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EXISTENCE OF INFINITELY MANY SOLUTIONS FOR
NONLINEAR NEUMANN PROBLEMS WITH

INDEFINITE COEFFICIENTS

DAISUKE NAIMEN

Abstract. We consider the nonlinear Neumann boundary-value problem

−∆u+ u = a(x)|u|p−2u in Ω,

∂u

∂ν
= λb(x)|u|q−2u on ∂Ω,

where N ≥ 3 and Ω ⊂ RN is a bounded domain with smooth boundary.
We suppose a and b are possibly sign-changing functions in Ω and on ∂Ω

respectively. Under some additional assumptions on a and b, we show that

there are infinitely many solutions for sufficiently small λ > 0 if 1 < q < 2 <
p ≤ 2∗ = 2N/(N − 2). When p = 2∗, we use the concentration compactness

argument to ensure the PS condition for the associated functional. We also
consider a general problem including the supercritical case and obtain the

existence of infinitely many solutions.

1. Introduction

In this article we study the nonlinear Neumann boundary value problem

−∆u+ u = a(x)|u|p−2u in Ω,
∂u

∂ν
= λb(x)|u|q−2u on ∂Ω,

(1.1) pde

where N ≥ 3, Ω ⊂ RN is a bounded domain with smooth boundary and ∂/∂ν
denotes the outer normal derivative. In addition, let 1 < q < 2 < p ≤ 2∗ =
2N/(N − 2) and suppose a and b are possibly sign-changing functions in Ω and on
∂Ω respectively. Main purpose of this paper is to show the existence of infinitely
many solutions for (1.1). To do that, we define the energy functional associated to
(1.1),

F(u) =
1
2

∫
Ω

(
|∇u|2 + u2

)
dx− 1

p

∫
Ω

a(x)|u|p dx− λ

q

∫
∂Ω

b(x)|u|qdσ.

We can easily verify that F is well-defined on H1(Ω) and continuously Fréchet
differentiable on that space. In this paper, we define the solutions of (1.1) as the
critical points of F .
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To state our results, we put a condition on b,
(B1) there exist an open set D ⊂ RN with D ∩ ∂Ω 6= ∅ and a positive constant

δ > 0 such that b ≥ δ on D ∩ ∂Ω.
Our main result is the following.

R1 Theorem 1.1. Let 1 < q < 2 < p ≤ 2∗ = 2N/(N − 2). Suppose a ∈ C(Ω),
b ∈ L∞(∂Ω) and further, b satisfies the condition (B1). Then there exists a constant
Λ > 0 such that (1.1) has infinitely many solutions (uk) ⊂ H1(Ω) for every 0 <
λ < Λ. Moreover F(uk) < 0 and F(uk)→ 0 as k →∞.

Remark 1.2. It is sufficient to choose a ∈ L∞(Ω) if p < 2∗.

Remark 1.3. If we assume b ∈ C(∂Ω) and there exists a point x0 ∈ ∂Ω such that
b(x0) > 0, then b satisfies the hypotheses in Theorem 1.1.

In 1994, Ambrosetti, Brezis and Cerami [1] considered the elliptic problem with
the convex-concave nonlinearities. They obtained several existence results for the
Dirichlet boundary value problem, including multiple positive solutions and infin-
itely many ones which may change their signs. Recently some authors have begun
to consider such problems with nonlinear Neumann boundary conditions. As a
pioneering work, Garcia-Azorero, Peral and Rossi [3] study problem (1.1) for the
case a ≡ 1 and b ≡ 1. They obtain the Ambrosetti-Brezis-Cerami type results.
One of their results shows that if 1 < q < 2 < p < 2∗ and λ > 0 is sufficiently
small, there exist infinitely many solutions for (1.1) with negative energies. Mo-
tivated by their result, we consider a general case; i.e., the indefinite coefficients
a and b. Consequently we obtain Theorem 1.1. We emphasize that a and b may
change their signs. Note that in Theorem 1.1, we also consider the critical case; i.e.
p = 2∗ which is not considered in [3]. If p is critical, a typical difficulty occurs in
proving the PS condition for F because of the lack of the compactness of the embed-
ding H1(Ω) ↪→ L2∗(Ω). We overcome this difficulty by applying the concentration
compactness lemma by Lions [6] and conclude Theorem 1.1.

