x− (gα ∗ATα)(t)x, t ≥ 0, x ∈ X. (4.6)

Then

Dα
t Tα(t)x =

d2

dt2
g2−α ∗ (gα(t)x− (gα ∗ATα)(t)x)

=
d2

dt2
(g2−α ∗ gα)(t)x− d2

dt2
(g2−α ∗ gα ∗ATα)(t)x

=
d2

dt2
g2(t)x− d2

dt2
(g2 ∗ATα)(t)x

= −ATα(t)x,

and it is clear that (g2−α ∗ Tα)(0)x = 0, (g2−α ∗ Tα)′(0)x = x.
Now, we verify that v(t) :=

∫ t
0
Tα(t − s)f(s)ds is a classical solution of the

problem
Dα
t u(t) +Au(t) = f(t), t ∈ (0, T ],

(g2−α ∗ u)(0) = 0, (g2−α ∗ u)′(0) = 0.
(4.7)

Lemma 4.2 implies v ∈ C([0, T ];X). It is clear that v(t) = I1(t) + I2(t), where

I1(t) =
∫ t

0

Tα(t− s)(f(s)− f(t)) ds, 0 < t ≤ T,

I2(t) =
∫ t

0

Tα(t− s)f(t) ds, 0 < t ≤ T.

Firstly, we show that v(t) ∈ D(A) for t ∈ (0, T ].
For fixed t ∈ (0, T ], from Theorem 3.2 and Hölder continuity of f , we have

‖ATα(t− s)(f(s)− f(t))‖ ≤ C

t− s
(t− s)γ ∈ L1(0, t).

According to the closeness of A and Lemma 2.4, we see I1(t) ∈ D(A). To prove
the same conclusion for I2(t), from (3.6) and the Laplace transform property of
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convolution, we see that

I2(t) =
∫ t

0

Tα(t− s)f(t)ds = (1 ∗ Tα)(t)f(t) =
1

2πi

∫
lθ0

eλtλ−1(λαI +A)−1dλ.

On the other hand,∫
lθ0

eλtλ−1A(λαI +A)−1dλ =
∫
lθ0

eλtλ−1dλ−
∫
lθ0

eλtλα−1(λαI +A)−1dλ

=
∫
l′θ0

eµ
1
µ
dµ−

∫
l′θ0

eµ(
µ

t
)α−1((

µ

t
)αI +A)−1 1

t
dµ.

Thus, by (3.3), we have

‖
∫
lθ0

eλtλ−1A(λαI +A)−1dλ‖ ≤ C
∫
l′θ0

|eµ| 1
|µ|
|dµ| ≤ C,

which implies that the integral
∫
lθ0
eλtλ−1A(λαI+A)−1dλ is convergent. Then the

closeness of A and Lemma 2.4 conclude that

(1 ∗ Tα)(t)x ∈ D(A), x ∈ X, and ‖A(1 ∗ Tα)(t)‖ ≤ C. (4.8)

Thus I2(t) ∈ D(A).
Next, we show that Dα

t v ∈ C((0, T ];X). Equality (4.6) implies

Dα
t v(t) =

d2

dt2
(g2−α ∗ Tα ∗ f)(t)

=
d2

dt2
(
(g2 ∗ f)(t) + (g2 ∗ATα ∗ f)(t)

)
= f(t) +A(Tα ∗ f)(t)

= f(t) +Av(t).

Therefore, it remains to prove Av = AI1(t)+AI2(t) ∈ C((0, T ];X). Since AI2(t) =
(1 ∗Tα)(t)f(t), and from the assumption on f and Theorem 3.1, we see that AI2(t)
is continuous on (0, T ].

For AI1(t), if h > 0 and t ∈ (0, T − h], we have

AI1(t+ h)−AI1(t) =
∫ t

0

A[Tα(t+ h− s)− Tα(t− s)](f(s)− f(t))ds

+
∫ t

0

ATα(t+ h− s)(f(t)− f(t+ h))ds

+
∫ t+h

t

ATα(t+ h− s)(f(s)− f(t+ h))ds

= h1 + h2 + h3.

(4.9)

For h1,

lim
h→0

ATα(t+ h− s)(f(s)− f(t)) = ATα(t− s)(f(s)− f(t)),

and from Theorem 3.2, we know that

‖ATα(t+ h− s)(f(s)− f(t))‖ ≤ C(t+ h− s)−1(t− s)γ ≤ C(t− s)γ−1 ∈ L1(0, t).

