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STABILITY OF PARABOLIC EQUATIONS WITH UNBOUNDED
OPERATORS ACTING ON DELAY TERMS

ALLABEREN ASHYRALYEV, DENIZ AGIRSEVEN

Abstract. In this article, we study the stability of the initial value problem
for the delay differential equation

dv(t)

dt
+ Av(t) = B(t)v(t− ω) + f(t), t ≥ 0,

v(t) = g(t) (−ω ≤ t ≤ 0)

in a Banach space E with the unbounded linear operators A and B(t) with

dense domains D(A) ⊆ D(B(t)). We establish stability estimates for the

solution of this problem in fractional spaces Eα. Also we obtain stability
estimates in Hölder norms for the solutions of the mixed problems for delay

parabolic equations with Neumann condition with respect to space variables.

1. Introduction

Stability of delay ordinary differential and difference equations and delay partial
differential and difference equations with bounded operators acting on delay terms
has been studied extensively and and developed over the previous three decades;
see, for example [1, 3, 4, 5, 6, 20, 21, 23, 24, 29, 31, 32, 33] and their references.
The theory of stability of delay partial differential and difference equations with
unbounded operators acting on delay terms has received less attention than delay
ordinary differential and difference equations (see, [2, 7, 8, 9, 22, 25]). It is known
that various initial-boundary value problems for linear evolutionary delay partial
differential equations can be reduced to initial value problems of the form

dv(t)
dt

+Av(t) = B(t)v(t− ω) + f(t), t ≥ 0,

v(t) = g(t) (−ω ≤ t ≤ 0),
(1.1)

where E is an arbitrary Banach space, A and B(t) are unbounded linear operators
in E with dense domains D(A) ⊆ D(B(t)). Let A be a strongly positive operator,
i.e. −A is the generator of the analytic semigroup exp{−tA} (t ≥ 0) of the linear
bounded operators with exponentially decreasing norm when t→∞. That means
the following estimates hold:

‖ exp{−tA}‖E→E ≤Me−δt, ‖tA exp{−tA}‖E→E ≤M, t > 0 (1.2)
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for some M > 1, δ > 0. Let B(t) be closed operators.
A function v(t) is called a solution of problem (1.1) if the following conditions

are satisfied:
(i) v(t) is continuously differentiable on the interval [−ω,∞). The derivative at

the endpoint t = −ω is understood as the appropriate unilateral derivative.
(ii) The element v(t) belongs to D(A) for all t ∈ [−ω,∞), and the function

Av(t) is continuous on the interval [−ω,∞).
(iii) v(t) satisfies the equation and the initial condition (1.1).
A solution v(t) of the initial value problem (1.1) is said to be stable if

‖v(t)‖E ≤ max
−ω≤t≤0

‖g(t)‖E +
∫ t

0

‖f(s)‖Eds (1.3)

for every t, −ω ≤ t <∞. We are interested in studying the stability of solutions of
the initial value problem under the assumption that

‖B(t)A−1‖E→E ≤ 1 (1.4)

holds for every t ≥ 0. We have not been able to obtain the estimate (1.3) in the
arbitrary Banach space E. Nevertheless, we can establish the analog of estimates
(1.3) where the space E is replaced by the fractional spaces Eα(0 < α < 1) under
a strong assumption than (1.4). The stability estimates in Hölder norms for the
solutions of the mixed problem of the delay differential equations of the parabolic
type are obtained.

The present article is organized as follows. Section 1 provides all necessary
background. In Section 2, Theorems on stability estimates for the solution of
the initial value value problem (1.1) are established. In Section 3, the stability
estimates in Hölder norms for the solutions of the initial-boundary value problem
for one dimensional delay parabolic equations with Neumann condition with respect
to space variables are obtained. Finally, Section 4 is conclusion.

2. Theorems on stability

The strongly positive operator A defines the fractional spaces Eα = Eα(E,A)
(0 < α < 1) consisting of all u ∈ E for which the following norms are finite:

‖u‖Eα = sup
λ>0
‖λ1−αA exp{−λA}u‖E .

