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EXISTENCE AND NON-EXISTENCE OF GLOBAL SOLUTIONS
FOR A SEMILINEAR HEAT EQUATION

ON A GENERAL DOMAIN

MIGUEL LOAYZA, CRISLENE S. DA PAIXÃO

Abstract. We consider the parabolic problem ut−∆u = h(t)f(u) in Ω×(0, T )

with a Dirichlet condition on the boundary and f, h ∈ C[0,∞). The initial data

is assumed in the space {u0 ∈ C0(Ω); u0 ≥ 0}, where Ω is a either bounded
or unbounded domain. We find conditions that guarantee the global existence

(or the blow up in finite time) of nonnegative solutions.

1. Introduction

Let Ω ⊂ RN be either a bounded or unbounded domain with smooth boundary.
Meier [11] considered the blow up phenomenon of the solutions of the parabolic
problem

ut − Lu = h(x, t)f(u) in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(0) = u0 ≥ 0 in Ω,
(1.1)

where

L =
N∑

i,j=1

aij(x, t)
∂2

∂xi∂xj
+

N∑
i=1

bi(x, t)
∂

∂xi

is an uniformly elliptic operator in Ω with bounded coefficients aij = aji and h is a
continuous function with h(·, t) bounded. The assumptions on the functions f are
the following:

f ∈ C1[0,∞); f(s) > 0 for s > 0; f(0) ≥ 0; f ′ ≥ 0; (1.2)

G(w) =
∫ ∞
w

dσ

f(σ)
<∞ if w > 0. (1.3)

When h(x, t) = h(t) we have the following result which follows from [11, Theorem
2]. In this article, we denote by (S(t))t≥0 the heat semigroup with the homogeneous
Dirichlet condition on the boundary.

Theorem 1.1 ([11]). Assume that f satisfies conditions (1.2) and (1.3) and h(x, ·) =
h(·) ∈ C[0,∞).
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(i) Let f be convex with f(0) = 0. Then the solution u of (1.1) blows up in
finite time, if there exists τ > 0 such that

G(‖S(τ)u0‖∞) ≤
∫ τ

0

h(σ)dσ. (1.4)

(ii) Let f(0) > 0. If there exists τ > 0 such that

G(0) ≤ ‖S(τ)u0‖∞
∫ τ

0

h(σ)
‖S(t)u0‖∞

dσ, (1.5)

then the solution of (1.1) blows up in finite time.

Meier [10] also considered the semilinear parabolic equation

ut −∆u = h(t)up in Ω× (0, T ),

u = 0 in ∂Ω× (0, T ),

u(0) = u0 ≥ 0 in Ω,
(1.6)

where h ∈ C[0,∞), p > 1 and u0 ∈ L∞(Ω). He studied the existence of the Fujita
critical exponent p∗ of (1.6), that is, a number such that if 1 < p ≤ p∗, then any
nontrivial solution of problem (1.6) blows up in finite time, and if p > p∗, then
there exists a nontrivial global solution of problem (1.6).

Determining the value of the Fujita critical for problem (1.6) and its extensions
has been objective of research of many authors, see for instance [2, 3, 8, 9, 10, 11,
14, 15]. Below we list some values of p∗, which depend of the domain Ω and the
function h. For instance,

(i) If Ω = RN and h = 1, then Fujita’s result in [3] means that p∗ = 1 + 2/N ;
(ii) If Ω = RNk = {x;xi > 0, i = 1, ..., k} and h(t) ∼ tq for t large( i.e. there

exist constants c0, c1 > 0 such that c0tq ≤ h(t) ≤ c1t
q for t large) and

q > −1, then p∗ = 1 + 2(q + 1)/(N + k), see [11];
(iii) If Ω bounded and h(t) ∼ eβt for t large, β > 0, then p∗ = 1 + β/λ1, where

λ1 is the first Dirichlet eigenvalue of the Laplacian in Ω, see [10].

The results above can be obtained from the following general theorem, using
only of the asymptotic behavior of the solution u(t) = S(t)u0, t ≥ 0, of the linear
problem ut −∆u = 0, in Ω× (0,∞) and the function h.

Theorem 1.2 ([10]). Let p > 1, h ∈ C[0,∞).
(i) If there exists u0 ∈ L∞(Ω), u0 ≥ 0 such that∫ ∞

0

h(σ)‖S(σ)u0‖p−1
∞ dσ <∞, (1.7)

then there exists a global solution of (1.6) with limt→∞ ‖u(t)‖∞ = 0.
(ii) If

lim sup
t→∞

‖S(t)u0‖p−1

∫ t

0

h(σ)dσ =∞ (1.8)

for all u0 ∈ L∞(Ω), u0 ≥ 0, then every nontrivial nonnegative solution of (1.6)
blows up in finite time.

