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EXISTENCE AND UNIQUENESS OF STRONG SOLUTIONS FOR
NONLOCAL EVOLUTION EQUATIONS

PENGYU CHEN, YONGXIANG LI

Abstract. The aim of this article is to study the existence and uniqueness
of strong solutions for a class of semilinear evolution equations with nonlocal

initial conditions. The discussions are based on analytic semigroup theory and

fixed point theorems. An example illustrates the main results.

1. Introduction

The nonlocal Cauchy problem for abstract evolution equation was first investi-
gated by Byszewski and Lakshmikantham [5], where, by using the Banach fixed
point theorem, the authors obtained the existence and uniqueness of mild solutions
for nonlocal differential equations. The nonlocal problem was motivated by phys-
ical problems. Indeed, it is demonstrated that the nonlocal problems have better
effects in applications than the classical Cauchy problems. For example, it is used
to represent mathematical models for evolution of various phenomena, such as non-
local neural networks, nonlocal pharmacokinetics, nonlocal pollution and nonlocal
combustion (see McKibben [18]). For this reason, differential or integro-differential
equations with nonlocal initial conditions were studied by many authors and some
basic results on nonlocal problems have been obtained, see the references in this
article and their references. Particularly, in 1999, Byszewski [8] obtained the exis-
tence and uniqueness of classical solution to a class of abstract functional differential
equations with nonlocal conditions of the form

u′(t) = f(t, u(t), u(a(t))), t ∈ I, (1.1)

u(t0) +
p∑
k=1

cku(tk) = x0, (1.2)

where I := [t0, t0 + T ], t0 < t1 < · · · < tp ≤ t0 + T , T > 0; f : I × E2 → E
and a : I → I are given functions satisfying some assumptions; E is a Banach
space, x0 ∈ E, ck 6= 0 (k = 1, 2, . . . , p) and p ∈ N. The author pointed out that if
ck 6= 0, k = 1, 2, . . . , p, then the results of the paper can be applied to kinematics
to determine the location evolution t → u(t) of a physical object for which we
do not know the positions u(0), u(t1), . . . , u(tp), but we know that the nonlocal
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condition (1.2) holds. The nonlocal condition of type (1.2) has also been used
by Deng [10] to describe the diffusion phenomenon of a small amount of gas in a
transparent tube. In this case, condition (1.2) allows the additional measurements
at tk, k = 1, 2, . . . , p, which is more precise than the measurement just at t = t0.
Consequently, to describe some physical phenomena, the nonlocal condition can be
more useful than the standard initial condition.

Recently, Vrabie [21] studied the existence of global C0-solutions for a class of
nonlinear functional differential evolution inclusions of the form

u′(t) ∈ Au(t) + f(t), t ≥ 0,

f(t) ∈ F (t, u(t), ut), t ≥ 0,

u(t) = g(u)(t), t ∈ [−τ, 0],
(1.3)

where X is a real Banach space, A is the infinitesimal generator of a nonlinear com-
pact semigroup, τ ≥ 0, F : [0,+∞)×X ×C([−τ,+∞);D(A))→ X is a nonempty
convex and weakly compact value multi-function and g : Cb([−τ,+∞);D(A)) →
C([−τ, 0);D(A)).

In [26], by using the approach of geometry of Banach space, Hausdroff metric, the
measure of noncompactness and fixed point theorem, Zhu, Huang and Li studied
the existence of integral solutions for the following nonlinear set-valued differential
inclusion with nonlocal initial conditions

u′(t) ∈ Au(t) + F (t, u(t)), 0 < t ≤ T,
u(0) = g(u),

(1.4)

where A : D(A) ⊆ X → X is a nonlinear m-dissipative operator which generates a
contraction semigroup T (t) and F is weakly upper semi-continuous multifunction
with respect to its second variable in a real Banach space X.

In most of the existing articles, such as [6, 2, 3, 4, 7, 11, 12, 13, 15, 16, 23, 24, 25],
the existence of mild solutions for nonlocal evolution equations have been studied
extensively, but there are very few paper studied the regularity of nonlocal evolution
equations. Motivated by the above-mentioned aspects, in this work we discuss the
existence and uniqueness of strong solutions for a class of semilinear evolution
equations with nonlocal initial conditions

u′(t) +Au(t) = f(t, u(t)), t ≥ 0, (1.5)

u(0) =
p∑
k=1

cku(tk), (1.6)

where H is a Hilbert space, A : D(A) ⊂ H → H is a positive definite self-adjoint
operator, J = [0,K], K > 0 is a constant, f : J × H → H is a given function
satisfying some assumptions, 0 < t1 < t2 < · · · < tp ≤ K, p ∈ N, ck are real
numbers, ck 6= 0, k = 1, 2, . . . , p.