This paper is organized as follows. In Section 2, we give the proof of Theorem
1.1 for the subcritical case, i.e. p < 2∗. To this aim, we use the variational method
in [3]. By careful reading of the proof in [3] and considering the conditions on
the coefficients a and b, we can get the result. Especially see the proof of Lemma
2.2. Next, in Section 3, we give the proof of Theorem 1.1 for the critical case, i.e.
p = 2∗. As we indicated before, the main difficulty arises in the proof of the PS
conditions for F . In view of this, we shall show the proof of L2∗(Ω) convergence
for the PS sequences. This is the key of the proof of this section, see Lemma 3.1.
Lastly in Section 4, we consider a general problem. Utilizing the argument in [8],
we give a result including the supercritical case. In the following sections we use
the characters C1, C2, C3 and so on, to denote several positive constants.

2. Subcritical case

In this section, we consider the subcritical case. Let 1 < q < 2 < p < 2∗. Here we
use the variational argument in [3]. First of all, since in general, F is not bounded
from below, we perform the appropriate truncation for the functional F . To do
that, first notice that by the Sobolev embedding and the trace theorem,

F(u) ≥ 1
2
‖u‖2H1(Ω) −

C1

p
‖u‖pH1(Ω) −

λC2

q
‖u‖qH1(Ω) = fλ(‖u‖H1(Ω))
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where fλ(x) := 1
2x

2 − C1
p x

p − λC2
q xq. Take Λ0 > 0 so small that max[0,∞) fλ is

positive for all 0 < λ < Λ0. Choose 0 < m < x0 < x1 < M so that f(m) < 0 <
f(x0) < f(x1) < f(M) where m and M are local minimum and maximum points
of f respectively. Now consider a cut off function τ ∈ C1(R) defined by

τ(ξ) =

{
1 if 0 ≤ ξ < x0,

0 if ξ > x1,

0 ≤ τ(ξ) ≤ 1 if x0 ≤ ξ ≤ x1,

and a C1 functional on H1(Ω),

Φ(u) = τ(‖u‖H1(Ω)).

Finally we give the truncated functional,

F̃(u) =
1
2

∫
Ω

(
|∇u|2 + u2

)
dx− 1

p

∫
Ω

a(x)Φ(u)|u|p dx− λ

q

∫
∂Ω

b(x)|u|qdσ.

We can easily check that F̃ is well-defined and continuously Fréchet differentiable
on H1(Ω). Notice also that F̃ = F on some neighborhood of u satisfying F̃(u) < 0.
In addition observe that F̃(u) is even in u and F̃(0) = 0. Now we can get the
following lemma.

bddbelow Lemma 2.1. Assume a ∈ L∞(Ω) and b ∈ L∞(∂Ω). Then F̃ is bounded from below
and satisfies the (PS)c condition if c < 0.

Proof. Let us first show that F̃ is bounded from below. In fact, by the definition
of Φ(u), if ‖u‖H1(Ω) < x1, 0 ≤ Φ(u) ≤ 1 and if ‖u‖H1(Ω) > x1, Φ(u) = 0. So
Φ(u)‖u‖pH1(Ω) ≤ x

p
1. Hence by the Sobolev embedding and the trace theorem,

F̃(u) ≥ 1
2
‖u‖2H1(Ω) −

C1

p
Φ(u)‖u‖pH1(Ω) −

λC2

q
‖u‖qH1(Ω)

≥ 1
2
‖u‖2H1(Ω) −

C1x
p
1

p
− λC2

q
‖u‖qH1(Ω).

Since q < 2, F̃ is bounded from below. We next prove that F̃ satisfies the (PS)c
condition if c < 0. To do that, let (uj) be a (PS)c sequence for F̃ at level c < 0.
By the property of F̃ , F̃(uj) = F(uj) for large j since c < 0. Therefore (uj) is also
a (PS)c sequence for F ; i.e., F(uj)→ c and F ′(uj)→ 0 in H−1(Ω). Now we claim
that (uj) is bounded in H1(Ω). Actually

c+ 1 ≥ F(uj)−
1
p
〈F ′(uj), uj〉+

1
p
〈F ′(uj), uj〉

≥
(1

2
− 1
p

)
‖uj‖2H1(Ω) − λ

(1
q
− 1
p

)
b∞‖uj‖qH1(Ω) − ‖u‖H1(Ω)