Condition (1.7), was used by Weissler [14], when h = 1 and Ω = RN , to find a
non negative global solution of (1.6). This is clear since we can choose a0 so that
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u(t) = a(t)S(t)u0, where

a(t) =
[
a
−(p−1)
0 − (p− 1)

∫ t

0

h(σ)‖S(σ)u0‖p−1
∞ dσ

]−1/(p−1)

,

is a supersolution of (1.6) defined for all t ≥ 0.
In this work we are interested in the parabolic problem

ut −∆u = h(t)f(u) in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(0) = u0 ≥ 0 in Ω,
(1.9)

where h ∈ C[0,∞), f ∈ C[0,∞) is a locally Lipschitz function and u0 ∈ C0(Ω).
Firstly, we are interested in finding conditions that guarantee the global existence

of solutions of problem (1.9). In particular, we would like obtain a similar condition
to Theorem 1.1(i). In second place, we are interested in the blow up in finite time
of nonnegative solutions of (1.9) assuming only f locally Lipschitz, that is, without
condition (1.2).

It is well known that if f is locally Lipschitz, f(0) = 0 and u0 ∈ C0(Ω), u0 ≥ 0,
problem (1.9) has a unique nonnegative solution u ∈ C([0, Tmax), C0(Ω)) defined in
the maximal interval [0, Tmax) and verifying the equation

u(t) = S(t)u0 +
∫ t

0

S(t− σ)h(σ)f(u(σ))dσ, (1.10)

for all t ∈ [0, Tmax). Moreover, we have the blow up alternative: either Tmax =
∞(global solution) or Tmax < ∞ and limt→Tmax ‖u(t)‖∞ = ∞ (blow up solution).
Throughout this work a nonnegative function u ∈ C([0, T ), C0(Ω)) is said to be a
solution of (1.9) in a interval [0, T ) if satisfies equation (1.10).

Our first result is about the existence of a global solution of problem (1.9).

Theorem 1.3. Assume that f is locally Lipschitz and f(0) = 0. Suppose that
there exists a > 0 such that the functions f and g : (0,∞) → [0,∞), defined by
g(s) = f(s)/s, are nondecreasing in (0, a]. If v0 ∈ C0(Ω), v0 ≥ 0, v0 6= 0, ‖v0‖∞ ≤ a
verifies ∫ ∞

0

h(σ)g(‖S(σ)v0‖∞)dσ < 1, (1.11)

then there exists u∗0 ∈ C0(Ω), 0 ≤ u∗0 ≤ v0 such that for any u0 ∈ C0(Ω) 0 ≤
u0 ≤ u∗0, u0 6= 0 the solution of (1.9) is a global solution. Moreover, there ex-
ists a constant γ > 0 so that u(t) ≤ γ · S(t)u0 for all t ≥ 0. In particular,
limt→∞ ‖u(t)‖∞ = 0.

Remark 1.4. (i) In Theorem 1.3 we assume that g is nondecreasing in some
interval (0, a]. This condition is verified, for instance, if f is a convex function.
An analogous condition on g was used also in [10, Theorem 7], but there it is
assumed that f(0) = f ′(0) = 0 and Ω = RNk .

(ii) If f(t) = tp for all t ≥ 0 and p > 1, we have that G(w) = w1−p/(p− 1) and
g(s) = sp−1. Thus, condition (1.11) reduces to condition (1.7).

Our second result is the following.

Theorem 1.5. Let f be a locally Lipschitz function, f(0) = 0, f(s) > 0 for all
s > 0 and G given by (1.3). Assume that the following conditions are satisfied:
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(i) The function f is nondecreasing and verifies the following property

f(S(t)v0) ≤ S(t)f(v0), (1.12)

for all v0 ∈ C0(Ω), v0 ≥ 0 and t > 0.
(ii) There exist τ > 0 and u0 ∈ C0(Ω), u0 ≥ 0, u0 6= 0 such that

G(‖S(τ)u0‖∞) ≤
∫ τ

0

h(σ)dσ. (1.13)

Then the solution of problem (1.9) blows up in finite time Tmax ≤ τ .

Remark 1.6. Regarding Theorem 1.5 we have the following comments:
(i) By the positivity of the heat semigroup, we have that S(t)v0 ≥ 0 if v0 ≥ 0.

