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EXISTENCE AND NON-EXISTENCE OF GLOBAL SOLUTIONS
FOR A SEMILINEAR HEAT EQUATION
ON A GENERAL DOMAIN

MIGUEL LOAYZA, CRISLENE S. DA PAIXAO

ABSTRACT. We consider the parabolic problem u;—Au = h(t) f(u) in 2x(0,T)
with a Dirichlet condition on the boundary and f, h € C[0, c0). The initial data
is assumed in the space {ug € Co(2); up > 0}, where Q is a either bounded
or unbounded domain. We find conditions that guarantee the global existence
(or the blow up in finite time) of nonnegative solutions.

1. INTRODUCTION

Let © C RY be either a bounded or unbounded domain with smooth boundary.
Meier [I1] considered the blow up phenomenon of the solutions of the parabolic

problem
uy — Lu = h(z,t)f(u) inQx (0,T),

u=0 ondQx(0,T), (1.1)
u(0) =up >0 in Q,

where
N 52 N 9
L= 432:21 aij(z, t)iaxiaxj + ; bi(x, t)%

is an uniformly elliptic operator in € with bounded coefficients a;; = a;; and h is a
continuous function with A(:,t) bounded. The assumptions on the functions f are
the following:

fecto,00); f(s)>0fors>0; f(0)>0; f >0; (1.2)
G(w) = woo CZ) <oo ifw>0. (1.3)

When h(x,t) = h(t) we have the following result which follows from [11l Theorem
2]. In this article, we denote by (S(t));>0 the heat semigroup with the homogeneous
Dirichlet condition on the boundary.

Theorem 1.1 ([11]). Assume that f satisfies conditions (1.2)) and (1.3) and h(x,-) =
h(-) € C[0, c0).
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(i) Let f be convex with f(0) = 0. Then the solution u of (1.1|) blows up in
finite time, if there exists T > 0 such that

GUIIS(F)uol|e) < /O h(o)do. (1.4)

(ii) Let f(0) > 0. If there exists T > 0 such that

G(0) < [1S(7)uo /OIIS(};SZIIOO

then the solution of (1.1) blows up in finite time.

do, (1.5)

Meier [10] also considered the semilinear parabolic equation
ug — Au = h(t)u? in Q x (0,7),
u=0 in 0Q x (0,7), (1.6)
u(0) =up >0 in Q,

where h € C[0,00), p > 1 and ug € L*°(2). He studied the existence of the Fujita
critical exponent p* of , that is, a number such that if 1 < p < p*, then any
nontrivial solution of problem blows up in finite time, and if p > p*, then
there exists a nontrivial global solution of problem .

Determining the value of the Fujita critical for problem and its extensions
has been objective of research of many authors, see for instance [2, [3] [8, @] 10, 111
T4l [15]. Below we list some values of p*, which depend of the domain Q and the
function h. For instance,

(i) If @ = RN and h = 1, then Fujita’s result in [3] means that p* = 1 + 2/N;
(i) If @ = RY = {z;2; > 0,i = 1,...,k} and h(t) ~ t9 for ¢ large( i.e. there
exist constants cg,c; > 0 such that cot? < h(t) < ¢t for t large) and
g > —1, then p* =1+2(¢+1)/(N + k), see [11;
(iii) If Q bounded and h(t) ~ et for t large, 8 > 0, then p* = 1 + 3/\;, where
A1 is the first Dirichlet eigenvalue of the Laplacian in 2, see [I0].

The results above can be obtained from the following general theorem, using
only of the asymptotic behavior of the solution u(t) = S(t)ug, t > 0, of the linear
problem u; — Au =0, in Q x (0, 00) and the function h.

Theorem 1.2 ([10]). Let p > 1, h € C[0,00).
(i) If there exists ug € L°(R2), ug > 0 such that
| oSyl o < . (1)
0
then there exists a global solution of (1.6) with lims_ o ||u(t)|lcc = 0.
(i) If
t
limsup ||S()ug|P~* / h(o)do = oo (1.8)
t—o0 0

for all ug € L>®(Q),uo > 0, then every nontrivial nonnegative solution of (1.6
blows up in finite time.

Condition (1.7)), was used by Weissler [14], when h = 1 and Q = R to find a
non negative global solution of (|1.6). This is clear since we can choose ag so that



EJDE-2014/168 EXISTENCE AND NON-EXISTENCE OF GLOBAL SOLUTIONS 3

u(t) = a(t)S(t)ug, where

—(p- ‘ ~1/(p=1)
at) = a7 = 0= 1) [ WSl do ,
0

is a supersolution of (1.6]) defined for all ¢ > 0.
In this work we are interested in the parabolic problem

ug — Au = h(t)f(u) in Qx (0,7,
u=0 ondQx(0,T), (1.9)
u(0) =up >0 in Q,

where h € C[0,00), f € C[0,00) is a locally Lipschitz function and ug € Cy(2).