In the following section we first introduce some notation and preliminaries which
are used throughout this paper, at the same time the existence of strong solution for
linear evolution equation nonlocal problem has been obtained. In section 3 we state
and prove the existence and uniqueness of strong solutions for nonlinear evolution
equation nonlocal problem. In the last paragraph we give an example to illustrate
our main results.



EJDE-2014/18 EXISTENCE AND UNIQUENESS OF STRONG SOLUTIONS 3

2. Preliminaries

Let H be a Hilbert space with inner product (·, ·), then ‖ · ‖ =
√

(·, ·) is the
norm on H induced by inner product. We denote by C(J,H) the Banach space of
all continuous functions from J to H endowed with the maximum norm ‖u‖C =
maxt∈J ‖u(t)‖ and by L(H) the Banach space of all linear and bounded operators
on H.

Let A : D(A) ⊂ H → H be a positive definite self-adjoint operator in Hilbert
space H and it have compact resolvent. By the spectral resolution theorem of self-
adjoint operator, the spectrum σ(A) only consists of real eigenvalues and it can be
arrayed in sequences as

λ1 < λ2 < · · · < λn < . . . , λn →∞ as n→∞. (2.1)

By the positive definite property of A, the first eigenvalue λ1 > 0. From [9, 14, 19],
we know that −A generates an analytic operator semigroup T (t)(t ≥ 0) on H,
which is exponentially stable and satisfies

‖T (t)‖ ≤ e−λ1t, ∀t ≥ 0. (2.2)

Since the positive definite self-adjoint operator A has compact resolvent, the embed-
ding D(A) ↪→ H is compact, and therefore T (t)(t ≥ 0) is also a compact semigroup.

We recall some concepts and conclusions on the fractional powers of A. For
α > 0, A−α is defined by

A−α =
1

Γ(α)

∫ ∞
0

sα−1T (s)ds, (2.3)

where Γ(·) is the Euler gamma function. A−α ∈ L(H) is injective, and Aα can
be defined by Aα = (A−α)−1 with the domain D(Aα) = A−α(H). For α = 0, let
Aα = I. We endow an inner product (·, ·)α = (Aα·, Aα·) to D(Aα). Since Aα is a
closed linear operator, it follows that (D(Aα), (·, ·)α) is a Hilbert space. We denote
by Hα the Hilbert space (D(Aα), (·, ·)α). Especially, H0 = H and H1 = D(A).
For 0 ≤ α < β, Hβ is densely embedded into Hα and the embedding Hβ ↪→ Hα

is compact. For the details of the properties of the fractional powers, we refer to
[14, 22].

It is well known [19, Chapter 4, Theorem 2.9] that for any u0 ∈ D(A) and
h ∈ C1(J,H), the initial value problem of linear evolution equation (LIVP)

u′(t) +Au(t) = h(t), t ∈ J,
u(0) = u0,

(2.4)

has a unique classical solution u ∈ C1(J,H) ∩ C(J,D(A)) expressed by

u(t) = T (t)u0 +
∫ t

0

T (t− s)h(s)ds. (2.5)

If u0 ∈ H and h ∈ L1(J,H), the function u given by (2.5) belongs to C(J,H),
which is known as a mild solution of (2.4). If a mild solution u of (2.4) belongs
to W 1,1(J,H) ∩ L1(J,D(A)) and satisfies the equation for a.e. t ∈ J , we call it a
strong solution.