for large j, where b∞ := ‖b‖L∞(∂Ω). Since 1 < q < 2 < p, (uj) is bounded in
H1(Ω). Therefore we can assume there exists a function u ∈ H1(Ω) such that
uj ⇀ u weakly in H1(Ω). Moreover noting that p < 2∗ and q < 2, by the Rellich
Theorem, we can also assume

uj → u in Lp(Ω),

uj → u in Lq(∂Ω).
(2.1) conv
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Then we obtain

a|uj |p−2uj → a|u|p−2u in H−1(Ω),

b|uj |q−2uj → b|u|q−2u in H−1(Ω).

By the Lax-Milgram Theorem, we conclude

uj → u in H1(Ω).

This completes the proof. �

The condition (B1) on the indefinite function b in Theorem 1.1 is essential for
the following lemma.

keyof2 Lemma 2.2. Suppose a ∈ L∞(Ω), b ∈ L∞(∂Ω) and further, b satisfies condition
(B1). Then for every n ∈ N, there exist an n-dimensional subspace En ⊂ H1(Ω),
and constants ρ > 0 and ε > 0 such that

F̃(u) ≤ −ε
for all u ∈ En with ‖u‖H1(Ω) = ρ.

Proof. From condition (B1) on b ∈ L∞(∂Ω), for every n ∈ N, we can construct an
n-dimensional subspace En in {u ∈ C∞(Ω) : u ≡ 0 on ∂Ω \D} such that if u ∈ En,
u ≡ 0 on ∂Ω if and only if u = 0. Then we take a nonzero function u ∈ En with
‖u‖H1(Ω) = ρ. By the Sobolev embedding, we obtain

F̃(u) =
1
2

∫
Ω

(
|∇u|2 + u2

)
dx− 1

p

∫
Ω

a(x)Φ(u)|u|p dx− λ

q

∫
∂Ω∩D

b(x)|u|qdσ

≤ 1
2
ρ2 +

a∞C3

p
ρp − λδ

q

∫
∂Ω

|u|qdσ,

where a∞ := ‖a‖L∞(Ω). Since En is finite dimensional, we obtain

F̃(u) ≤ 1
2
ρ2 +

a∞C3

p
ρp − λδC4

q
ρq.

As q < 2 < p, there exist constants ρ > 0 and ε > 0 such that

F̃(u) ≤ −ε
for all u ∈ En with ‖u‖H1(Ω) = ρ. This concludes the proof. �

Now we introduce the genus as a topological tool [5, 2, 7]. We give the following
definition according to [7]: Consider the class

Σ = {A ⊂ H1(Ω) \ {0} : A is closed, A = −A}.
Then we define the genus, γ : Σ→ {0} ∪ N ∪ {∞} so that

γ(A) = min{k ∈ N : there exists an odd map φ ∈ C(A,Rk \ {0})}.
If there exists no such a minimum, we put γ(A) = ∞. In addition we define
γ(∅) = 0. Consequently we obtain the following properties of the genus([7]). Let
A,B ∈ Σ then

(g1) Normalization: If x 6= 0, γ({x} ∪ {−x}) = 1.
(g2) Mapping property: If there exists an odd map f ∈ C(A,B) then γ(A) ≤

γ(B).
(g3) Monotonicity property: If A ⊂ B, γ(A) ≤ γ(B).
(g4) Subadditivity: γ(A ∪B) ≤ γ(A) + γ(B).
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(g5) Continuity property: If A is compact, then γ(A) < ∞ and there exists
d > 0 such that Nd = {u ∈ H1(Ω) : dist(u,A) ≤ d} ∈ Σ and γ(Nd) = γ(A).

Here we prove the following lemma.

gen Lemma 2.3. Let n ∈ N and ε > 0 be as given by Lemma 2.2. Then

γ(F̃−ε) ≥ n.

where F̃c = {u ∈ H1(Ω) : F̃(u) ≤ c}.

Proof. We define Sρ,n = {u ∈ En : ‖u‖H1(Ω) = ρ} where the n-dimensional sub-
space En and a constant ρ > 0 are given by Lemma 2.2. Then we have Sρ,n ⊂ F̃−ε.
By the monotonicity of the genus, we conclude that

γ(F̃−ε) ≥ γ(Sρ,n) = n.