We consider the initial value problem (1.1) for delay differential equations of para-
bolic type in the space C(Eα) of all continuous functions v(t) defined on the segment
[0,∞) with values in a Banach space Eα. First, we consider the problem (1.1) when
A−1 and B(t) commute; i.e.,

A−1B(t)u = B(t)A−1u, u ∈ D(A). (2.1)

Theorem 2.1. Assume that the condition

‖B(t)A−1‖E→E ≤
(1− α)
M22−α (2.2)

holds for every t ≥ 0, where M is the constant from (1.2). Then for every t ≥ 0 we
have

‖v(t)‖Eα ≤ max
−ω≤t≤0

‖g(t)‖Eα +
∫ t

0

‖f(s)‖Eαds. (2.3)
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Proof. It is clear that v(t) = u(t) +w(t), where u(t) is the solution of the problem

du(t)
dt

+Au(t) = B(t)u(t− ω), t ≥ 0,

u(t) = g(t) (−ω ≤ t ≤ 0) ,
(2.4)

and w(t) is the solution of the problem

dw(t)
dt

+Aw(t) = B(t)w(t− ω) + f(t), t ≥ 0,

w(t) = 0 (−ω ≤ t ≤ 0)
(2.5)

In [8], under the assumption of this theorem it was established that the stability
inequality

‖u(t)‖Eα ≤ max
−ω≤t≤0

‖g(t)‖Eα (2.6)

holds for the solution of the problem (2.4) for every t ≥ 0. Therefore, to prove the
theorem it suffices to establish the stability inequality

‖w(t)‖Eα ≤
∫ t

0

‖f(s)‖Eαds. (2.7)

for the solution of the problem (2.5). Now, we consider the problem (2.5). Using
the formula

w(t) =
∫ t

0

exp{−(t− s)A}f(s)ds, (2.8)

the semigroup property, and the definition of the spaces Ea, we obtain

λ1−α‖A exp{−λA}w(t)‖E ≤ λ1−α
∫ t

0

‖A exp{−(λ+ t− s)A}f(s)‖Eds

≤
∫ t

0

λ1−α

(λ+ t− s)1−α
‖f(s)‖Eαds

≤
∫ t

0

‖f(s)‖Eαds

for every t with 0 ≤ t ≤ ω and λ with λ > 0. This shows that

‖w(t)‖Eα ≤
∫ t

0

‖f(s)‖Eαds (2.9)

for every t, 0 ≤ t ≤ ω. Applying the mathematical induction, one can easily show
that it is true for every t. Namely, assume that the inequality (2.9) is true for
t, (n− 1)ω ≤ t ≤ nω, n = 1, 2, 3, . . . , for some n. Using the formula

w(t) = exp{−(t− nω)A}w(nω) +
∫ t

nω

exp{−(t− s)A}B(s)w(s− ω)ds

+
∫ t

nω

exp{−(t− s)A}f(s) ds,
(2.10)

the semigroup property, the definition of the spaces Ea, estimate (1.2) and condition
(2.2), we obtain

λ1−α‖A exp{−λA}w(t)‖E

≤ λ1−α‖A exp{−(λ+ t− nω)A}w(nω)‖E + λ1−α
∫ t

nω

‖A exp{−λ+ t− s
2

A}‖E→E
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× ‖B(s)A−1‖E→E‖A exp{−λ+ t− s
2

A}w(s− ω)‖Eds

+ λ1−α
∫ t

nω

‖A exp{−(λ+ t− s)A}f(s)‖Eds

≤ λ1−α

(λ+ t− nω)1−α
‖w(nω)‖Eα + λ1−α(1− α)

∫ t

nω

1
(λ+ t− s)2−α

‖w(s− ω)‖Eαds

+
∫ t

nω

λ1−α

(λ+ t− s)1−α
‖f(s)‖Eαds

≤
( λ1−α

(λ+ t− nω)1−α
+ λ1−α(1− α)

∫ t

nω

1
(λ+ t− s)2−α

ds
)∫ nω

0

‖f(s)‖Eαds

+
∫ t

nω

‖f(s)‖Eαds

=
∫ t

0

‖f(s)‖Eαds

for every t, nω ≤ t ≤ (n+ 1)ω, n = 1, 2, 3, . . . and λ, λ > 0. This shows that

‖w(t)‖Eα ≤
∫ t

0

‖f(s)‖Eαds

for every t, nω ≤ t ≤ (n+ 1)ω, n = 1, 2, 3, . . . . This result completes the proof. �

