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GLOBAL ATTRACTIVITY FOR NONLINEAR DIFFERENTIAL
EQUATIONS WITH A NONLOCAL TERM

BOUMEDIENE ABDELLAOUI, TARIK MOHAMED TOUAOULA

Abstract. In this article we analyze the dynamics of the problem

x′(t) = −(δ + β(x(t)))x(t) + θ

Z τ

0
f(a)x(t− a)β(x(t− a))da, t > τ,

x(t) = φ(t), 0 ≤ t ≤ τ,

where δ, θ are positive constants, and β, φ, f are positives continuous functions.

The main results obtained in this paper are the following:

(1) Using the Laplace transform, we prove the global asymptotic stability of
the trivial steady state.

(2) Under some additional hypotheses on the data and by constructing a
Lyapunov functional, we show the asymptotic stability of the positive

steady state.

We conclude by applying our results to mathematical models of hematopoieses
and Nicholson’s blowflies.

1. Introduction

The main purpose of this work, is to analyze the of dynamical system

x′(t) = −(δ + β(x(t)))x(t) + θ

∫ τ

0

f(a)x(t− a)β(x(t− a))da, t ≥ τ,

x(t) = φ(t), 0 ≤ t ≤ τ,
(1.1)

where δ, θ, are positive constants, and f , φ are nonnegative continuous functions.
We assume that β is a continuous decreasing function mapping [0,∞) into (0, β(0)]
and the function sβ(s) is bounded in R+.

System (1.1) is used for describing various phenomena in physics, biology, phys-
iology, see [8, 10, 12, 13, 14] and references therein. In particular, system (1.1) is
used in some models arising in hematopoieses and Nicholson’s blowflies.

The main goal of our study is to get the asymptotic analysis and the global
stability for system (1.1). This problem is widely studied in the literature. Adimy
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et al [2, 4, 5] studied the problem

x′(t) = −(δ + β(x(t)))x(t) + θ

∫ τ

0

f(a)p(t, a)da, t ≥ 0, x(0) = x0,

∂p

∂t
+
∂p

∂a
= 0, t ≥ 0, 0 ≤ a ≤ τ

p(t, 0) = x(t)β(x(t)), p(0, x) = p0(x),

(1.2)

with x0 > 0 and p0(a) ≥ 0.
Note that system (1.2) can be reduced, at least for large t, to a nonlinear delay

equation of the form (1.1). In fact, the solution p of the second equation in (1.2) is
given by

p(t, a) =

{
x(t− a)β(x(t− a)) if t ≥ a,
p0(a− t) if t ≤ a.

Hence, at least for t ≥ τ , we have

x′(t) = −(δ + β(x(t)))x(t) + θ

∫ τ

0

f(a)x(t− a)β(x(t− a))da, for t > τ

x(t) = φ(t), for 0 ≤ t ≤ τ
(1.3)

where φ satisfies

φ′(t) = −(δ + β(φ(t)))φ(t) + θ

∫ t

0

f(a)φ(t− a)β(φ(t− a))da

+ θ

∫ τ

t

f(a)p0(a− t)da, for 0 < t ≤ τ,

φ(0) = x0.

Let

f̄(a) =

{
f(a) if a ≤ τ,
0 if a > τ,

and define
x̄(t) = x(t+ τ). (1.4)

Then, going back to the definition of x, we note that x̄ solves

x̄′(t) = −(δ + β(x̄(t)))x̄(t) + θ

∫ τ

0

f̄(a)x̄(t− a)β(x̄(t− a))da. (1.5)

Henceforth it is sufficient to know the asymptotic behavior of x̄.
Taking into consideration the structure of (1.1), we will use the Laplace trans-

form to get the asymptotic stability and to prove some a priori estimates in some
cases. Under additional hypotheses, we are able to construct a Lyapunov functional,
and then we obtain a global asymptotic stability.

Note that under suitable hypotheses on the data, the authors in [2, 4], proved
local stability for the positive steady state.