�

Finally we prove the main result of this section.

def Theorem 2.4. Let

Σ = {A ⊂ H1(Ω) \ {0} : A is closed, A = −A}, Σk = {A ∈ Σ : γ(A) ≥ k},

and put
ck = inf

A∈Σk
sup
u∈A
F̃(u),

then ck is a negative critical value of F . Moreover if c := ck = ck+1 = · · · = ck+r

γ(Kc) ≥ r + 1

where Kc = {u ∈ H1(Ω) : F̃(u) = c, F̃ ′(u) = 0}.

For a proof of the above theorem, see [3, Theorem 2.1]. Using Theorem 2.4, we
show the following corollary.

cor Corollary 2.5. Let ck be defined as in Theorem 2.4. Then ck → 0.

Proof. Since ck is negative and nondecreasing, there exists a constant c0 ≤ 0 such
that ck → c0 as k → ∞. Let us assume c0 < 0 on the contrary. First notice that
ck < c0 for all k ∈ N. In fact, if ck = c0 for large k ∈ N, γ(Kc0) = ∞ by Theorem
2.4. On the other hand, the (PS)c0 condition for F̃ implies that Kc0 is compact.
Thus, the continuity of genus shows that γ(Kc0) <∞. This is a contradiction. We
set γ(Kc0) = r. Now, take ε > 0 so that c0 + ε < 0. For large k ∈ N, we also have

c0 − ε < ck. (2.2) c25-1

For such a k, there exists a set Ak+r ∈ Σk+r such that supu∈Ak+r F̃(u) ≤ c0 + ε.
Here as Kc0 is compact, there exists a neighborhood Nδ(Kc0) such that γ(Kc0) =
γ(Nδ(Kc0)). Using the odd homeomorphism η : [0, 1] × H1

0 (Ω) → H1
0 (Ω) (con-

structed in [7, Appendix A] for example), we conclude that

η(1, Ak+r \Nδ(Kc0)) ⊂ η(1, F̃c0+ε \Nδ(Kc0)) ⊂ F̃c0−ε. (2.3) c25-2

On the other hand, from the mapping property and subadditivity of the genus, we
obtain

γ(η(1, Ak+r \Nδ(Kc0))) ≥ γ(Ak+r \Nδ(Kc0)) ≥ γ(Ak+r)− γ(Nδ(Kc0)) ≥ k.
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It follows that η(1, Ak+r \Nδ(Kc0)) ∈ Σk. Therefore, recalling (2.3), we obtain

ck ≤ sup
u∈η(1,Ak+r\Nδ(Kc0 ))

F̃(u) ≤ c0 − ε.

This contradicts (2.2). The proof is complete. �

Proof of Theorem 1.1 for the subcritical case. We suppose a ∈ L∞(Ω), b ∈ L∞

(∂Ω) and further, b satisfies the condition (B1). Choose Λ = Λ0 and take 0 < λ < Λ
as in the first paragraph of this section. Then by Theorem 2.4, we have the neg-
ative critical values c1, c2, . . . of F . In addition from Corollary 2.5, we conclude
that the set {ck : k ∈ N} has infinitely many distinct elements. This completes the
proof. �

3. Critical case

In this section we prove Theorem 1.1 for the critical case, i.e., p = 2∗. Let
1 < q < 2 and consider the functional

F(u) =
1
2

∫
Ω

(
|∇u|2 + u2

)
dx− 1

2∗

∫
Ω

a(x)|u|2
∗
dx− λ

q

∫
∂Ω

b(x)|u|qdσ.

The organization of the proof is same with that for the subcritical case, once we
ensure the strong L2∗(Ω) convergence for PS sequences. We begin with the following
lemma.

keyof3 Lemma 3.1. Assume a ∈ C(Ω) and b ∈ L∞(∂Ω). Let c < 0 and (uj) ⊂ H1(Ω) be
a (PS)c sequence for F . Then there exists a constant Λ1 > 0 such that for every
0 < λ < Λ1, (uj) strongly converges in L2∗(Ω) up to subsequences.