Now, we consider the problem (1.1) when

A−1B(t)x 6= B(t)A−1x, x ∈ D(A)

for some t ≥ 0. Note that A is a strongly positive operator in a Banach space
E if and only if its spectrum σ(A) lies in the interior of the sector of angle ϕ,
0 < 2ϕ < π, symmetric with respect to the real axis, and if on the edges of this
sector, S1 = [z = ρ exp(iϕ) : 0 ≤ ρ < ∞] and S2 = [z = ρ exp(−iϕ) : 0 ≤ ρ < ∞]
and outside it the resolvent (z −A)−1 is the subject to the bound

‖(z −A)−1‖E→E ≤
M1

1 + |z|
(2.11)

for some M1 > 0. First of all let us give lemmas from [9] that will be needed in the
sequel.

Lemma 2.2. For any z on the edges of the sectors

S1 = [z = ρ exp(iϕ) : 0 ≤ ρ <∞],

S2 = [z = ρ exp(−iϕ) : 0 ≤ ρ <∞]

and outside of it, the estimate

‖A(z −A)−1x‖E ≤
Mα

1 M
α(1 +M1)1−α2(2−α)α

α(1− α)(1 + |z|)α
‖x‖Eα

holds for any x ∈ Eα. Here and in the future M and M1 are same constants of the
estimates (1.2) and (2.11).

Lemma 2.3. For all s ≥ 0, let the operator B(s)A−1 − A−1B(s) with domain
which coincide with D(A), admit a closure Q = B(s)A−1 −A−1B(s) bounded in
E. Then for all τ > 0 the following estimate holds:

‖A−1[A exp{−τA}B(s)−B(s)A exp{−τA}]x‖E
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≤ e(α+ 1)MαM1+α
1 (1 + 2M1)(1 +M1)1−α2(2−α)α‖Q‖E→E‖x‖Eα

τ1−απα2(1− α)
.

Here Q = A−1(AB(s)−B(s)A)A−1.

Suppose that

‖A−1(AB(t)−B(t)A)A−1‖E→E

≤ π(1− α)2α2ε

eM1+αM1+α
1 (1 + 2M1)(1 +M1)1−α22+α−α2(1 + α)

(2.12)

holds for every t ≥ 0. Here and in the future ε is some constant, 0 ≤ ε ≤ 1.
Applications of Lemmas 2.2 and 2.3 enable us to establish the following fact.

Theorem 2.4. Assume that the condition

‖A−1B(t)‖E→E ≤
(1− α)(1− ε)

M22−α (2.13)

holds for every t ≥ 0. Then for every t ≥ 0 estimate (2.3) holds.

Proof. In [8], under the assumption of this theorem it was established that the
stability inequality (2.6) holds for the solution of the problem (2.4) for every t ≥ 0.
Therefore, to prove the theorem it suffices to establish the stability inequality (2.7)
for the solution of the problem (2.5). Now, we consider the problem (2.5). Exactly
same manner, using the formula (2.8), the semigroup property, the definition of the
spaces Ea, we can obtain (2.9) for every t, 0 ≤ t ≤ ω. Applying the mathematical
induction, one can easily show that it is true for every t. Namely, assume that the
inequality (2.9) is true for t, (n− 1)ω ≤ t ≤ nω, n = 1, 2, 3, . . . for some n. Using
formula (2.10) and the semigroup property, we can write

λ1−αA exp{−λA}w(t)

= λ1−αA exp{−(λ+ t− nω)A}w(nω)

+ λ1−α
∫ t

nω

exp{−λ+ t− s
2

A}B(s)A exp{−λ+ t− s
2

A}w(s− ω)ds

+ λ1−α
∫ t

nω

exp{−λ+ t− s
2

A}[A exp{−λ+ t− s
2

A}B(s)−B(s)A

× exp{−λ+ t− s
2

A}]w(s− ω)ds+ λ1−α
∫ t

nω

A exp{−(λ+ t− s)A}f(s)ds

= I1 + I2 + I3 + I4,

where

I1 = λ1−αA exp{−(λ+ t− nω)A}w(nω),

I2 = λ1−α
∫ t

nω

exp{−λ+ t− s
2

A}B(s)A exp{−λ+ t− s
2

A}w(s− ω)ds,

I3 = λ1−α
∫ t

nω

exp{−λ+ t− s
2

A}[A exp{−λ+ t− s
2

A}B(s)−B(s)A

× exp{−λ+ t− s
2

A}]w(s− ω)ds,

I4 = λ1−α
∫ t

nω

A exp{−(λ+ t− s)A}f(s)ds.
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Using estimate (1.2) and condition (2.13), we obtain