Hence, the left side of (1.12) is well defined.
(ii) If f is a convex function and Ω = RN , then (1.12) holds. It is clear, by

Jensen’s inequality since S(t)u0 = kt ? u0, where kt is a heat kernel.
(iii) If f is twice differentiable and convex, then (1.12) holds. Indeed, if w(t) =

f(S(t)v0), then wt −∆w = −f ′′(S(t)v0)|∇S(t)v0|2 ≤ 0. We then conclude
using the maximum principle.

Theorem 1.3 is proved using a monotone sequence method, see [12, 14]. Our
arguments for proving Theorem 1.5 are different to the arguments in Meier. Pre-
cisely, Meier uses the subsolutions method for problem (1.1), whereas we use the
formulation (1.10) to get an ordinary differential inequality, see inequality (2.3).

We now apply our results to the heat equation with logarithmic nonlinearity

ut −∆u = h(t)(1 + u)[ln(1 + u)]q in RN × (0, T ),

u(0) = u0 ≥ 0 in RN ,
(1.14)

where q > 1 and h : [0,∞)→ [0,∞) is a continuous function.
Problem (1.14) was introduced in [5], is a particular case of more general quasi-

linear models with common properties of convergence to Hamilton-Jacobi equations
studied in [4], where the asymptotic of global in time solutions were established.
For the mathematical theory of blow-up, see [6] and the references therein. We
have the following result.

Theorem 1.7. Assume that q > 1, h : [0,∞) → [0,∞) is a continuous function
such that h(t) ∼ tr for t large enough and r > −1.

(i) If 1 < q < 1 + 2
N (r+ 1), then every nontrivial solution of (1.14) blows up in

finite time.
(ii) If q > 1 + 2

N (r + 1), there exists u0 ∈ C0(RN ), u0 6= 0, u0 ≥ 0 so that the
solution of (1.14) is a global solution.

We also apply our results to the exponential reaction model
ut −∆u = h(t)[exp(αu)− 1] in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(0) = u0 ≥ 0 in Ω,
(1.15)

with α > 0, h ∈ C[0,∞) and Ω a bounded domain with smooth boundary. These
problems are important in combustion theory [16] under the name of solid-fuel
model (Frank-Kamenetsky equation).

Theorem 1.8. Let α > 0 and h ∈ C[0,∞).
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(i) If there exists τ > 0 such that
∫ τ
0
h(σ)dσ ≥ 1/α, then there exists u0 ∈

C0(Ω), u0 ≥ 0 so that the solution of problem (1.15) blows up in finite time.
(ii) If

∫∞
0
h(σ)dσ < 1/α, then there exists u0 ∈ C0(Ω), u0 ≥ 0 such that the

solution of problem (1.15) is global.

2. Proof of the main results

Lemma 2.1. Assume h, f : [0,∞)→ [0,∞) with h continuous, f locally Lipschitz
and nondecreasing. Let u, v ∈ C([0, T ], C0(Ω)) be solutions of problem (1.9)(in the
sense of (1.10)) with u(0) = u0 ≥ 0 and v(0) = v0 ≥ 0. If u0 ≤ v0, then u(t) ≤ v(t)
for all t ∈ [0, T ].

Proof. Let M = max{‖u(t)‖∞, ‖v(t)‖∞; t ∈ [0, T ]}. Since u0 ≤ v0 we have

u(t)− v(t) ≤
∫ t

0

S(t− σ)h(σ)[f(u(σ))− f(v(σ))]dσ. (2.1)

On the other hand, since u ≤ u+, f is nondecreasing and locally Lipschitz, we have

[f(u)− f(v)] ≤ [f(u)− f(v)]+ ≤ LM (u− v)+,

where LM is the Lipschitz constant in [0,M ]. Thus, it follows from inequality (2.1)
that

‖[u(t)− v(t)]+‖∞ ≤ LM
∫ t

0

h(σ)‖[u(σ)− v(σ)]+‖∞.

The conclusion follows from Gronwall’s inequality. �

Proof of Theorem 1.5. We adopt the argument used in the proof of[13, Lemma
15.6]. Assume that u is a global solution and let 0 < t ≤ s. It follows from (1.10)
and (1.12) that

S(s− t)u(t) = S(s)u0 +
∫ t

0

S(s− σ)h(σ)f(u(σ))dσ

≥ S(s)u0 +
∫ t

0

h(σ)f(S(s− σ)u(σ))dσ.
(2.2)

Set ψ(t) = S(s)u0 +
∫ t
0
h(σ)f(S(s− σ)u(σ))dσ. Since f is nondecreasing, it follows

from (2.2) that
ψ′(t) = h(t)f(S(s− t)u(t)) ≥ h(t)f(ψ(t)). (2.3)

Hence, it follows that if Ψ(t) =
∫∞
t

dσ
f(σ) for all t > 0, then

d

dt
(Ψ(ψ(t))) = − ψ′(t)

f(ψ(t))
≤ −h(t).