In [17], the authors proved the global attractivity of the positive steady state.
In our paper we improve, in some cases, the results obtained in [17]. In particular
we do not need that δx+ xβ(x) to be strictly increasing in (0,M) (for a particular
value M satisfying some additional conditions) which is the main hypothesis in
Theorem 2.4 of [17].
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To be more precise, when dealing with the example β(x) = β0b
n

bn+xn , we obtain the
global stability of the positive steady state under less restrictive assumptions than
[17], see Section 4 and compare the hypotheses in Theorem 3-6 in [17] (in particular
the point (i)), with Theorem 4.1 of the current article.

The supplementary condition imposed in [17, Theorem 3.6 (i)], is a direct con-
sequence of the fact that δx + xβ(x) is strictly increasing in (0, x∗) with x∗ being
the positive steady state of problem (1.3).

This article is organized as follows. In Section 2, we investigate the asymptotic
stability of the trivial steady state. We begin by proving a priori estimates for
solution of (1.1), then the Laplace transform to prove the stability result.

The case of the positive steady state is treated in Section 3, then under suitable
hypotheses on the data, we are able to construct a Lyapunov function, and then,
to get the global attractivity of the positive steady state.

In section 4 we will apply our result to analyze the hematopoiesis and Nicholson’s
blowflies models. We provide some explicit conditions for the global asymptotic
stability. Finally, we give some numerical simulations to illustrate the stability
results in some practical cases.

2. Convergence to the trivial steady state

In this section we prove that under some hypotheses the trivial solution attract
all solutions of (1.1). To show this, we denote

K := θ

∫ τ

0

f(σ)dσ.

From [9], we know that system (1.1) has a unique solution for each continuous,
initial condition. Moreover it is not difficult to prove the boundedness of the solution
of (1.1), see for instance [3].

Let us begin by proving that if x0 > 0 and p0 	 0, then x(t) > 0 for all t > 0
where x is the solution of (1.2).

Proposition 2.1. Let x be the solution of (1.2) associated with nonnegative initial
data, then x(t) > 0 for all t > 0.

Proof. Since x0 > 0, then there exists η > 0 such that x(t) > 0 for all t ∈ (0, η).
We argue by contradiction. Assume the existence of T > 0 such that x(t) > 0 for
t < T and x(T ) = 0. Thus x′(T ) ≤ 0. Now if T ≤ τ then using (1.2), we obtain
that

θ

∫ T

0

f(a)x(T − a)β(x(T − a))da+ θ

∫ τ

T

f(a)p0(a− T )da ≤ 0,

a contradiction with the fact that p0 	 0 and that x(t) > 0 for t < T . If T > τ , we
obtain

θ

∫ τ

0

f(a)x(T − a)β(x(T − a))da ≤ 0,

which is also a contradiction. Hence we obtain the desired result. �

We are now able to prove the main stability result of this section.

Theorem 2.2. Assume that K ≤ 1, then the trivial steady state attracts all positive
solutions of problem (1.1).
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Proof. To get the desired result we just have to show that x̄(t)→ 0 as t→∞ where
x̄ is defined in (1.4). It is clear that x̄ is bounded and nonnegative. Hence to get
the main result, we will use the Laplace transform. Recall that for u ∈ L∞(R+),

£(u(t))(p) =
∫ ∞

0

u(t)e−ptdt, p > 0

It is clear that £(x̄(t))(p) is well defined for all p > 0. Taking the Laplace transform
of each term in (1.5), it follows that

p£(x̄(t))(p)− x(0) = −δ£(x̄(t))(p) + £(β(x̄(t))x(t))(p)

+ θ

∫ τ

0

e−pt
∫ τ

0

f(a)x̄(t− a)β(x̄(t− a)) da dt

+ θ

∫ ∞
τ

e−pt
∫ t

0

f̄(a)x̄(t− a)β(x̄(t− a)) da dt

We set C(τ) = θ
∫ τ
0
e−pt

∫ τ
0
f(a)x̄(t− a)β(x̄(t− a)) da dt. Then taking in consider-

ation that ∫ ∞
τ

e−pt
∫ t

0

f̄(a)x̄(t− a)β(x̄(t− a)) da dt

≤
∫ ∞

0

e−pt
∫ t

0

f̄(a)x̄(t− a)β(x̄(t− a)) da dt

= £(f̄(t))(p)£(β(x̄(t))x(t))(p),

it follows that

p£(x̄(t))(p)− x(0) ≤ (θ£(f(t))(p)− 1)£(β(x̄(t))x(t))(p)− δ£(x̄(t))(p) + C(τ).