‖I1‖E = λ1−α‖A exp{−(λ+ t− nω)A}w(nω)‖E

≤ λ1−α

(λ+ t− nω)1−α
‖w(nω)‖Eα

≤ λ1−α

(λ+ t− nω)1−α

∫ nω

0

‖f(s)‖Eαds,

‖I2‖E ≤ λ1−α
∫ t

nω

‖A exp{−λ+ t− s
2

A}‖E→E‖A−1B(s)‖E→E

× ‖A exp{−λ+ t− s
2

A}w(s− ω)‖Eds

≤ max
nω≤t≤ω

‖A−1B(t)‖E→E
∫ t

nω

Mλ1−α22−α

(λ+ t− s)2−α
ds max

nω≤s≤ω
‖w(s− ω)‖Eα

≤
(
1− λ1−α

(λ+ t− nω)1−α
)
(1− ε)

∫ nω

0

‖f(s)‖Eαds,

‖I4‖E ≤
∫ t

nω

λ1−α

(λ+ t− s)1−α
‖f(s)‖Eαds ≤

∫ t

nω

‖f(s)‖Eαds

for every t, nω ≤ t ≤ (n + 1)ω, n = 1, 2, 3, . . . and λ, λ > 0. Now let us estimate
I3. By Lemma 2.3 and using the estimate (1.2) and condition (2.12), we obtain

‖I3‖E ≤ λ1−α
∫ t

nω

‖A exp{−λ+ t− s
2

A}‖E→E‖A−1
[
A exp{−λ+ t− s

2
A}B(s)

−B(s)A exp{−λ+ t− s
2

A}
]
w(s− ω)‖Eds

≤ λ1−αe(1 + α)M1+αM1+α
1 (1 + 2M1)(1 +M1)1−α2(2−α)α

×
∫ t

nω

‖A−1(AB(s)−B(s)A)A−1‖E→E22−α‖w(s− ω)‖Eα
(λ+ t− s)2−απα2(1− α)

ds

≤ max
0≤s≤ω

‖A−1(AB(s)−B(s)A)A−1‖E→E

×
∫ t

nω

λ1−αe(1 + α)M1+αM1+α
1 (1 + 2M1)(1 +M1)1−α2(2−α)α22−α

(λ+ t− s)2−απα2(1− α)
ds

×
∫ nω

0

‖f(s)‖Eαds

≤
(

1− λ1−α

(λ+ t− nω)1−α
)
ε

∫ nω

0

‖f(s)‖Eαds

for every t, nω ≤ t ≤ (n + 1)ω, n = 1, 2, 3, . . . and λ, λ > 0. Using the triangle
inequality and estimates for all ‖Ik‖E , k = 1, 2, 3, 4, we obtain

λ1−α‖A exp{−λA}w(t)‖E ≤
∫ t

0

‖f(s)‖Eαds

for every t, nω ≤ t ≤ (n+ 1)ω, n = 1, 2, 3, . . . and λ, λ > 0. This shows that

‖w(t)‖Eα ≤
∫ t

0

‖f(s)‖Eαds

for every t, nω ≤ t ≤ (n+ 1)ω, n = 1, 2, 3, . . . . This result completes the proof. �
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Note that these abstract results are applicable to study of stability of various
delay parabolic equations with local and nonlocal boundary conditions with respect
to space variable. However, it is important to study structure of Eα for space
operators in Banach spaces. The structure of Eα for some space differential and
difference operators in Banach spaces has been investigated in papers (see, [9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 30]). In Section 3, one application of Theorem
2.1 to study the stability of initial-boundary value problem for one dimensional
delay parabolic equations with Neumann condition with respect to space variable
is given. It is based on the abstract result of this section and structure of Eα for
one dimensional differential operator with the Neumann condition with respect to
space variables in the Banach space.