Thus,∫ s

0

h(σ)dσ ≤ Ψ(ψ(0))−Ψ(ψ(s)) =
∫ ψ(s)

ψ(0)

dσ

f(σ)
<

∫ ∞
S(s)u0

dσ

f(σ)
= G(S(s)u0)

for every s > 0. This fact, contradicts inequality (1.13). �

Proof of Theorem 1.3. We use the monotone sequence argument (see [12, 14]).
Since

∫∞
0
h(σ)g(‖S(σ)v0‖∞)dσ < 1, there exists β > 0 such that∫ ∞

0

h(σ)g(‖S(σ)v0‖∞) <
β

β + 1
< 1. (2.4)
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Set

0 < λ <
1

β + 1
min

{
1,

a

‖v0‖∞
}
. (2.5)

From Lemma 2.1, it suffices to show that the corresponding solution u of (1.9) with
u(0) = u∗0 = λv0 is global.

We define a sequence (un)n≥1 by u0 = S(t)u∗0 and

un(t) = S(t)u∗0 +
∫ t

0

S(t− σ)h(σ)f(un−1(σ))dσ, (2.6)

for n ∈ N and all t ≥ 0.
Now, we claim that

un(t) ≤ (1 + β)S(t)u∗0, (2.7)

for all t ≥ 0. We argue by induction on n. It is clear that (2.7) holds for n = 0.
Assume now that inequality (2.7) holds. It follows from (2.5) and (2.7) that

‖un(t)‖∞ ≤ λ(1 + β)‖v0‖∞ < a. (2.8)

So, since (1 + β)S(t)u∗0 = λ(1 + β)S(t)v0 ≤ ‖S(t)v0‖∞ ≤ a and g is nondecreasing
in (0, a) we have

un+1(t) ≤ S(t)u∗0 +
∫ t

0

S(t− σ)h(σ)f((1 + β)S(σ)u∗0)dσ

≤ S(t)u∗0 +
∫ t

0

h(σ)S(t− σ) {(1 + β)g[(1 + β)λS(σ)v0]S(σ)u∗0} dσ

≤ S(t)u∗0 + (1 + β)
∫ t

0

h(σ)S(t− σ)[g(‖S(σ)v0‖∞)S(σ)u∗0]dσ

≤ S(t)u∗0 + (1 + β)S(t)u∗0

∫ t

0

h(σ)g(‖S(σ)v0‖∞)dσ.

It follows from (2.4) that un+1 verifies inequality (2.7).
On the other hand, since un verifies inequality (2.8) and f is nondecreasing on

(0, a], we can prove using induction that un ≤ un+1 for all n ∈ N. Therefore, if
u(t) = limun(t) for all t ≥ 0, from monotone convergence theorem and (2.6), we
conclude that u is a global solution of (1.9). �

Proof of Theorem 1.7. Let f : [0,∞)→ [0,∞) defined by

f(s) = (1 + s)[ln(1 + s)]q, (2.9)

for all s ≥ 0. Then f ′′(s) > 0 for all s > 0. By Remark 1.6(iii), condition (1.12) is
verified. Set G(w) =

∫∞
w

ds
(s+1)[ln(1+s)]q = [ln(1+w)]1−q

q−1 . From here,

[G(‖S(t)u0‖∞)]−1

∫ t

0

h(σ)dσ = (q − 1)[ln(1 + ‖S(t)u0‖∞)]q−1

∫ t

0

h(σ)dσ. (2.10)

To verify condition (1.13), we use the following result, which follows directly
from L’Hôpital’s rule:

lim
t→∞

ln(1 + c0t
−β)

t−α
=


(c0β)/α if α = β,

0 if β > α,

∞ if β < α,

(2.11)
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for α, β, c0 > 0. From [7](Lemma 2.12), we know that ‖S(t)u0‖∞ ≥ c0t
−N/2 for t

large and u0 ∈ C0(RN ), u0 ≥ 0, u0 6= 0. Therefore, it follows from (2.10) and (2.11)
that if h(t) ≥ c1tr, r > −1, for t large enough then there exists a constant c > 0 so
that