Since K ≤ 1, it follows that θ£(f(t))(p) ≤ 1, hence

p£(x̄(t))(p) + δ£(x̄(t))(p) ≤ x(0) + C(τ).

Letting p→ 0 and using Fatou’s lemma, we obtain∫ ∞
0

x̄(t)dt ≤ x(0) + C(τ).

Hence x̄ ∈ L1(R+), going back to (1.1), using the fact that β is a bounded
function, there results that ∫ ∞

0

|x̄′(t)|dt <∞.

Thus x̄ ∈W 1,1(R+), where W 1,1(R+) is a Sobolev space defined by

W 1,1(R+) = {φ ∈ L1(R+) such that φ′ ∈ L1(R+)},

notice that if φ ∈W 1,1(R+), then φ(t)→ 0 as t→∞, see for instance [6] for more
details about the properties of the Sobolev spaces.

As a consequence, we obtain that x̄(t) → 0 as t → ∞ and then x(t) → 0 as
t→∞. Hence we conclude. �

We deal now with the complementary case, namely we assume that

K > 1. (2.1)
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Theorem 2.3. Assume (2.1) holds, then the trivial steady state attracts all solu-
tions of problem (1.1) provided that

δ > (K − 1)β(0). (2.2)

The above Theorem is already proved in [4] by constructing a suitable Lyapunov
functional. However we provide here a simple proof using the Laplace transform.

Proof of Theorem 2.3. As in the proof of Theorem 2.2, taking the Laplace trans-
form and following the same computation as above, it follows that

p£(x(t))(p)−x(0) ≤ (θ£(f(t))(p)−1)£(β(x(t))x(t))(p)−δ£(x(t))(p)+C(τ). (2.3)

Using hypothesis (2.1), and the fact that β is nondecreasing, we obtain

p£(x(t))(p) + (δ − (K − 1)β(0))£(x(t))(p) ≤ x(0) + C(τ).

Hence, from (2.2), we obtain∫ ∞
0

x(t)dt ≤ x(0) + C(τ).

Thus x ∈ L1(0,∞). Now, going back to (1.1) and using the hypothesis on β, we can
show that x′ ∈ L1(0,∞). Thus x ∈W 1,1(R+) and then x(t)→ 0 as t→∞. �

The next theorem illustrates the situation, where we have instability of the trivial
steady state.

Theorem 2.4. Assume that

δ < (K − 1)β(0). (2.4)

Then the trivial steady state is unstable.

Proof. Recall that K := θ
∫ τ
0
f(σ)dσ, then (2.4) is equivalent to

δ <
(
θ

∫ τ

0

f(σ)dσ − 1
)
β(0). (2.5)

Assume by contradiction that x(t)→ 0 as t→∞. Then by a continuity argument,
β(x(t)) → β(0) as t → ∞. Thus we obtain the existence of large T such that for
all ε > 0 and for all t > T ,

β(x(t)) ≥ β(0)
1 + ε

. (2.6)

Define x1(t) ≡ x(t+ τ), then x1(0) = x(τ) > 0 and

x′1(t) = −(δ + β(x1(t)))x1(t) + θ

∫ t

0

f(a)x1(t− a)β(x1(t− a))da . (2.7)

It is clear that x1(t) → 0 as t → ∞. Taking the Laplace transform in (2.7) and
using the fact that

θ

∫ τ

0

e−pt
∫ τ

0

f̄(a)x̄(t− a)β(x̄(t− a)) da dt

≥ θ
∫ τ

0

e−pt
∫ t

0

f̄(a)x̄(t− a)β(x̄(t− a)) da dt,

which implies

θ

∫ ∞
0

e−pt
∫ τ

0

f̄(a)x̄(t− a)β(x̄(t− a)) da dt
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≥ θ
∫ ∞

0

e−pt
∫ t

0

f̄(a)x̄(t− a)β(x̄(t− a)) da dt,

we conclude that

p£(x1(t))(p)− x1(0) ≥ (θ£(f(t))(p)− 1)£(β(x1(t))x(t))(p)− δ£(x1(t))(p).