3. An application

We consider the initial-boundary value problem for one dimensional delay dif-
ferential equations of parabolic type

∂u(t, x)
∂t

− a(x)
∂2u(t, x)
∂x2

+ δu(t, x)

= b(t)
(
− a(x)

∂2u(t− ω, x)
∂x2

+ δu(t− ω, x)
)

+ f(t, x), 0 < t <∞, x ∈ (0, l),

u(t, x) = g(t, x), −ω ≤ t ≤ 0, x ∈ [0, l],

ux(t, 0) = ux(t, l) = 0, −ω ≤ t <∞,
(3.1)

where a(x), b(t), g(t, x), f(t, x) are sufficiently smooth functions and δ > 0 is the
sufficiently large number. We will assume that a(x) ≥ a > 0. The problem (3.1)
has a unique smooth solution. This allows us to reduce the initial-boundary value
problem (3.1) to the initial value problem (1.1) in Banach space E = C[0, l] with a
differential operator Ax defined by the formula

Axu = −a(x)
d2u

dx2
+ δu (3.2)

with domain D(Ax) = {u ∈ C(2)[0, 1] : u′(0) = u′(1) = 0}. Let us give a number of
corollaries of the abstract Theorem 2.1.

Theorem 3.1. Assume that

sup
0≤t<∞

|b(t)| ≤ 1− α
M22−α .

Then for all t ≥ 0 the solutions of the initial-boundary value problem (3.1) satisfy
the stability estimates

‖u(t, ·)‖C2α[0,l] ≤M(α)
[

max
−ω≤t≤0

‖g(t)‖C2α[0,l] +
∫ t

0

‖f(s, ·)‖C2α[0,l]ds
]
,

for 0 < α < 1/2, where M(α) does not dependent on g(t, x) and f(t, x). Here
Cβ [0, l] is the space of functions satisfying a Hölder condition with the indicator
β ∈ (0, 1).

The proof of Theorem 3.1 is based on the estimate

‖ exp{−tAx}‖C[0,l]→C[0,l] ≤M, t ≥ 0,
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and on the abstract Theorem 2.1, on the strongly positivity of the operator Ax in
C[0, l] (see, [26, 27]) and on Theorem 3.2, on the structure of the fractional space
Eα = Eα(C[0, l], Ax) for 0 < α < 1/2.

Theorem 3.2. For α ∈ (0, 1/2), the norms of the space Eα(C[0, l], Ax) and the
Hölder space C2α[0, l] are equivalent.

Proof. First, we prove this statement for the differential operator Ax defined by
the formula (3.2) in the case when a(x) = 1. It is easy to see that for all δ > 0 and
λ ≥ 0 the resolvent equation

Axu+ λu = ϕ (3.3)
is uniquely solvable and the following formula holds:

u(x) = (Ax + λ)−1ϕ(x) =
∫ 1

0

G(x, s;λ)f(s)ds. (3.4)

Here

G(x, s;λ) =



1
2
√
λ+δ(1−e−

√
λ+δ2l)2

{
e−
√
λ+δ(s+x) + e−

√
λ+δ(x−s)

+e−
√
λ+δ(2l−s−x) + e−

√
λ+δ(2l+s−x) − e−

√
λ+δ(2l−s+x)

−e−
√
λ+δ(2l+s+x) − e−

√
λ+δ(4l−s−x) + e−

√
λ+δ(4l+s−x)

}
if 0 ≤ s ≤ x,

1
2
√
λ+δ(1−e−

√
λ+δ2l)2

{
e−
√
λ+δ(s+x) + e−

√
λ+δ(s−x)

+e−
√
λ+δ(2l−s−x) + e−

√
λ+δ(2l+s−x) − e−

√
λ+δ(2l−s+x)

−e−
√
λ+δ(2l+s+x) − e−

√
λ+δ(4l−s−x) + e−

√
λ+δ(4l−s+x)

}
if x ≤ s ≤ l.

(3.5)

We have that ∫ 1

0

G(x, s;λ)ds =
1

λ+ δ
. (3.6)

Applying the triangle inequality, formula (3.5), we obtain the following pointwise
estimates for the Green’s function G(x, s;λ) of the operator Ax defined by (3.2) in
the case when a(x) = 1,

|G(x, s;λ)| ≤ M(δ)√
δ + λ

{
e−
√
δ+λ(x−s), 0 ≤ s ≤ x,

e−
√
δ+λ(s−x), x ≤ s ≤ l,

(3.7)

|Gx(x, s;λ)| ≤M(δ)

{
e−
√
δ+λ(x−s), 0 ≤ s ≤ x,

e−
√
δ+λ(s−x), x ≤ s ≤ l.

