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MULTIPLE SOLUTIONS FOR SCHRÖDINGER-MAXWELL
SYSTEMS WITH UNBOUNDED AND DECAYING RADIAL

POTENTIALS

FANGFANG LIAO, XIAOPING WANG, ZHIGANG LIU

Abstract. This article concerns the nonlinear Schrödinger-Maxwell system

−∆u+ V (|x|)u+Q(|x|)φu = Q(|x|)f(u), in R3

−∆φ = Q(|x|)u2, in R3

where V and Q are unbounded and decaying radial. Under suitable assump-

tions on nonlinearity f(u), we establish the existence of nontrivial solutions
and a sequence of high energy solutions in weighted Sobolev space via Moun-

tain Pass Theorem and symmetric Mountain Pass Theorem.

1. Introduction

This article concerns the nonlinear Schrödinger-Maxwell system

−∆u+ V (|x|)u+Q(|x|)φu = Q(|x|)f(u), in R3

−∆φ = Q(|x|)u2, in R3.
(1.1)

Such a system, also known as the nonlinear Schrödinger-Maxwell system, arises
in an interesting physical context. Indeed, according to a classical model, the
interaction of a charge particle with an electromagnetic field can be described by
coupling the nonlinear Schrödinger and the Maxwell equations. For more details on
the physical aspects, we refer to [1]. In particular, if we are looking for electrostatic-
type solutions, we just have to solve (1.1).

For this problem in a bounded domain, there are some works. Let us recall some
recent results. Benci and Fortunato obtained the existence of infinitely many solu-
tions of an eigenvalue problem in [1]. D’Aprile and Wei [2] studied concentration
phenomena for the system in the unit ball B1 of R3 with Dirichlet boundary condi-
tions. Candela and Salvatore [3] considered the problem with a non-homogeneous
term and obtained infinitely many radially symmetric solutions.

Recently, the problem in the whole space R3 was considered in some works, see
for instance [4− 15] and the references therein. We recall some of them as follows.
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Ruiz [4] considered the system

−∆u+ V (x)u+ λφu = Q(x)f(u), in R3

−∆φ = u2, in R3
(1.2)

and obtained the existence and nonexistence of radial solutions for (1.2) with
V (x) = Q(x) = 1, f(u) = up(1 < p < 5). Later, Ambrosetti and Ruiz in [5]
obtained multiplicity results for (1.2) with V (x) = Q(x) = 1. For the critical
growth case, we refer to [6]. Zhao and Zhao established the existence of a positive
solution by the concentration compactness principle. Sun, Chen and Nieto [7] ob-
tained the existence of ground state solutions when V (x) = 1, λ = K(x) and f(u)
is asymptotically linear at infinity. When the potential V is not a constant, Wang
and Zhou [8] also considered that the case f(x, u) is asymptotically linear and the
positive potential V is bounded and non-radial. Mercuri [9] considered the potential
V may vanish at infinity and bounded; i.e., a

1+|x|α ≤ V (x) ≤ A for some α ∈ (0, 2],
a,A > 0. By using the classical Mountain Pass Theorem, the author obtained the
existence of positive solutions with λ = 1 and f(u) = up(1 < p < N+2

N−2 , N = 3, 4, 5).
Soon after, Sun, Chen and Yang [10] considered the asymptotically linear case un-
der the assumptions in [9], the existence and nonexistence of solutions are obtained
depending on the parameters λ. When λ = 1 and Q = 1, Chen and Tang [11]
considered the potential V (x) satisfies some coercive condition, i.e.,

(V0) V ∈ C(R3,R) satisfies infx∈R3 V (x) > 0 and for each M > 0, meas{x ∈
R3|V (x) ≤M} < +∞,

and proved that (1.2) has infinitely many high energy solutions under the condition
that f(x, u) is superlinear at infinity in u by fountain theorem established in [12].
Soon after, Li, Su and Wei [13] improved their results. For V (x) and f(x, u)
are 1-periodic in each x. Zhao and Zhao [14] considered this case and obtained
the existence of infinitely many geometrically distinct solutions. For the result of
semiclassical solutions, we refer to [17].

In the present paper, we will consider more general radial potential, that is, the
potential V (x) may be unbounded, decaying and vanishing. We make the following
assumptions:

(V1) V (r) ∈ C((0,+∞)), V (r) ≥ 0 and there exist a0 and a1 such that

lim inf
r→0

V (r)
ra0

> 0, lim inf
r→+∞

V (r)
ra1

> 0,

(Q0) Q(r) ∈ C((0,+∞)), Q(r) ≥ 0 and there exist b0 and b1 such that

lim sup
r→0

Q(r)
rb0

> 0, lim sup
r→+∞

Q(r)
rb1

> 0.

Next we introduce notation. Let C∞0 (R3) denote the collection of smooth functions
with compact support and

C∞0,r(R3) = {u ∈ C∞0 (R3) : u is radial}.

Let D1,2
r (R3) be the completion of C∞0,r(R3) under the norm

‖u‖D1,2
r

=
(∫

R3
|∇u|2dx

)1/2

.
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Define

Lp(R3;Q) = {u : R3 → R;u is measurable and
∫

R3
Q(|x|)|u|pdx <∞}.

with norm

‖u‖p =
(∫

R3
Q(|x|)|u|pdx

)1/p

.