Firstly, we are interested in finding conditions that guarantee the global existence
of solutions of problem . In particular, we would like obtain a similar condition
to Theorem 1.1(i). In second place, we are interested in the blow up in finite time
of nonnegative solutions of assuming only f locally Lipschitz, that is, without
condition .

It is well known that if f is locally Lipschitz, f(0) = 0 and ug € Co(Q2), ug > 0,
problem has a unique nonnegative solution u € C([0, Tiyax), Co(2)) defined in
the maximal interval [0, Tiyax) and verifying the equation

u(t) = S(t)ug + /0 S(t — o)h(0) f(u(c))do, (1.10)

for all t € [0, Tiax). Moreover, we have the blow up alternative: either Tiax =
oo(global solution) or Tyax < oo and limy_7 _ [Ju(t)]|cc = 0o (blow up solution).

Throughout this work a nonnegative function w € C(]0,T), Co(2)) is said to be a

solution of (1.9) in a interval [0,T) if satisfies equation (1.10).
Our first result is about the existence of a global solution of problem (|L.9)).

Theorem 1.3. Assume that f is locally Lipschitz and f(0) = 0. Suppose that
there exists a > 0 such that the functions f and g : (0,00) — [0,00), defined by
g(s) = f(s)/s, are nondecreasing in (0, a]. If vg € Co(2), vo > 0,v9 # 0, ||vollec < a
verifies

| Hotist@mledo <1, (111)

then there exists uy € Co(Q), 0 < ul < v such that for any up € Co(2) 0 <
up < uj,up # 0 the solution of s a global solution. Moreover, there ex-
ists a constant v > 0 so that u(t) < v - S(t)ug for all t > 0. In particular,
lim; o0 |Ju(t)||oo = 0.

Remark 1.4. (i) In Theorem we assume that g is nondecreasing in some
interval (0,a]. This condition is verified, for instance, if f is a convex function.
An analogous condition on g was used also in [I0, Theorem 7], but there it is
assumed that f(0) = f/(0) = 0 and Q = RY.

(ii) If f(t) = t? for all t > 0 and p > 1, we have that G(w) = w!™?/(p — 1) and
g(s) = sP~1. Thus, condition reduces to condition ([L.7).

Our second result is the following.

Theorem 1.5. Let f be a locally Lipschitz function, f(0) = 0, f(s) > 0 for all
s> 0 and G given by (1.3). Assume that the following conditions are satisfied:
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(i) The function f is nondecreasing and verifies the following property

F(S(t)vo) < S(t)f(vo), (1.12)

for all vy € Cy(),v9 >0 and t > 0.
(ii) There exist T > 0 and ug € Co(Q), ug > 0,up # 0 such that

G([15(r)uollso) < /O h(o)do. (1.13)

Then the solution of problem (1.9)) blows up in finite time Tpax < T.

Remark 1.6. Regarding Theorem we have the following comments:

(i) By the positivity of the heat semigroup, we have that S(t)vy > 0 if vg > 0.
Hence, the left side of is well defined.
(ii) If f is a convex function and Q = R¥, then holds. It is clear, by
Jensen’s inequality since S(t)ug = ki * ug, where k; is a heat kernel.
(iii) If f is twice differentiable and convex, then holds. Indeed, if w(t) =
F(S#)vg), then wy, — Aw = — f"(S(t)v)|[VS(t)vo|? < 0. We then conclude
using the maximum principle.

Theorem is proved using a monotone sequence method, see [12, [14]. Our
arguments for proving Theorem are different to the arguments in Meier. Pre-
cisely, Meier uses the subsolutions method for problem , whereas we use the
formulation to get an ordinary differential inequality, see inequality .

We now apply our results to the heat equation with logarithmic nonlinearity

uy — Au = h(t)(1 +u)[In(1 4+ u)]? in RY x (0,7),

1.14
u(0) =ug >0 in RY, (1.14)

where ¢ > 1 and h : [0,00) — [0,00) is a continuous function.

Problem was introduced in [5], is a particular case of more general quasi-
linear models with common properties of convergence to Hamilton-Jacobi equations
studied in [4], where the asymptotic of global in time solutions were established.
For the mathematical theory of blow-up, see [6] and the references therein. We
have the following result.