In view of (2.6), we obtain

p£(x1(t))(p)− x1(0) ≥
( β(0)

1 + ε
(θ£(f(t))(p)− 1)− δ

)
£(x1(t))(p). (2.8)

Note that, as p→ 0, we have

β(0)
1 + ε

(θ£(f(t))(p)− 1)− δ → β(0)
1 + ε

(K − 1)− δ.

Letting p→ 0 in (2.8), using the fact that limp→0 p£(x1(t))(p) = limt→∞ x1(t) = 0,
and by Fatou’s lemma, we conclude that

0 ≥
( β(0)

1 + ε
(K − 1)− δ

)∫ ∞
0

x1(t)dt.

Using (2.5) and choosing ε very small, we reach a contradiction with the positivity
of x1. Hence the result follows. �

3. Convergence to positive steady state

In this section, we tudy the local and global asymptotic stability of the positive
steady state. To obtain a steady state for (1.1), we just have to solve the equation(

δ − (K − 1)β(x∗)
)
x∗ = 0. (3.1)

It is clear that positive steady state exists if and only if

δ < (K − 1)β(0). (3.2)

In this case x∗ satisfies

β(x∗) =
δ

K − 1
. (3.3)

Since β is a positive, decreasing function mapping [0,∞) into (0, β(0)], then β−1 is
well defined and then we reach the existence and the uniqueness of x∗. Thus

x∗ = β−1
( δ

K − 1
)
.

We set p∗ = x∗β(x∗).
Let us begin by proving the local asymptotic stability of the positive steady

state. The proof of the following proposition was shown in [4], [2] and [17]. For the
sake of completeness, we provide here a simple proof.

Proposition 3.1. Assume that

− β∗(K + 1) ≤ δ < (K − 1)β(0), (3.4)

where
β∗ = β(x∗) + x∗β′(x∗). (3.5)

Then the positive steady state of (1.1) is locally asymptotically stable.
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Proof. Let x∗ be the positive solution of (3.1), then to obtain the local asymptotic
stability we use a linearisation argument. We set u(t) = x(t) − x∗, then dropping
all high order terms, we reach

u′(t) = −(δ + β∗)u(t) + θβ∗
∫ τ

0

f(a)u(t− a)da, (3.6)

with β∗ defined by (3.5). Note that the characteristic equation of (3.6) is

F (λ) := λ+ δ − β∗(θ
∫ τ

0

f(a)e−aλda− 1) = 0. (3.7)

To get the desired result we just have to show that if for some λ ∈ C we have
F (λ) = 0, then Re(λ) < 0. We argue by contradiction. Assume the existence of
λ ∈ C such that Re(λ) ≥ 0 and F (λ) = 0. We divide the proof into two cases:
Case 1: −β∗(K + 1) < δ. Suppose that Re(λ) > 0, then using the fact that β is
decreasing, K > 1 and (3.1), we can proof that β∗K < δ + β∗.

(1) If β∗ ≥ 0, then |λ+ δ + β∗| ≤ β∗K < δ + β∗.
(2) When β∗ < 0, if Re(λ) > 0, using (3.7), we obtain

|λ+ δ + β∗| < −θβ∗
∫ τ

0

f(a)da := −β∗K.

Owing to (3.4), we reach that −β∗K ≤ δ + β∗.
Consequently, in both cases it follows that Re(λ) < 0, a contradiction with the
main hypothesis in this case.

It is not difficult to show that the same conclusion is obtained if δ > −β∗(K+1),
and Re(λ) = 0.
Case 2: δ = −β∗(K + 1). Using the same arguments as in the first case we can
prove that the case Re(λ) > 0 can not occur. Hence we just have to analyze the
case where Re(λ) = 0.

Suppose that λ = iw, with w ∈ R and F (λ) = 0. Taking the real part in (3.7),
we obtain ∫ τ

0

f(a)cos(wa)da =
δ + β∗

θβ∗
.