(3.8)

Using formula (3.4) and identity (3.6), we obtain

λαAx(Ax + λ)−1ϕ(x) =
δλα

δ + λ
ϕ(x) + λα+1

∫ 1

0

G(x, s;λ)(ϕ(x)− ϕ(s))ds. (3.9)

Let ϕ(x) ∈ C2α[0, l]. Then, applying formula (3.9), the triangle inequality and
estimate (3.7), we obtain

λα|Ax(Ax + λ)−1ϕ(x)|

≤ δλα

δ + λ
|ϕ(x)|+ λα+1

∫ 1

0

|G(x, s;λ)||ϕ(x)− ϕ(s)|ds
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≤
( δλα

δ + λ
+M(δ)

λα+1

√
δ + λ

∫ 1

0

e−
√
δ+λ|s−x||s− x|2αds

)
‖ϕ‖C2α[0,l]

≤M1(δ)‖ϕ‖C2α[0,l]

for any λ > 0 and x ∈ [0, l]. Therefore ϕ(x) ∈ Eα(C[0, l], Ax) and the following
estimate holds:

‖ϕ‖Eα(C[0,l],Ax) ≤M1(δ)‖ϕ‖C2α[0,l].

Let us prove the opposite estimate. For any positive operator Ax in the Banach
space, we can write formula

ϕ(x) =
∫ ∞

0

Ax(λ+Ax)−2ϕ(x) dλ.

From this relation and formula (3.4), it follows that

ϕ(x) =
∫ ∞

0

(Ax + λ)−1Ax(Ax + λ)−1ϕ(x)dλ

=
∫ ∞

0

∫ 1

0

G(x, s;λ)Ax(Ax + λ)−1ϕ(s) ds dλ.
(3.10)

Consequently,
ϕ(x1)− ϕ(x2)

=
∫ ∞

0

∫ 1

0

(G(x1, s;λ)−G(x2, s;λ))Ax(Ax + λ)−1ϕ(s) ds dλ

=
∫ ∞

0

λ−α
∫ 1

0

(G(x1, s;λ)−G(x2, s;λ))λαAx(Ax + λ)−1ϕ(s) ds dλ.

(3.11)

Let ϕ(x) ∈ Eα(C[0, l], Ax). Then, using formula (3.10), estimate (3.7) and the
definition of the space Eα(C[0, l], Ax), we obtain

|ϕ(x)| ≤
∫ ∞

0

λ−α
∫ 1

0

|G(x, s;λ)|λα|Ax(Ax + λ)−1ϕ(s)| ds dλ

≤M(δ)
∫ ∞

0

λ−α
1√
δ + λ

∫ 1

0

e−
√
δ+λ|s−x| ds dλ‖ϕ‖Eα(C[0,l],Ax)

≤ M1(δ)
α
‖ϕ‖Eα(C[0,l],Ax)

for any x ∈ [0, l]. Therefore ϕ(x) ∈ C[0, l] and

‖ϕ‖C[0,l] ≤
M1(δ)
α
‖ϕ‖Eα(C[0,l],Ax) (3.12)

Moreover, using (3.11) and the definition of the space Eα(C[0, l], Ax), we obtain
|ϕ(x1)− ϕ(x2)|
|x1 − x2|2α

≤ 1
|x1 − x2|2α

∫ ∞
0

λ−α
∫ 1

0

|G(x1, s;λ)−G(x2, s;λ)|λα|Ax(Ax + λ)−1ϕ(s)| ds dλ

≤ 1
|x1 − x2|2α

∫ ∞
0

λ−α
∫ 1

0

|G(x1, s;λ)−G(x2, s;λ)| ds dλ‖ϕ‖Eα(C[0,l],Ax).