Theorem 1.7. Assume that ¢ > 1, h : [0,00) — [0,00) is a continuous function
such that h(t) ~ t" for t large enough and r > —1.
(i) If 1 < ¢ <1+ Z(r+1), then every nontrivial solution of (L.14) blows up in
finite time.
(it) If ¢ > 1+ 2(r + 1), there exists ug € Co(RY), ug # 0,ug > 0 so that the
solution of (L1.14)) is a global solution.
We also apply our results to the exponential reaction model
ur — Au = h(t)[exp(au) — 1] in Q x (0,7,
u=0 ondQx(0,T), (1.15)
u(0) =up >0 in
with & > 0, h € C[0,00) and © a bounded domain with smooth boundary. These

problems are important in combustion theory [I6] under the name of solid-fuel
model (Frank-Kamenetsky equation).

Theorem 1.8. Let a > 0 and h € C[0, c0).
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(i) If there exists T > 0 such that [] h(c)do > l/a, then there exists ug €
Co (), uo > 0 so that the solution of problem (1.15|) blows up in finite time.
(ii) If [~ h(o)do < 1/a then there exists ug € Co( ) ug > 0 such that the

solutlon of problem 1s global.

2. PROOF OF THE MAIN RESULTS

Lemma 2.1. Assume h, f : [0,00) — [0, 00) with h continuous, f locally Llpschitz
and nondecreasing. Let u,v € C([0,T],Co(2)) be solutions of problem (L.9) (in the
sense of (1.10)) with u(0) = ug > 0 and v(0) = vy > 0. If ug < vy, then u( ) < o(t)
for allt €10,T].

Proof. Let M = max{||u(t)]|co, [|[v()|loo; t € [0, T]}. Since ug < vy we have

t
—v(t) < / S(t = o)h(o)[f(u(o)) = f(v(o))]do. (2.1)

0
On the other hand, since u < u*, f is nondecreasing and locally Lipschitz, we have

[f(w) = f(0)] < [f(u) = f(0)]" < Lar(u—v)7,
where Lj; is the Lipschitz constant in [0, M]. Thus, it follows from inequality (2.1))
that

t
u(t) = o)) o < LM/o h(o)|[u(o) = v(0)] " ||oo-
The conclusion follows from Gronwall’s inequality. O

Proof of Theorem[I.5. We adopt the argument used in the proof of[13] Lemma
15.6]. Assume that u is a global solution and let 0 < ¢ < s. It follows from

and - that
S(s—t)u(t) = S(s)ug + /0 S(s —o)h(o) f(u(o))do

. (2.2)
> S(s)uo + / h(o)f(S(s — o)u(o))do.

0
Set (t ) s)uo + fo f(S(s —o)u(o))do. Since f is nondecreasing, it follows
from that

P (t) = h(t)f(S(s — t)u(t)) = h(t) f((t)). (2.3)
Hence, it follows that if U(t) = ftoo d" for all ¢t > 0, then
d AV
Thus,
s V) o o0 do
|| oo < wwo) —wen = [ CoZe< [ g5 < aistom)

for every s > 0. This fact, contradicts inequality . |

Proof of T heorem- We use the monotone sequence argument (see [12], [I4]).
Since [~ h(0)g(|S(o)volls)do < 1, there exists 8 > 0 such that

- p
| H@tis@mle) < 55 <1 (2.4)
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Set

1
0<A<——min{l, —2 1. 2.5
FES R G T, (2:5)

From Lemma it suffices to show that the corresponding solution u of ((1.9)) with
u(0) = u§ = Avg is global.
We define a sequence (u™),>1 by u® = S(t)uf and

W) = S(tup + / S(t — 0)h(o) f (" () doy, (2.6)

for n € N and all ¢ > 0.
Now, we claim that

u"(t) < (14 8)St)ug, (2.7)
for all ¢ > 0. We argue by induction on n. It is clear that (2.7) holds for n = 0.
Assume now that inequality (2.7) holds. It follows from (2.5) and (2.7)) that

[ ()0 < AL+ B)lvollee < a. (2.8)
So, since (1 + 8)S(t)us = A1+ B)S(t)vo < ||S(t)vo]leo < @ and g¢ is nondecreasing
in (0,a) we have
u" (1) < S(t)ug +/0 S(t = o)h(o) f((1+ B)S(0)ug)do
< S(t)ug +/0 h@)S(t — o) {(1 + B)gl(1 + B)AS(a)volS(0)ug} do
< S(Hug + (1 + ﬁ)/o W) S(t — o)lg([S(o)vollee) S (o) upldo
<S(ug + (1 + 5)S(t)u3/0 h(@)g([[S(a)volloc)do

It follows from (2.4) that u"*? verifies inequality (2.7)).
On the other hand, since u™ verifies inequality (2.8) and f is nondecreasing on

(0,a], we can prove using induction that u™ < u"*! for all n € N. Therefore, if
u(t) = limwu™(t) for all ¢ > 0, from monotone convergence theorem and (2.6]), we
conclude that w is a global solution of ([1.9)). O