Proof. By the same argument in the proof of Lemma 2.1, we ensure that (uj) is
bounded in H1(Ω). Hence we can assume there exists a function u ∈ H1(Ω) such
that uj ⇀ u weakly in H1(Ω). Furthermore, by the Rellich Theorem, we can also
assume that

uj → u in L2(Ω),

uj → u in Lq(∂Ω),
uj → u a.e. on Ω.

(3.1) 30

We now apply the concentration compactness lemma by Lions [6]. By that, we can
assume there exist some at most countable set J , distinct points (xk)k∈J ⊂ Ω and
positive constants (νk)k∈J , (µk)k∈J such that

|∇uj |2 ⇀ dµ ≥ |∇u|2 +
∑
k∈J

µkδxk ,

|uj |2
∗
⇀ dν = |u|2

∗
+
∑
k∈J

νkδxk ,
(3.2) 31

in the measure sense, where δx denotes the Dirac measure with mass 1 concentrated
at x ∈ RN . In addition by the result in the proof of [3, Lemma 7.1],

µk ≥ Sν2/2∗

k (k ∈ J), (3.3) 32

where

S = inf
u∈H1(Ω)\{0}

∫
Ω

(
|∇u|2 + u2

)
dx( ∫

Ω
|u|2∗ dx

)2/2∗ .



EJDE-2014/181 EXISTENCE OF INFINITELY MANY SOLUTIONS 7

Let us show that there exists a constant Λ1 > 0 such that J = ∅ for all 0 < λ < Λ1

if c < 0. To do that, assume c < 0 and take 0 < λ < Λ1 where Λ1 > 0 is determined
later. Now we suppose on the contrary, J 6= ∅. Then for all k ∈ J we introduce a
cut off function φ ∈ C∞(RN ) with 0 ≤ φ ≤ 1 such that

φ(x) =

{
1 if x ∈ B(xk, ε),
0 if x ∈ B(xk, 2ε)c.

Furthermore we can assume that |∇φ| ≤ 2/ε. Since (uj) is bounded in H1(Ω) and
F ′(uj) → 0 in H−1(Ω), recalling (3.1), (3.2) and the assumption a ∈ C(Ω), we
obtain

0 = lim
j→∞
〈F ′(uj), ujφ〉

= lim
j→∞

{∫
Ω

∇uj · ∇(ujφ) dx+
∫

Ω

u2
jφdx−

∫
Ω

a(x)|uj |2
∗
φdx

− λ
∫
∂Ω

b(x)|uj |qφdσ
}

= lim
j→∞

∫
Ω

(∇uj · ∇φ)uj dx+
∫

Ω

φdµ+
∫

Ω

u2φdx−
∫

Ω

a(x)φdν

− λ
∫
∂Ω

b(x)|u|qφdσ.

(3.4) 33

Here using the Schwartz inequality, the boundedness and L2(Ω) convergence in
(3.1) of (uj) and further, applying the Hölder inequality, we obtain

0 ≤ lim
j→∞

∣∣ ∫
Ω

(∇uj · ∇φ)uj dx
∣∣

≤ lim
j→∞

(∫
Ω∩B(xk,2ε)

|∇uj |2 dx
)1/2(∫

Ω∩B(xk,2ε)

u2|∇φ|2 dx
)1/2

≤ C5

(∫
Ω∩B(xk,2ε)

|u|2
∗
dx
)1/2∗(∫

Ω∩B(xk,2ε)

|∇φ|N dx
)1/N

≤ C6

(∫
Ω∩B(xk,2ε)

|u|2
∗
dx
)1/2∗

→ 0 as ε→ 0,

where for the above inequality we use the assumption |∇φ| ≤ 2/ε. Taking ε → 0
for (3.4), we obtain

µk − a(xk)νk ≤ 0. (3.5) 34

Since µk and νk are positive, we can assume a(xk) > 0. Considering (3.3) and (3.5)
together, we have

νk ≥
( S

a(xk)

)N/2
.

So using this inequality and (3.2) again, we have for all k ∈ J ,

c = lim
j→∞

{
F(uj)−

1
2
〈F ′(uj), uj〉

}
= lim
j→∞

{ 1
N

∫
Ω

a(x)|uj |2
∗
dx− λ

(1
q
− 1

2
) ∫

∂Ω

b(x)|uj |qdσ
}

≥ 1
N

∫
Ω

a(x)|u|2
∗
dx+ a(xk)

( S

a(xk)
)N/2 − λ(1

q
− 1

2
) ∫

∂Ω

b(x)|u|qdσ.