Throughout this paper, we assume that

(P0)
∑p
k=1 |ck| < eλ1t1 .
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From this assumption, ‖
∑p
k=1 ckT (tk)‖ ≤

∑p
k=1 |ck|e−λ1t1 < 1. By operator spec-

trum theorem, we know that the operator

B :=
(
I −

p∑
k=1

ckT (tk)
)−1

(2.6)

exists and it is bounded. Furthermore, by Neumann expression, B can be written
as

B =
∞∑
n=0

( p∑
k=1

ckT (tk)
)n
. (2.7)

Therefore,

‖B‖ ≤
∞∑
n=0

‖
p∑
k=1

ckT (tk)‖n =
1

1− ‖
∑p
k=1 ckT (tk)‖

≤ 1
1− e−λ1t1

∑p
k=1 |ck|

. (2.8)

To prove our main results, for any h ∈ C(J,H), we consider the linear evolution
equation nonlocal problem (LNP)

u′(t) +Au(t) = h(t), t ∈ J, (2.9)

u(0) =
p∑
k=1

cku(tk). (2.10)

Lemma 2.1. If condition (P0) holds, then (2.9)–(2.10) has a unique mild solution
u ∈ C(J,H) given by

u(t) =
p∑
k=1

ckT (t)B
∫ tk

0

T (tk − s)h(s)ds+
∫ t

0

T (t− s)h(s)ds, t ∈ J. (2.11)

Moreover, u ∈W 1,2(J,H) ∩ L2(J,D(A)) is a strong solution of (2.9)–(2.10).

Proof. By (2.4) and (2.5), we know that (2.9) has a unique mild solution u ∈
C(J,H) which can be expressed as

u(t) = T (t)u(0) +
∫ t

0

T (t− s)h(s)ds. (2.12)

From (2.12),

u(tk) = T (tk)u(0) +
∫ tk

0

T (tk − s)h(s)ds, k = 1, 2, . . . , p. (2.13)

By (2.10) and (2.13),

u(0) =
p∑
k=1

ckT (tk)u(0) +
p∑
k=1

ck

∫ tk

0

T (tk − s)h(s)ds. (2.14)

Since I −
∑p
k=1 ckT (tk) has a bounded inverse operator B,

u(0) =
p∑
k=1

ckB

∫ tk

0

T (tk − s)h(s)ds. (2.15)

From (2.12) and (2.15), we know that u satisfies (2.11).
Inversely, we can verify directly that the function u ∈ C(J,H) given by (2.11) is

a mild solution of (2.9)–(2.10).
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By the maximal regularity of linear evolution equations with positive definite
operator in Hilbert spaces (see [20, Chapter II, Theorem 3.3]), when u(0) = u0 ∈
H1/2, the mild solution of the (2.4) has the regularity

u ∈W 1,2(J,H) ∩ L2(J,D(A)) ∩ C(J,H1/2) (2.16)

and it is a strong solution.
We note that u(t) defined by (2.11) is the mild solution of (2.4) for u(0) =∑p
k=1 ckB

∫ tk
0
T (tk − s)h(s)ds. By the representation (2.5) of mild solution, u(t) =

T (t)u(0) + v(t), where v(t) =
∫ t
0
T (t − s)h(s)ds. Since the function v(t) is a mild

solution of (2.4) with the null initial value u(0) = θ, v has the regularity (2.16).
By the analytic property of the semigroup T (t), T (tk)u(0) ∈ D(A) ⊂ H1/2. Hence,
u(0) =

∑p
k=1 ckT (tk)u(0) +

∑p
k=1 ckv(tk) ∈ H1/2. Using the regularity (2.16)

again, we obtain that u ∈ W 1,2(J,H) ∩ L2(J,D(A)) and it is a strong solution of
(2.9)–(2.10). This completes the proof. �

For any r > 0, let
Ωr = {u ∈ C(J,H) : ‖u‖C ≤ r},

then Ωr is a closed ball in C(J,H) with center θ and radius r.

3. Main results

Theorem 3.1. Let A be a positive definite self-adjoint operator in Hilbert space
H, and having compact resolvent. Let f : J ×H → H be continuous. If conditions
(P0) and

(P1) There exist positive constants η and M with

η <
λ1(1− e−λ1t1

∑p
k=1 |ck|)∑p

k=1 |ck|+ 1

such that
‖f(t, u)‖ ≤ η‖u‖+M, t ∈ J, u ∈ H ,

are satisfied then (1.5)–(1.6) has at least one strong solution u ∈ W 1,2(J,H) ∩
L2(J,D(A)).

Proof. We consider the operator F on C(J,H) defined by

Fu(t) =
p∑
k=1

ckT (t)B
∫ tk

0

T (tk − s)f(s, u(s))ds+
∫ t

0

T (t− s)f(s, u(s))ds, (3.1)

t ∈ J . By condition (P0) and Lemma 2.1, it is easy to see that the mild solution
of problem (1.5)-(1.6) is equivalent to the fixed point of the operator F . In the
following, we will prove that F has a fixed point by using the Schauder fixed point
theorem. At first, we can prove that F : C(J,H) → C(J,H) is continuous by
condition (P1) and the usual techniques (see, e.g. [12, 24]).