Proof of Theorem[I.7. Let f : [0,00) — [0, 00) defined by
f(s) = (1 +s)[In(1 + 5)]7, (2.9)
for all s > 0. Then f”(s) > 0 for all s > 0. By Remark [L.6{iii), condition (L.12) is

. 00 s In(14+w)]t—¢
verified. Set G(w) = [ (s+1)[lcrl1(1+s)]’¥ = [n( q—l)]

. From here,

t

(G (t)uolloo)] / h(o)do = (g — 1)In(1 + [|S(t)uolloo))?" / W(o)do. (2.10)

0

To verify condition (1.13]), we use the following result, which follows directly
from L’Hopital’s rule:

_ (cof)/a if a =P,
lim ———2 = {0 if 8> a, (2.11)
o0 if 8 < a,
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for a, 8, ¢ > 0. From [7](Lemma 2.12), we know that ||S(#)ugl|ec > cot=™/? for t

large and ug € Co(RY),up > 0,u¢ # 0. Therefore, it follows from (2.10]) and (2.11))
that if h(t) > c1t",r > —1, for ¢ large enough then there exists a constant ¢ > 0 so

that
[G(||S(t)u0||oo)]_1/0 h(o)do > cn(1 + cot= ¥ )1+

> cept™ 7)1 > 1,

ifg< 1+ %(r + 1). Hence, condition is verified and the conclusion follows
of Theorem [LEl

We now analyze global existence using Theorem[I.3] It is clear that f and g(s) =
f(s)/s, where f is given by are nondecreasing functions. Let ¢ € Co(RY) with
|¥]lcc = 1. From [7](Lemma 2.12) there exists ¢1,tp > 0 such that

IS (#)]loe < ext™ 72, (2.12)

for all ¢ > ¢y. Let € > 0 so that 1 +r — %(q —1)4+€g < 0. From (2.11)) there exists
t1 > 0 such
In(1 + et N/2) < N2 (2.13)
for all t > t1. Let t3 > 0 such that
h(t) < cot”, (2.14)

for all ¢ > t5 and fix t3 > max{1,tg, {1, {2} satisfying

r—N(g— € 1
C4té+ 5 (g—1)+eq 5’ (215)
where ¢y = c3c2/[N(¢q—1)/2—r—1—¢€q] >0and c3 = (1+1/c1).
Consider vy = uyy with 0 < u <1 and
1
es(ts)g(p) < 5 (2.16)

2’

where c5(t3) = fota h(o)do. This fact is possible because lim,,_o+ g(u) = 0.
It follows of (2.12) that ||S(¢)vo|lec < cipt=N/2 < eit=N/2 for all t > to. Thus,

g(IIS(t)vollse) < g(crt=N/2) for all t > to. Hence, by (2.13) - (2.16) we have

/0 " h()g([1S(0)volloe)do

3

= g(”UO”OO)/O 3 h(o)do + /too h(o)g(cro™N/?)do

< g(u)/O ’ h(o)do + / h(o)(1+ clcr—%ﬂ)[ln(l + Clo'*N/2)]QdO'

ts

1 o
<3 “3/ h(o)o NP [In(1 + ¢10~ /)] do
t3

o0
< +0302/ o oV 2g=(N/2=)a 4

t3

< = +c4t31+7‘*%(q71)+ﬁq < 1.

N — N

Therefore, estimate (1.11]) is satisfied. O
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Remark 2.2. We can see from (fixing t), that if ug = A\ with ¢ €
Co(RN),4p > 0,9 # 0, then condition is satisfied when A > 0 is large.
In other words, if initial data is large enough, then the corresponding solution of
problem blows up in finite time.

Proof of Theorem[1.8. (i) Note that

o do 1
G(w) = /w oxplao) =1 =5 In[1 — exp(—aw)].
Let wo > 0 such that In(1 — exp(—awp)) = —1. Set ug = Ap1, where A > wge*™
and ¢ is the first eigenfunction associated to first eigenvalue A; of the Laplacian
with Dirichlet condition on the boundary 9€2. We suppose that ||¢1|lcc = 1. Hence,
[S(T)uolloe = Ae™7 > wo. Thus, G(||S(T)uols) < G(wo) < [, h(o)do. From
Theorem the result follows.

(ii) We use Theorem Let g(s) = 6“1—1 for all s > 0 and let € > 0 so that
IS h(o)do < 1/(a + €). Since lims_g+ g(s) = «, there exist sy > 0 such that
g(s) < a+eforall 0 <s < sg. Moreover, g is nondecreasing in (0, 00).

It follows that if vg € Co(2),ve > 0,v9 # 0 with ||v||eo < So, then

o o
/ R(a)g(]|S(a)vo]|so)do < (o + e)/ h(o)do < 1.
0 0
So, estimate ([1.11)) is verified. O
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