(3.6) 35
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Now since u is a critical point of F , we have

1
N

∫
Ω

a(x)|u|2
∗
dx =

1
N
‖u‖2H1(Ω) −

1
N

∫
∂Ω

b(x)|u|qdσ.

Substituting this equality into (3.6), noting q < 2 and using the trace theorem, we
have

c ≥ SN/2

a(xk)
N−2

2

+
1
N
‖u‖2H1(Ω) − λ

(1
q

+
1
N
− 1

2
)
C7‖u‖qH1(Ω).

Hence noting N/2− 1 > 0, we obtain

c ≥ SN/2

a
(N−2)/2
0

− λ
2

2−qK

where a0 := maxx∈Ω a(x) > 0 and K > 0 is some constant which is independent of
λ > 0. Now we take Λ1 > 0 so small that the right-hand side of the above inequality
is greater than 0 for all 0 < λ < Λ1. Then we obtain the contradiction since c < 0.
Here observe that we can choose Λ1 > 0 uniformly for k ∈ J . It follows that∫

Ω

|uj |2
∗
dx→

∫
Ω

|u|2
∗
dx.

This completes the proof. �

The above lemma enable us to ensure the (PS)c condition for F . Now we can
prove Theorem 1.1 for the critical case by the same argument in Section 2.

Proof of Theorem 1.1 for the critical case. We suppose a ∈ C(Ω), b ∈ L∞(∂Ω) and
further, b satisfies the condition (B1). As we already said, the organization of the
proof for the critical case is same with that for the subcritical case. So we give
only a comment for the choice of Λ > 0. To perform the appropriate truncation
for the functional F , we first choose Λ0 > 0 by the same argument with that in
Section 2. Next we take Λ1 > 0 from Lemma 3.1. Then it is enough to select
Λ = min{Λ0,Λ1}. �

4. General case

As we can observe from the proof of Theorem 1.1, the concave term in (1.1) is
essential for the existence of infinitely many solutions with negative energies. Here
let us generalize the convex term in (1.1). To this aim, we consider the problem

−∆u+ u = f(x, u) in Ω,
∂u

∂ν
= λb(x)|u|q−2u on ∂Ω,

(4.1) gpde

where f(x, u) : Ω× R 7→ R. Now we can ask that
Under what conditions on f(x, u), can we ensure the existence of
infinitely many solutions with negative energies?

To answer this question, we put two conditions on f :
(F1) there exists a constant σ > 0 such that f(x, t) is a continuous function on

Ω× [−σ, σ] and odd in t for all x ∈ Ω if t ∈ [−σ, σ],
(F2) f(x, t) = o(|t|) as t→ 0.
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Under the conditions (F1) and (F2) on f , we formally define the (weak) solutions
for (4.1) and the associated functional. We call u ∈ H1(Ω) ∩ L∞(Ω) is a (weak)
solution of (4.1) if and only if u satisfies∫

Ω

∇u · ∇h dx−
∫

Ω

f(x, u)h dx−
∫
∂Ω

b(x)|u|q−2uh dσ = 0 (4.2) weaksolofgpde

for all h ∈ H1(Ω). The associated energy functional is given by

I(u) =
1
2

∫
Ω

(
|∇u|2 + u2

)
−
∫

Ω

F (x, u) dx− λ

q

∫
∂Ω

|u|q dσ, (4.3) gfunc

where F (x, u) =
∫ u

0
f(x, t)dt. Note that thanks to (F1), (4.2) and (4.3) have mean-

ings for all u ∈ H1(Ω)∩L∞(Ω) with ‖u‖L∞(Ω) ≤ σ. We give the following Theorem.
A comparable result for Dirichlet boundary value problem is found in [4].

GR1 Theorem 4.1. Suppose 1 < q < 2 and f satisfies the conditions (F1) and (F2).
Assume further, b ∈ L∞(∂Ω) and satisfies the condition (B1). Then (4.1) has
infinitely many solutions (uk) ⊂ H1(Ω)∩L∞(Ω) for every λ > 0. Moreover I(uk) <
0, I(uk)→ 0 and ‖uk‖L∞(Ω) → 0 as k →∞.