Moreover, since δ = −β∗(K + 1), there results that∫ τ

0

f(a)da = −δ + β∗

θβ∗
. (3.8)

Using the fact that f � 0 and by (3.8), we obtain the existence of (τ1, τ2) ⊂ (0, τ)
such that 1 + cos(wa) = 0 for all a ∈ (τ1, τ2) which is impossible. Hence the
conclusion follows. �

To prove that the positive steady state is globally attractive, we need some
additional hypothesis on β. More precisely we suppose that one of the following
hypotheses holds:

(B1) sβ(s) is a nondecreasing function, or
(B2) there exists a positive constant r0 such that

max
R+

(sβ(s)) = r0β(r0) and β(r0) <
δ

K − 1
≤ β(0)

Let us begin by proving the following technical lemma.
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Lemma 3.2. Assume that (2.1), (B2) hold, then x∗ < r0 and there exists a positive
constant T such that

x(t) < r0 for all t ≥ T, (3.9)

where x(t) and x∗ are the solutions of problems (1.1), (3.1), respectively.

Proof. Let us begin by proving that x∗ < r0. Recall that β is a decreasing function.
Hence using (3.3) and (B2) we easily get that x∗ < r0.

We prove now (3.9). We argue by contradiction, hence we have to analyze two
cases:

Case I. Assume there exists T > 0 such that x(t) ≥ r0 for all t ≥ T . Without loss
of generality we can assume that T > τ . We set x1(t) = x(t+ T ), then x1 solves

x′1(t) = −(δ + β(x1(t)))x1(t) + θ

∫ τ

0

f(a)x1(t− a)β(x1(t− a))da. (3.10)

Note that x1 is a bounded function, then using the properties of β, taking the
Laplace transform in (3.10) and following closely the same computations as in the
proof of Theorem 2.2, we obtain

p£(x1(t))(p) +
(
δ − β(r0)(K − 1)

)
£(x1(t))(p) ≤ x1(0) + C(T ),

in view of (B2), by letting p→ 0, we reach that x1 ∈ L1(R+). Going back to (3.10),
we obtain x′1 ∈ L1(R+). Hence x1 ∈ W 1,1(R+) and then x1(t) → 0 as t → ∞, a
contradiction with the fact that x(t) ≥ r0 .

Case II. Let us consider now the oscillatory case; namely, we assume the existence
of a sequence {tn}n such that tn → ∞, x(tn) = r0 and x′(tn) ≥ 0. Fix tn0 such
that tn0 > τ , using (1.1), it follows that

0 ≤ −(δ + β(r0))r0 + θ

∫ τ

0

f(a)x(tn0 − a)β(x(tn0 − a))da,

by definition of r0, we have

δ ≤ β(r0)(K − 1),

which is a contradiction with hypothesis (B2). �

We now can state the main result on the global attractivity of the positive steady
state. Let p(t, a) = x(t − a)β(x(t − a)) (for t ≥ τ) and p∗ = x∗β(x∗). It is clear
that (for t so large) problem (1.1) is equivalent to the system

x′(t) = −(δ + β(x(t)))x(t) + θ

∫ τ

0

f(a)p(t, a)da,

∂p

∂t
+
∂p

∂a
= 0, 0 ≤ a ≤ τ

p(t, 0) = x(t)β(x(t)).

(3.11)

Therefore, to treat the global attractivity for (1.1), it is sufficient to deal with the
same question for system (3.11).

Theorem 3.3. Assume that either the condition (B1) or (B2) holds. Then the
positive steady state attracts all positive solutions of (3.11).
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Proof. We set η = lim inft→∞ x(t), then following closely the same arguments as in
the proof of [17, Lemma 2.2], we obtain that η > 0.

Define the set C+ = {h ∈ L1(0, τ),
∫ τ
0
f(a)h(a)da > 0}. If (x0, p0) ∈ [0,∞)×C+,

then for (x, p) the corresponding solution to the system (3.11), we can define the
Lyapunov functional V by

V (x(t), p(t, .)) =
∫ τ

0

φ(a)H(
p(t, a)
p∗

)da+ g(
x(t)
x∗

),

where

H(s) = s− ln(s)− 1, (3.12)

g(s) =
φ(0)

Kβ(x∗)
(
s− β(x∗)

∫ s

1

dσ

σβ(σx∗)
)
, (3.13)

φ(a) =
φ(0)
c

∫ τ

a

f(a)da, (3.14)

with c =
∫ τ
0
f(a)da. Then we set

I :=
d

dt

∫ τ

0

φ(a)H(
p(t, a)
p∗

)da. (3.15)

By straightforward computations,

I =
( xβ(x)
x∗β(x∗)

− ln(
xβ(x)
x∗β(x∗)

)
)
φ(0) +

∫ τ

0

φ′(a)
(p(t, a)

p∗
− ln(

p(t, a)
p∗

)
)
da.