Let

P =
1

|x1 − x2|2α

∫ ∞
0

λ−α
∫ 1

0

|G(x1, s;λ)−G(x2, s;λ)| ds dλ.
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Then
|ϕ(x1)− ϕ(x2)|
|x1 − x2|2α

≤ P‖ϕ‖Eα(C[0,l],Ax) (3.13)

for any x1, x2 ∈ [0, l] and x1 6= x2.
Now, we estimate P . Let |x1 − x2| ≤ 1. Then, using the triangle inequality and

estimate (3.7), we obtain

P ≤M(δ)
∫ ∞

0

λ−α
1√
δ + λ

∫ 1

0

(
e−
√
δ+λ|s−x2| + e−

√
δ+λ|s−x1|

)
ds dλ ≤ M2(δ)

α
.

(3.14)
Let |x1 − x2| > 1. For more definitely we put x1 < x2. Then, using estimates (3.7)
and (3.8), we obtain

P ≤M(δ)
1

|x1 − x2|2α

∫ ∞
|x1−x2|2

λ−α
1√
δ + λ

∫ 1

0

(e−
√
δ+λ|s−x2| + e−

√
δ+λ|s−x1|) ds dλ

+M(δ)
1

|x1 − x2|2α

∫ |x1−x2|2

0

λ−α
∫ 1

0

∫ x2

x1

e−
√
δ+λ|s−x|dx ds dλ

≤M(δ)
1

|x1 − x2|2α

∫ ∞
|x1−x2|2

λ−α−1dλ

+M(δ)
1

|x1 − x2|2α

∫ |x1−x2|2

0

λ−α−
1
2 dλ|x1 − x2|

≤ M3(δ)
α(1− 2α)

.

(3.15)
Therefore ϕ(x) ∈ C2α[0, l] and from estimates (3.12), (3.13) and (3.15) it follows
that

‖ϕ‖C2α[0,l] ≤
M(δ)

α(1− 2α)
‖ϕ‖Eα(C[0,l],Ax).

Second, let a(x) be the smooth function defined on the segment [0, l] and a(x) ≥
a > 0. We prove this statement for the differential operator Ax defined by the
formula (3.2). It is easy to see that if a(x) = constant, the resolvent equation (3.3)
can be transformed in the last case by dividing both sides of resolvent equation
(3.3) to a. We have the following estimates for Green’s function

|Gx(x, s;λ)| ≤ M(δ, a)√
δ + λ

{
e−
√

δ+λ
a (x−s), 0 ≤ s ≤ x,

e−
√

δ+λ
a (s−x), x ≤ s ≤ l,

|Gxx(x, s;λ)| ≤M(δ, a)

{
e−
√

δ+λ
a (x−s), 0 ≤ s ≤ x,

e−
√

δ+λ
a (s−x), x ≤ s ≤ l.

Since the proof of theorem is based on the estimates of Green’s function, it is true
also for this case. Under one more assumption that δ > 0 is the sufficiently large
number, applying a fixed point theorem and last estimates and the formula

Gx(x, x0;λ)

= Gx0(x, x0;λ) + (λ+ δ)
∫ 1

0

Gx0(x, y;λ)
( 1
a(y)

− 1
a(x0)

)
Gy(y, x0;λ)dy,
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we obtain the estimates

|Gx(x, x0;λ)| ≤ M(δ, a)√
δ + λ

{
e−

1
2

√
δ+λ
a (x−x0), 0 ≤ x0 ≤ x,

e−
1
2

√
δ+λ
a (x0−x), x ≤ x0 ≤ l,

|Gxx(x, x0;λ)| ≤M(δ, a)

{
e−

1
2

√
δ+λ
a (x−x0), 0 ≤ x0 ≤ x,

e−
1
2

√
δ+λ
a (x0−x), x ≤ x0 ≤ l

for the Green’s function of the differential operator Ax defined by the formula
(3.2). Therefore, the statement of theorem is true also for the differential operator
Ax defined by the formula (3.2). Theorem 3.2 is proved. �

Conclusion. In the present paper, two theorems on the stability of the initial value
problem for the delay parabolic differential equations with unbounded operators
acting on delay terms in fractional spaces Eα are established. Theorem on the
structure of fractional spaces Eα generated by the differential operator Ax defined
by the formula (3.2) in C[0, l] space is proved. In practice, the stability estimates in
Hölder norms for the solutions of the mixed problems for delay parabolic equations
with Neumann condition with respect to space variable are obtained.
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search Projects Unit (Project No: 2010-91).