Remark 4.2. We need no restriction for λ > 0 to be sufficiently small for the
existence.

As a consequence of Theorem 4.1, we obtain a similar conclusion to Theorem 1.1
including the supercritical case.

GR2 Corollary 4.3. Let 1 < q < 2 < p < ∞. We suppose a ∈ L∞(Ω), b ∈ L∞(∂Ω)
and further, b satisfies the condition (B1). Then (4.1) with f(x, u) = a(x)|u|p−2u
has infinitely many solutions (uk) ⊂ H1(Ω) ∩ L∞(Ω) for every λ > 0. Moreover
I(uk) < 0, I(uk)→ 0 and ‖uk‖L∞(Ω) → 0 as k →∞.

Remark 4.4. We point out the delicate difference between theorems above and
Theorem 1.1. In the theorems above, the solutions must converge to zero (as long
as obtaining from our method below). But the solutions we got in Theorem 1.1 may
not do that. Thus the solutions we can get here seem to be more restricted. But
this is reasonable, since we are considering the general case including supercritical
case. We need to utilize more careful cut off techniques and regularity arguments.
See the details below.

Next, we shall prove Theorem 4.1. To this aim, we utilize the argument in [8].
Let 1 < q < 2 as previous sections and f(x, u) satisfy (F1) and (F2). To the
beginning we construct a modified function f̃(x, u) ∈ C(Ω× R,R) using f(x, u) so
that

(F̃1) |F̃ (x, u)| ≤ u2/4 where F̃ (x, t) =
∫ t

0
f̃(x, s)ds,

(F̃2) there exists a constant 0 < θ < (2− q)/2 such that f̃(x, u)u− qF̃ (u) ≤ θu2,
(F̃3) there exists a constant 0 < a < σ/2 such that f̃(x, u) = f(x, u) if |u| < a.

mod Lemma 4.5. Let f : Ω × R 7→ R satisfy conditions (F1) and (F2). Then there
exists a continuous function f̃(x, t) in Ω × R which is odd in t and satisfies the
conditions (F̃1), (F̃2), (F̃3).

Proof. For fixed 0 < θ < (2 − q)/2, take 0 < ε < θ/14. From (F2) there exists a
constant 0 < a < σ/2 such that |f(x, u)u| ≤ εu2 and |F (x, u)| ≤ εu2 if |u| ≤ 2a.
Now define a cut off function ρ ∈ C1(R) such that ρ(t) = 1 if |t| ≤ a, ρ(t) = 0
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if |t| > 2a and 0 ≤ ρ ≤ 1 otherwise. Furthermore, we can assume |ρ′(t)| ≤ 2/a.
Firstly, we define

F̃ (x, u) = ρ(u)F (x, u) + (1− ρ(u))F∞(u)

where F∞(u) = βu2 for some 0 < β < θ/16. Then we have

|F̃ (x, u)| ≤ 1
4
u2. (4.4) 41

Indeed, if |u| ≤ 2a, we obtain

|F̃ (x, u)| ≤ |F (x, u)|+ F∞(x, u) ≤ (ε+ β)u2 ≤ 1
4
u2,

and if |u| > 2a, we obtain

|F̃ (x, u)| ≤ F∞(x, u) ≤ 1
4
u2.

Next we put

f̃(x, u) =
∂F̃

∂u
(x, u).

Then we obtain

f̃(x, u) = ρ′(u)F (x, u) + ρ(u)f(x, u)− ρ′(u)F∞(u) + (1− ρ(u))F ′∞(u).

By (F1), clearly f̃(x, u) is a continuous function in Ω× R, odd in u and

f(x, u) = f̃(x, u) if |u| < a. (4.5) 42

In addition, a direct calculation implies

f̃(x, u)u− qF̃ (x, u) = (ρ′(u)u− qρ(u))F (x, u) + ρ(u)f(x, u)u

− (ρ′(u)u+ q(1− ρ(u)))F∞(u) + (1− ρ(u))F ′∞(u)u.