Subsequently, we prove that F : C(J,H)→ C(J,H) is a compact operator. Let
0 ≤ α < 1

2 , 0 < ν < 1
2 − α. By [1], we can prove that the operator F defined by

(3.1) maps C(J,H) into Cν(J,Hα). By Arzela-Ascoli’s theorem, the embedding
Cν(J,Hα) ↪→ C(J,H) is compact. This implies that F : C(J,H) → C(J,H) is a
compact operator. Combining this with the continuity of F on C(J,H), we know
that F : C(J,H)→ C(J,H) is a completely continuous operator.
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Next, we prove that there exists a positive constant R big enough, such that
Q(ΩR) ⊂ ΩR. For any u ∈ C(J,H), by the condition (P1), we have

‖f(t, u(t))‖ ≤ η‖u(t)‖+M ≤ η‖u‖C +M, t ∈ J. (3.2)

Choose

R ≥
M(1 +

∑p
k=1 |ck|)

λ1(1− e−λ1t1
∑p
k=1 |ck|)− η(1 +

∑p
k=1 |ck|)

. (3.3)

For any u ∈ ΩR and t ∈ J , we have

‖Fu(t)‖ ≤
p∑
k=1

|ck|e−λ1t‖B‖
∫ tk

0

e−λ1(tk−s)‖f(s, u(s))‖ds

+
∫ t

0

e−λ1(t−s)‖f(s, u(s))‖ds

≤
∑p
k=1 |ck|e−λ1t

1− e−λ1t1
∑p
k=1 |ck|

∫ tk

0

e−λ1(tk−s)
(
η‖u‖C +M

)
ds

+
∫ t

0

e−λ1(t−s)
(
η‖u‖C +M

)
ds

≤
∑p
k=1 |ck|+ 1

λ1(1− e−λ1t1
∑p
k=1 |ck|)

(
ηR+M

)
≤ R.

Thus, ‖Fu‖C ≤ R. Therefore, F(ΩR) ⊂ ΩR. By Schauder fixed point theorem,
we know that F has at least one fixed point u ∈ ΩR. Since u is mild solution of
(2.9)–(2.10) for h(·) = f(·, u(·)), by Lemma 2.1, u ∈W 1,2(J,H) ∩ L2(J,D(A)) is a
strong solution of the problem (1.5)–(1.6). This completes the proof. �

Theorem 3.2. Let A be a positive definite self-adjoint operator in Hilbert space H
and it have compact resolvent, f : J ×H → H be continuous. If the condition (P0)
and the condition

(P2) There exists a positive constant

η <
λ1(1− e−λ1t1

∑p
k=1 |ck|)∑p

k=1 |ck|+ 1

such that

‖f(t, u)− f(t, v)‖ ≤ η‖u− v‖, ∀u, v ∈ H,

holds then (1.5)–(1.6) has a unique strong solution û ∈W 1,2(J,H) ∩ L2(J,D(A)).

Proof. By the proof of Theorem 3.1, we know that the operator F : C(J,H) →
C(J,H) is completely continuous and the mild solution of problem (1.5)–(1.6) is
equivalent to the fixed point of F . For any u, v ∈ C(J,H), from the assumption
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(P2) and (3.1), we have

‖Fu(t)−Fv(t)‖ ≤
p∑
k=1

|ck|e−λ1t‖B‖
∫ tk

0

e−λ1(tk−s)‖f(s, u(s))− f(s, v(s))‖ds

+
∫ t

0

e−λ1(t−s)‖f(s, u(s))− f(s, v(s))‖ds

≤
∑p
k=1 |ck|e−λ1t

1− e−λ1t1
∑p
k=1 |ck|

∫ tk

0

e−λ1(tk−s)η‖u− v‖Cds

+
∫ t

0

e−λ1(t−s)η‖u− v‖Cds

≤
η(
∑p
k=1 |ck|+ 1)

λ1(1− e−λ1t1
∑p
k=1 |ck|)

‖u− v‖C .