Thus, by means of the dominated convergence theorem, we obtain that h1 → 0 as
h→ 0.
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For h2, we have

‖h2‖ = ‖
∫ t

0

ATα(t+ h− s)(f(t)− f(t+ h)) ds‖

≤ C
∫ t

0

(t+ h− s)−1hγ ds

= C(ln(t+ h)− lnh)hγ ,

so, h2 → 0 as h→ 0. Also

‖h3‖ ≤ C
∫ t+h

t

(t+ h− s)−1(t+ h− s)γds =
Chγ

γ
→ 0 as h→ 0.

Consequently, Av ∈ C((0, T ];X). It is easy to see that (g2−α ∗ v)(0) = 0, (g2−α ∗
v)′(0) = 0. �

Lemma 4.7. Suppose f ∈ Cγ([0, T ];X) for γ ∈ (0, 1), denote

I1(t) :=
∫ t

0

Tα(t− s)(f(s)− f(t))ds, t ∈ (0, T ],

then I1(t) ∈ D(A) for 0 ≤ t ≤ T and AI1 ∈ Cγ([0, T ];X).

Proof. The fact that I1(t) ∈ D(A) for 0 ≤ t ≤ T is an immediate consequence of
the proof of Theorem 4.6, so we only need to prove the Hölder continuity of AI1(t).

From the dominated convergence theorem and (2.2), we have

d

dt
ATα(t)

=
1

2πi

∫
Γπ−θ

tα−2Eα,α−1(µtα)A(µI +A)−1dµ

=
1

2πi

∫
Γπ−θ

tα−2Eα,α−1(µtα)dµ− 1
2πi

∫
Γπ−θ

tα−2Eα,α−1(µtα)µ(µI +A)−1dµ

=
1

2πi

∫
Γ′π−θ

tα−2Eα,α−1(ξ)
1
tα
dξ − 1

2πi

∫
Γ′π−θ

tα−2Eα,α−1(ξ)
ξ

tα
(
ξ

tα
I +A)−1 1

tα
dξ.

In view of (3.3), we deduce that

‖ d
dt
ATα(t)‖ ≤ Cαt−2, 0 < t ≤ T. (4.10)

Thus, for every 0 < s < t ≤ T , we obtain

‖ATα(t)−ATα(s)‖ = ‖
∫ t

s

d

dτ
ATα(τ)dτ‖

≤
∫ t

s

‖ d
dτ
ATα(τ)‖dτ

≤ Cα
∫ t

s

τ−2dτ = Cαt
−1s−1(t− s).

(4.11)

For h > 0 and t ∈ [0, T − h], from (4.9), we know that

AI1(t+ h)−AI1(t) = h1 + h2 + h3. (4.12)
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From f ∈ Cγ([0, T ];X) and (4.11), it follows that

‖h1‖ ≤
∫ t

0

‖ATα(t+ h− s)−ATα(t− s)‖‖f(s)− f(t)‖ ds

≤ Cαh
∫ t

0

(t+ h− s)−1(t− s)γ−1 ds

= Cαh

∫ t

0

(s+ h)−1sγ−1 ds

≤ Cα
∫ h

0

h

s+ h
sγ−1ds+ Cα

∫ ∞
h

sγ−1

s+ h
h ds

≤ Cα
∫ h

0

sγ−1 ds+ Cα

∫ ∞
h

sγ−2h ds = Cαh
γ .

(4.13)

For h2, by Theorem 3.2 and the mean value theorem, we have

‖h2‖ ≤
∫ t

0

‖ATα(t+ h− s)‖‖f(t)− f(t+ h)‖ ds

≤ C
∫ t

0

(t+ h− s)−1 ds hγ = C

∫ t+h

h

s−1 ds hγ

= C
t

θt+ h
hγ ≤ C

θ
hγ ,

(4.14)

where θ ∈ (0, 1).
For h3, it follows from Theorem 3.2 and the assumption on f , we see that

‖h3‖ ≤
∫ t+h

t

‖ATα(t+ h− s)‖‖f(s)− f(t+ h)‖ ds

≤ C
∫ t+h

t

(t+ h− s)γ−1 ds ≤ Chγ .
(4.15)

Combining (4.12) with the estimates (4.13), (4.14) and (4.15), we obtain that AI1
is Hölder continuous with exponent γ on [0,T]. �

Theorem 4.8. Suppose f ∈ Cγ([0, T ];X) for γ ∈ (0, 1). If u is a classical solution
of the problem (4.1) on [0, T ], then

(i) For every ε > 0, Au ∈ Cγ([ε, T ];X) and Dα
t u(t) ∈ Cγ([ε, T ];X).

(ii) If x ∈ D(A), f(0) = 0, then Au and Dα
t u(t) are continuous on [0, T ].