Here we claim
f̃(x, u)− qF̃ (x, u) ≤ θu2. (4.6) 43

In fact, if |u| ≤ 2a, we have

f̃(x, u)− qF̃ (x, u) ≤ (7ε+ 8β)u2 ≤ θu2,

and if |u| > 2a, we obtain

f̃(x, u)− qF̃ (x, u) ≤ 4βu2 ≤ θu2.

Inequalities (4.4), (4.5) and (4.6) conclude the proof. �

Let f̃(x, u) be the function constructed in Lemma 4.5. We consider the modified
problem

−∆u+ u = f̃(x, u) in Ω,
∂u

∂ν
= λb(x)|u|q−2u on ∂Ω,

(4.7) gpde1

and the associated functional

Ĩ(u) =
1
2

∫
Ω

(
|∇u|2 + u2

)
dx−

∫
Ω

F̃ (x, u) dx− λ
∫
∂Ω

b(x)|u|qdσ,

where F̃ (x, t) =
∫ t

0
f̃(x, s)ds. Noting condition (F̃1), we can easily check that Ĩ

is well-defined on H1(Ω) and continuously Fréchet differentiable on that space.
Furthermore from the condition (F̃3), we can conclude that every critical point
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u ∈ H1(Ω) ∩ L∞(Ω) with ‖u‖L∞(Ω) ≤ a is a weak solution of (4.1). Next we show
an important property of the modified functional.

keyof4 Lemma 4.6. 〈Ĩ ′(u), u〉 = 0 and Ĩ(u) = 0 if and only if u = 0.

Proof. Suppose 〈Ĩ ′(u), u〉 = 0 and Ĩ(u) = 0. Then we have

0 = 〈Ĩ ′(u), u〉 =
∫

Ω

(
|∇u|2 + u2

)
dx− λ

∫
∂Ω

b(x)|u|q dσ −
∫

Ω

f̃(x, u)u dx, (4.8) 44

and

0 = qI(u) =
q

2

∫
Ω

(
|∇u|2 + u2

)
dx− λ

∫
∂Ω

b(x)|u|q dσ − q
∫

Ω

F̃ (x, u)u dx. (4.9) 45

Substituting (4.9) in (4.8) and noting the condition (F̃2), we obtain(2− q
2
)
‖u‖2H1(Ω) =

∫
Ω

(
f̃(x, u)u− qF̃ (x, u)

)
dx ≤ θ‖u‖2H1(Ω).

Hence u = 0. This concludes the proof. �

Considering the oddness of f̃(x, u) and the condition (F̃1) on f̃(x, u), we can
check the following properties of Ĩ,

(̃I1) Ĩ(u) is even in u,
(̃I2) Ĩ(0) = 0,
(̃I3) Ĩ is bounded from below,
(̃I4) Ĩ satisfies (PS)c conditions for c ≤ 0,
(̃I5) for every n ∈ N, there exist an n-dimensional subspace En ⊂ H1(Ω) and

positive constants ρ > 0 and ε > 0 such that Ĩ(u) ≤ −ε for all u ∈ En with
‖u‖H1(Ω) = ρ.

Most parts of the proof are analogous to the ones in Section 2. So we omit it. The
above properties of Ĩ are enough to obtain the existence of infinitely many solutions
(uk) ⊂ H1(Ω) for (4.7) with Ĩ(uk) < 0 and Ĩ(uk) → 0 as k → ∞ as in Section 2.
Finally we come to the proof of Theorem 4.1.

The proof of Theorem 4.1. Firstly assume b ∈ L∞(∂Ω) and satisfies the condition
(B1). Since Ĩ(uk) → 0 and Ĩ ′(uk) = 0, the sequence of solutions (uk) is (PS)0

sequence for Ĩ. Then by the (PS)0 condition for Ĩ, we can assume uk converges to
some function u ∈ H1(Ω). We claim u = 0. In fact, from the continuity of Ĩ,
Ĩ(u) = 0. Thus Lemma 4.6 confirm the claim. Considering a priori estimate (see
Section 4 in [3]), we obtain for all β ≥ 1, (uk) ⊂W 1,β(Ω) and uk → 0 in W 1,β(Ω).
Consequently, by the Morrey inequality, we also have ‖uk‖C(Ω) → 0. Thus we
obtain ‖uk‖L∞(Ω) ≤ a for large k ∈ N. This completes the proof. �
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