[G(‖S(t)u0‖∞)]−1

∫ t

0

h(σ)dσ ≥ c[ln(1 + c0t
−N2 )]q−1tr+1

≥ c(c0t−
N
2 )q−1tr+1 > 1,

if q < 1 + 2
N (r + 1). Hence, condition (1.13) is verified and the conclusion follows

of Theorem 1.5.
We now analyze global existence using Theorem 1.3. It is clear that f and g(s) =

f(s)/s, where f is given by (2.9) are nondecreasing functions. Let ψ ∈ C0(RN ) with
‖ψ‖∞ = 1. From [7](Lemma 2.12) there exists c1, t0 > 0 such that

‖S(t)ψ‖∞ ≤ c1t−N/2, (2.12)

for all t ≥ t0. Let ε > 0 so that 1 + r− N
2 (q− 1) + εq < 0. From (2.11) there exists

t1 > 0 such
ln(1 + c1t

−N/2) ≤ tN/2−ε, (2.13)

for all t ≥ t1. Let t2 > 0 such that

h(t) ≤ c2tr, (2.14)

for all t ≥ t2 and fix t3 > max{1, t0, t1, t2} satisfying

c4t
1+r−N2 (q−1)+εq
3 <

1
2
, (2.15)

where c4 = c3c2/[N(q − 1)/2− r − 1− εq] > 0 and c3 = (1 + 1/c1).
Consider v0 = µψ with 0 < µ ≤ 1 and

c5(t3)g(µ) <
1
2
, (2.16)

where c5(t3) =
∫ t3
0
h(σ)dσ. This fact is possible because limµ→0+ g(µ) = 0.

It follows of (2.12) that ‖S(t)v0‖∞ ≤ c1µt
−N/2 ≤ c1t

−N/2 for all t ≥ t0. Thus,
g(‖S(t)v0‖∞) ≤ g(c1t−N/2) for all t ≥ t0. Hence, by (2.13) - (2.16) we have∫ ∞

0

h(σ)g(‖S(σ)v0‖∞)dσ

≤ g(‖v0‖∞)
∫ t3

0

h(σ)dσ +
∫ ∞
t3

h(σ)g(c1σ−N/2)dσ

≤ g(µ)
∫ t3

0

h(σ)dσ +
∫ ∞
t3

h(σ)(1 +
1

c1σ−N/2
)[ln(1 + c1σ

−N/2)]qdσ

<
1
2

+ c3

∫ ∞
t3

h(σ)σN/2[ln(1 + c1σ
−N/2)]qdσ

≤ 1
2

+ c3c2

∫ ∞
t3

σrσN/2σ−(N/2−ε)qdσ

≤ 1
2

+ c4t3
1+r−N2 (q−1)+εq < 1.

Therefore, estimate (1.11) is satisfied. �
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Remark 2.2. We can see from (2.10) (fixing t), that if u0 = λψ with ψ ∈
C0(RN ), ψ ≥ 0, ψ 6= 0, then condition (1.12) is satisfied when λ > 0 is large.
In other words, if initial data is large enough, then the corresponding solution of
problem (1.14) blows up in finite time.

Proof of Theorem 1.8. (i) Note that

G(w) =
∫ ∞
w

dσ

exp(ασ)− 1
= − 1

α
ln[1− exp(−αw)].

Let w0 > 0 such that ln(1 − exp(−αw0)) = −1. Set u0 = λϕ1, where λ ≥ w0e
λ1τ

and ϕ1 is the first eigenfunction associated to first eigenvalue λ1 of the Laplacian
with Dirichlet condition on the boundary ∂Ω. We suppose that ‖ϕ1‖∞ = 1. Hence,
‖S(τ)u0‖∞ = λe−λ1τ ≥ w0. Thus, G(‖S(τ)u0‖∞) ≤ G(w0) ≤

∫ τ
0
h(σ)dσ. From

Theorem 1.5, the result follows.
(ii) We use Theorem 1.3. Let g(s) = eαs−1

s for all s > 0 and let ε > 0 so that∫∞
0
h(σ)dσ < 1/(α + ε). Since lims→0+ g(s) = α, there exist s0 > 0 such that

g(s) < α+ ε for all 0 < s < s0. Moreover, g is nondecreasing in (0,∞).
It follows that if v0 ∈ C0(Ω), v0 ≥ 0, v0 6= 0 with ‖v0‖∞ < s0, then∫ ∞

0

h(σ)g(‖S(σ)v0‖∞)dσ ≤ (α+ ε)
∫ ∞

0

h(σ)dσ < 1.

So, estimate (1.11) is verified. �
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