Also from (3.13), we obtain

J :=
d

dt
g(
x(t)
x∗

)

=
( θ
x∗

∫ τ

0

f(a)p(t, a)da− (δ + β(x(t)))
x(t)
x∗

) φ(0)
Kβ(x∗)

(1− x∗β(x∗)
x(t)β(x(t))

).
(3.16)

Now, adding and subtracting the term

cθφ(0)
Kx∗β(x∗)

(1− x∗β(x∗)
x(t)β(x(t))

)p(t, 0),

summing the equations (3.15)-(3.16) and using the fact that δ = (K − 1)β(x∗),
there results that

I + J =
( xβ(x)
x∗β(x∗)

− ln(
xβ(x)
x∗β(x∗)

)
)
φ(0) +

∫ τ

0

φ′(a)
(p(t, a)

p∗
− ln(

p(t, a)
p∗

)
)
da

+
θφ(0)

Kx∗β(x∗)
(1− x∗β(x∗)

x(t)β(x(t))
)
∫ τ

0

f(a)(p(t, a)− p(t, 0))da

+
x(t)
x∗

φ(0)
Kβ(x∗)

(1− x∗β(x∗)
x(t)β(x(t))

)
(
(K − 1)(β(x(t))− β(x∗)).

Define s(t) = x(t)/x∗, then using (3.12), (3.14) and the fact that

H(x)−H(y) = H ′(y)(x− y) +
1
2
H ′′(z)(x− y)2

with min(x, y) < z < max(x, y), we obtain

I + J = L+
φ(0)(K − 1)

Kx∗β(x∗)β(sx∗)
(sx∗β(sx∗)− x∗β(x∗))

(
β(sx∗)− β(x∗)

)
, (3.17)
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where

L = −φ(0)
2c

∫ τ

0

(
p∗

z(t, a)
)2(

p(t, a)
p∗

− p(t, 0)
p∗

)2f(a)da,

with

min(
p(t, 0)
p∗

,
p(t, a)
p∗

) ≤ z(t, a) ≤ max(
p(t, 0)
p∗

,
p(t, a)
p∗

) for all (t, a).

Having in mind Lemma 3.2 and the fact that the function β is decreasing, we obtain

(sx∗β(sx∗)− x∗β(x∗))
(
β(sx∗)− β(x∗)

)
≤ 0. (3.18)

Indeed, inequality (3.18) follows easily in the case when sβ(s) is increasing.
Let us assume that (B2) holds, if s ≤ 1, then sx∗ := x(t) ≤ x∗ ≤ r0. Using the

fact that sβ(s) is nondecreasing for s ≤ r0, (r0 is defined in (B2)), we conclude that
sx∗β(sx∗)− x∗β(x∗) ≤ 0. The same result occurs for s > 1.

Note that if ( ddtV (x(t), p(t, .)) = 0, then x(t) = x∗ and p(t, a) = p(t, 0). Going
back to the equation of p, we obtain ∂p

∂t = 0, hence p(t, a) = A with A ∈ R.
Now, by identification with the equation of the positive steady state, we reach

that p(t, .) = p∗. Therefore, using the LaSalle invariance principle, (see e.g., [13]),
it follows that (x∗, p∗) is globally attractive and the result follows. �

4. Application to population dynamics

The blood production process is one of the major biological phenomena occurring
in human body. According to [4, 11, 10, 14] stem cells are classified as proliferating
phase (population p) and resting phase (population r). To describe the dynamics of
the population of proliferating and resting stem cells, the authors in [2, 4], proposed
the following age structured model,

∂r

∂t
+
∂r

∂a
= −(δ + β(x(t)))r(t, a), t ≥ 0, a ≥ 0

∂p

∂t
+
∂p

∂a
= −(γ + g(a))p, t ≥ 0, 0 ≤ a ≤ τ

r(t, 0) = 2
∫ τ

0

g(a)p(t, a)da, x(t) =
∫ ∞

0

r(t, a)da,

p(t, 0) = x(t)β(x(t)), p(0, x) = p0(x),

(4.1)

where β(x) ≡ β0b
n

bn+xn with β0 > 0, b ≥ 0 and n ≥ 0, see [11, 12, 13].
Notice that β0 is the maximum production rate and b is the resting population

density for which the rate of reentry β attains its maximum rate of change with
respect to the resting phase population. The constant n describes the sensitivity
of β with the changes.