References

[1] A.N. Al-Mutib; Stability properties of numerical methods for solving delay differential equa-
tions, J. Comput. and Appl. Math., 10, no. 1, pp. 71-79, 1984.

[2] D. Agirseven; Approximate solutions of delay parabolic equations with the Drichlet condition,

Abstract and Applied Analysis, 2012, Article ID 682752, 31 pages, 2012.
[3] H. Akca, V. B. Shakhmurov, G. Arslan; Differential-operator equations with bounded delay,

Nonlinear Times and Digest, 2, pp. 179-190, 1989.

[4] A. Ashyralyev, H. Akca, U. Guray; Second order of accuracy difference scheme for approx-
imate solutions of delay differential equations, Functional Differential Equations, 6, no. 3-4,

pp. 223-231, 1999.

[5] A. Ashyralyev, H. Akca; Stability estimates of difference schemes for neutral delay differential
equations, Nonlinear Analysis: Theory, Methods and Applications, 44, no. 4, pp. 443-452,

2001.

[6] A. Ashyralyev, H. Akca, A. F. Yenicerioglu; Stability properties of difference schemes for
neutral differential equations, Differential Equations and Applications, 3, pp. 57-66, 2003.

[7] A. Ashyralyev, P. E. Sobolevskii; The theory of interpolation of linear operators and the
stability of difference schemes, Dokl. Akad. Nauk SSSR, 275, no. 6, pp. 1289-1291, 1984.

(Russian).
[8] A. Ashyralyev, P. E. Sobolevskii; On the stability of the delay differential and difference

equations, Abstract and Applied Analysis, 6, no. 5, pp. 267-297, 2001.
[9] A. Ashyralyev, P. E. Sobolevskii; New Difference Schemes for Partial Differential Equations,

Operator Theory Advances and Applications, Birkhäuser Verlag, Basel, Boston, Berlin, 2004.
[10] A. Ashyralyev, P. E. Sobolevskii; Well-Posedness of Parabolic Difference Equations, Opera-

tor Theory Advances and Applications, Birkhäuser Verlag: Basel, Boston, Berlin, 1994.
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[14] A. Ashyralyev, F. S. Tetikoğlu; The structure of fractional spaces generated by the positive

operator with periodic conditions, In: First International Conference on Analysis and Applied
Mathematics (ICAAM 2012), AIP Conference Proceedings, vol. 1470, ICAAM 2012, pp. 57-

60, 2012.

[15] A. Ashyralyev, D. Agirseven; Approximate Solutions of Delay Parabolic Equations with the
Neumann Condition, In: International Conference on Numerical Analysis and Applied Math-

ematics (ICNAAM 2012), AIP Conference Proceedings, vol.1479, ICNAAM 2012, pp. 555-

558, 2012.
[16] A. Ashyralyev, D. Agirseven; On convergence of difference schemes for delay parabolic equa-

tions, Comput. Math. Appl. 66(7), pp. 1232-1244, 2013.
[17] A. Ashyralyev, D. Agirseven; Well-posedness of delay parabolic difference equations, Adv.

Differ. Equ. 2014, Article ID 18, 2014. doi:10.1186/1687-1847-2014-18.

[18] A. Ashyralyev, D. Agirseven; Well-posedness of delay parabolic equations with unbounded
operators acting on delay terms, Boundary Value Problems 2014. 2014:126. doi:10.1186/1687-

2770-2014-126.

[19] M. A. Bazarov; On the structure of fractional spaces, Proceedings of the XXVII All-Union
Scientific Student Conference ”The Student and Scientific-Technological Progress”, Novosi-

birsk. Gos. Univ., Novosibirsk, pp. 3-7, 1989. (Russian).

[20] A. Bellen; One-step collocation for delay differential equations, J. Comput. and Appl. Math.,
10, no. 3, pp. 275-283, 1984.

[21] A. Bellen, Z. Jackiewicz, M. Zennaro; Stability analysis of one-step methods for neutral

delay-differential equations, Numer. Math., 52, no. 6, pp. 605-619, 1988.
[22] G. Di Blasio; Delay differential equations with unbounded operators acting on delay terms,

Nonlinear Analysis Theory Methods and Applications, 52, no. 1, pp. 1-18, 2003.
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