(3.4)
Therefore, we have

‖Fu−Fv‖C ≤
η(
∑p
k=1 |ck|+ 1)

λ1(1− e−λ1t1
∑p
k=1 |ck|)

‖u− v‖C . (3.5)

Thus, by the assumption (P2) and (3.5), we know that F is a contraction operator
on C(J,H), and therefore F has a unique fixed point û on C(J,H). Since û is
mild solution of (2.9)–(2.10) for h(·) = f(·, û(·)), by Lemma 2.1, û ∈ W 1,2(J,H) ∩
L2(J,D(A)) is a unique strong solution of (1.5)–(1.6). This completes the proof of
Theorem 3.2. �

4. Application

To illustrate our results, we consider the following semilinear heat equation with
nonlocal condition

∂

∂t
w(x, t)− κ ∂2

∂x2
w(x, t) = g(x, t, w(x, t)), (x, t) ∈ [a, b]× J,

w(a, t) = w(b, t) = 0, t ∈ J,

w(x, 0) =
p∑
k=1

arctan
1

2k2
w(x, k), x ∈ [a, b],

(4.1)

where κ > 0 is the coefficient of heat conductivity, J = [0,K], g : [a, b]×J×R→ R
is continuous.

Let H = L2(a, b) with the norm ‖ · ‖2. Define an operator A in Hilbert space H
by

D(A) = H2(a, b) ∩H1
0 (a, b), Au = −κ ∂2

∂x2
u, (4.2)

where H2(a, b) = W 2,2(a, b), H1
0 (a, b) = W 1,2

0 (a, b). From [14, 19], we know that A
is a positive definite self-adjoint operator on H and −A is the infinitesimal generator
of an analytic, compact semigroup T (t)(t ≥ 0). Moreover, A has discrete spectrum
with eigenvalues λn = κn2π2/(b− a)2, n ∈ N, associated normalized eigenvectors
vn(x) =

√
2/z sinnπx/(b− a), z =

√
b− a+ (sin 2nπa− sin 2nπb)/(2nπ), the set

{vn : n ∈ N} is an orthonormal basis of H and

T (t)u =
∞∑
n=1

e
−κn2π2t

(b−a)2 (u, vn)vn, ‖T (t)‖ ≤ e−
κπ2t

(b−a)2 , ∀t ≥ 0. (4.3)
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Let u(t) = w(·, t), f(t, u(t)) = g(·, t, w(·, t)), ck = arctan 1
2k2 , tk = k, k = 1, 2, . . . , p,

then (4.1) can be rewritten into the abstract form of problem (1.5)–(1.6).

Theorem 4.1. Assume that the nonlinear term g satisfies the following conditions:

(G1) there exist positive constants η and M with η < κπ2

(b−a)2(π+4)

(
4− πe−

κπ2

(b−a)2
)

such that

|g(x, t, w)| ≤ η|w|+M, x ∈ [a, b], t ∈ J, w ∈ R;

(G2) there exists a function c : R+ → R+ such that

|g(x, t, ξ)− g(y, s, η)| ≤ c(ρ)
(
|x− y|µ + |t− s|µ/2 + |ξ − η|

)
,

for any ρ > 0, µ ∈ (0, 1) and (x, t, ξ), (y, s, η) ∈ [a, b]× J × [−ρ, ρ].
Then (4.1) has at least one classical solution u ∈ C2+µ,1+µ/2([a, b]× J).

Proof. Since
p∑
k=1

|ck| ≤
∞∑
k=1

arctan
1

2k2
= π/4 < e

κπ2

(b−a)2 ,

condition (P0) holds. From (G1), we see that the condition (P1) is satisfied.
Hence by Theorem 3.1, problem (4.1) has a strong solution u ∈ C(J,H1

0 (a, b)) ∩
L2(J,H2(a, b))∩W 1,2(J, L2(a, b)) in the L2(a, b) sense. Since the nonlinear term g
satisfies (G2), by using a similar regularization method in [1, Lemma 4.2], we can
prove that u ∈ C2+µ,1+µ/2([a, b]× J) is a classical solution of (4.1). �

Similarly, from Theorem 3.2 we obtain the following result.

Theorem 4.2. Assume that the nonlinear term g satisfies (G2) and
(G3) there exists a positive constant

η <
κπ2

(b− a)2(π + 4)
(
4− πe−

κπ2

(b−a)2
)

such that

|g(x, t, w)− g(x, t, v)| ≤ η|w − v|, x ∈ [a, b], t ∈ J, w, v ∈ R.

Then (4.1) has a unique classical solution û ∈ C2+µ,1+µ/2([a, b]× J).
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