Notice that the study of asymptotic behavior of system (4.1) can be reduced to
analyze problems of the form (1.1), (1.2). To see that, define x(t) =

∫∞
0
r(t, a)da,

by integrating the first equation in (4.1), we obtain

x′(t) = −(δ + β(x(t)))x(t) + 2
∫ τ

0

g(a)p(t, a)da, t ≥ 0, a ≥ 0

∂p

∂t
+
∂p

∂a
= −(γ + g(a))p, t ≥ 0, 0 ≤ a ≤ τ

p(t, 0) = x(t)β(x(t)), p(0, x) = p0(x).

(4.2)
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Now, using the characteristic equation we obtain

p(t, a) =

{
p0(a− t)e−γt−

R t
0 g(σ+a−t)dσ t < a

x(t− a)β(x(t− a))e−γa−
R a
0 g(σ)dσ t > a.

Hence, at least for t ≥ τ , it follows that

x′(t) = −(δ + β(x(t)))x(t) + 2
∫ τ

0

f(a)x(t− a)β(x(t− a))da, (4.3)

with f(a) = g(a)e−
R a
0 (γ+g(σ))dσ. The steady states of problem (4.3) are given by

(δ − (K − 1)β(x∗))x∗ = 0.

where

K = 2
∫ τ

0

f(a)da.

If δ ≤ (K − 1)β(0), then either x∗ = 0, or

β(x∗) =
δ

K − 1
:= α. (4.4)

Therefore, x∗ = β−1(α) is the unique non trivial solution.
Now we give some explicit conditions to get the global stability of the positive

steady state. This result improve in some cases [17, Theorem 3.6]. Notice that the
proof of [17, Theorem 3.6] is based on the perturbation theory, see [15] and [16],
which is different from the one used here.

As a direct application of Lemma 3.2 and Theorem 3.3, we obtain the next result.

Theorem 4.1. Let β(x) = β0b
n

bn+xn where n > 0. Assume that either n ≤ 1, or
n > 1 and

δ

K − 1
< β0 <

nδ

(n− 1)(K − 1)
. (4.5)

Then the positive steady state of problem (4.3) is globally asymptotically stable.

Proof. If n ≤ 1, then we can directly prove that xβ(x) is a nondecreasing function.
Assume that n > 1, then maxR+(sβ(s)) = r0β(r0) where r0 = δ

(n−1)
1
n

and

inequality (3.4) is always satisfied. The condition (B2) is satisfied if and only if
(4.5) holds. Therefore, the result follows using Lemma 3.2 and Theorem 3.3. �

In the case where β(x) = β0e
−nx, equation (1.1) is the Nicholson’s blowflies

model, we refer to [7] for more details in this direction.
Therefore, using Lemma 3.2 and Theorem 3.3, we obtain the next result that

gives a sufficient condition related to the parameters K, δ, β0, in order to get the
global asymptotic stability.

Theorem 4.2. Let β(x) = β0e
−nx, where n > 0. Assume that

δ

K − 1
< β0 <

δe

K − 1
.

Then the positive steady state of problem (4.3) is globally asymptotically stable.
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Figure 1. Global stability of the trivial solution where δ = 1.3
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Figure 2. Blobal stability of the positive steady state where δ = 0.6
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Figure 3. Global stability of the positive steady state related to
a blowflies model, with β(x) = e−2x and δ = 0.6

5. Numerical simulation

In this section, we illustrate our theoretical results with a number of numerical
simulations. In Figures 1–3, numerical simulations relating to a model of blood
production process are presented. The functions β and the division rates f are
respectively given by β(x) = β0b

n

bn+xn with β0 = 1, n = 2 and f(a) = e−a.
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