(iii) If x = 0, f(0) = 0, then Au,Dα
t u(t) ∈ Cγ([0, T ];X).

Proof. (i) If u is a classical solution of the initial value problem (4.1) on [0, T ], then

u(t) = Tα(t)x+
∫ t

0

Tα(t− s)f(s)ds = Tα(t)x+ v(t).

By (4.10), we know that ATα(t)x is Lipschitz continuous on [ε, T ] for every ε > 0.
So, it suffices to show that Av ∈ Cγ([ε, T ];X). As in Theorem 4.6, we write v(t) as

v(t) = I1(t) + I2(t) =
∫ t

0

Tα(t− s)(f(s)− f(t))ds+
∫ t

0

Tα(t− s)f(t)ds,

for 0 < t ≤ T . It follows from Lemma 4.7 that AI1 ∈ Cγ([0, T ];X). So it remains
to verify that AI2 ∈ Cγ([ε, T ];X) for every ε > 0. To this end, let h > 0 and
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t ∈ [ε, T − h], then

AI2(t+ h)−AI2(t) =
∫ t+h

0

ATα(t+ h− s)f(t+ h) ds−
∫ t

0

ATα(t− s)f(t) ds

=
∫ t+h

0

ATα(s)f(t+ h) ds−
∫ t

0

ATα(s)f(t) ds

=
∫ t+h

0

ATα(s)(f(t+ h)− f(t)) ds+
∫ t+h

t

ATα(s)f(t) ds.

This combined with (4.8) yield

‖AI2(t+ h)−AI2(t)‖ ≤ C‖A(1 ∗ Tα)(t+ h)‖hγ + C

∫ h

0

s−1ds‖f‖∞

≤ Chγ +
C

ε
h ≤ Chγ ,

where ‖f‖∞ = max0≤t≤T ‖f(t)‖.
(ii) If x ∈ D(A), then ATα(t)x ∈ C([0, T ];X). By Lemma 4.7 and (i), we

know that AI1 ∈ Cγ([0, T ];X), AI2 ∈ Cγ([ε, T ];X). We need to show that AI2
is continuous at t = 0. Since f(0) = 0 and (4.8), we have ‖AI2(t)‖ ≤ ‖(1 ∗
Tα)(t)‖‖f(t)‖ ≤ C‖f(t)‖ → 0 as t→ 0. This completes (ii).

(iii) We only to show that AI2 ∈ Cγ([0, T ];X).

‖AI2(t+ h)−AI2(t)‖

≤ ‖
∫ t+h

0

ATα(s)(f(t+ h)− f(t)) ds‖+ ‖
∫ t+h

t

ATα(s)f(t) ds‖

≤ ‖(1 ∗ATα)(t+ h)‖‖f(t+ h)− f(t)‖ ds+
∫ t+h

t

‖ATα(s)‖‖f(t)− f(0)‖ds

≤ Chγ +
∫ t+h

t

s−1tγ ds ≤ Chγ +
∫ t+h

t

sγ−1 ds

≤ Chγ +
∫ h

0

(t+ s)γ−1 ds ≤ Chγ +
∫ h

0

sγ−1 ds

≤ Chγ .
�
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[23] V. Tarasov; Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Par-

ticles, Fields and Media, Springer-Verlag, New York, 2011.

[24] J. R. Wang, Y. Zhou; A class of fractional evolution equations and optimal controls, Nonlinear
Anal. Real World Appl., 12 (2011) 262-272.

[25] Y. Zhou; Basic Theory of Fractional Differential Equations, World Scientific, Singapore,

2014.
[26] Y. Zhou, F. Jiao; Nonlocal Cauchy problem for fractional evolution equations, Nonlinear

Anal. Real World Appl., 11 (2010) 4465-4475.
[27] Y. Zhou, F. Jiao; Existence of mild solutions for fractional neutral evolution equations,

Comput. Math. Anal., 59 (2010) 1063-1077.

[28] Y. Zhou, F. Jiao, J. Pecaric; Abstract Cauchy problem for fractional functional differential
equations, Topological Methods in Nonlinear Anal. 42 (2013), 119-136.

Ya-Ning Li

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000,

China.
College of Mathematics & Statistics, Nanjing University of Information Science &

Technology, Nanjing, 210044, China
E-mail address: liyn08@lzu.edu.cn

Hong-Rui Sun

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000,
China

E-mail address: hrsun@lzu.edu.cn


	1. Introduction
	2. Preliminaries
	3. The operator T(t)
	4. Main results
	Acknowledgments

	References