Set

E = H1
r (R3;V ) = D1,2

r (R3) ∩ L2(R3;V ),

which is a Hilbert space with the norm

‖u‖E =
(∫

R3
|∇u|2 + V (|x|)u2dx

)1/2

.

Corresponding to [15], if (V1) and (Q0) are satisfied, for N = 3, we define

p(a0, b0) =


6 + 2b0, b0 ≥ −2, a0 ≥ −2,
8+4b0−2a0

4+a0
, −2 ≥ a0 > −4, b0 ≥ a0,

∞, a0 ≤ −4, b0 > −4,

p(a1, b1) =


8+4b1−2a1

4+a1
, b1 ≥ a1 > −2,

6 + 2b1, b1 ≥ −2, a1 ≤ −2,
2, b1 ≤ max{a1,−2}.

On the other hand, recently, Su, Wang and Willem [15] studied the nonlinear
Schrödinger equation

−∆u+ V (|x|)u = Q(|x|)f(u), in RN

u(x)→ 0, as |x| → ∞.
(1.3)

and assumed the Ambrosetti-Rabinowitz condition holds; i.e., there exists µ > 2
such that

0 < µF (u) ≤ uf(u), ∀u ∈ R,

where F (u) =
∫ u
0
f(s)ds. They proved the existence of ground states solutions

when V and Q satisfy the assumption (V1) and (Q0).
Motivated by the above facts, as in [15], the purpose of this paper is to extend the

existence results of problem (1.3) to Schrödinger-Maxwell system (1.1). Moreover,
we assume

(Q1) Q ∈ L
6p−12
5p−12 (R3) for all p > 12/5.

To reduce our statement, we first make the following assumption on f .

(F1) f ∈ C(R,R), and |f(u)| ≤ c(|u|p1−1 + |u|p2−1)

for some p < p1 ≤ p2 < p (p, p will be defined later), where c is a positive constant.
Throughout this article we denote by ci, Ci various positive constants, |·|p denotes

the usual Lp(R3)-norm, and ‖ · ‖q denotes the Lq(R3, Q)-norm.
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2. Preliminaries

To prove our results, we use the following lemma from [15].

Lemma 2.1. Assume (V1) and (Q0) with p = p(a0, b0) ≥ p = p(a1, b1). Then

H1
r (R3;V ) ↪→ Lp(R3;Q),

for p ≤ p ≤ p when p < ∞ and for p ≤ p < p when p = ∞. Furthermore, if b1 ≥
max{a1,−2}, the embedding is compact for p < p < p, and if b1 < max{a1,−2},
the embedding is compact for 2 ≤ p < p.

Remark 2.2. In particular, we can take p = p(a0, b0) ≥ p = max{p(a1, b1), 12/5}
if we take suitable a0, b0. Clearly, p = max{p(a1, b1), 12

5 } ≥ p(a1, b1). Thus, Lemma
2.1 holds for p=max{p(a1, b1), 12/5}.

It is well known that system (1.1) is the Euler-Lagrange equation of the functional
J : E ×D1,2

r (R3)→ R defined by

J(u, φ) =
1
2
‖u‖2E −

1
4

∫
R3
|∇φ|2dx+

1
2

∫
R3
Q(|x|)φu2dx−

∫
R3
Q(|x|)F (u)dx.

For any u ∈ E, consider the linear functional Tu : D1,2
r (R3)→ R defined as

Tu(v) =
∫

R3
Q(|x|)u2vdx.

For p < p < p, by (Q1), the Hölder inequality and Lemma 2.1, we have∫
R3
Q(|x|)u2vdx

=
∫

R3
Q(|x|)

p−2
p Q(|x|)2/pu2vdx

≤
(∫

R3
Q(|x|)

p−2
p ·

6p
5p−12 dx

) 5p−12
6p
(∫

R3
(Q(|x|)2/pu2)p/2dx

)2/p(∫
R3
v6dx

)1/6

≤ S−1|Q|
p−2
p

6p−12
5p−12

∫
R3

(
Q(|x|)up

)2/p‖v‖D1,2
r

≤ c1S−1|Q|
p−2
p

6p−12
5p−12

‖u‖2E‖v‖D1,2
r
.

where S is the best Sobolev embedding constant. Hence, the Lax-Milgram theorem
implies that for every u ∈ E, there exists a unique φu ∈ D1,2

r (R3) such that∫
R3
Q(|x|)u2v =

∫
R3
∇φu · ∇v, for any v ∈ D1,2

r (R3),

Using the integration by parts, we obtain∫
R3
∇φu∇vdx = −

∫
R3
v∆φudx, for any v ∈ D1,2

r (R3);

therefore, −∆φu = Q(|x|)u2. We can write an integral expression for φu in the
form

φu =
1

4π

∫
R3

Q(|y|)u2(y)
|x− y|

dy, (2.1)
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for any u ∈ C∞0 (R3), by density it can be extended for any u ∈ E. Moreover, the
functions φu possess the following properties:

φu ≥ 0, ‖φu‖D1,2
r
≤ c2‖u‖2p ≤ c3‖u‖2E .

In fact, clearly, φu ≥ 0 by (2.1). Using integration by parts, −∆φu = Q(|x|)u2, the
Hölder inequality and the Sobolev inequality, for any u ∈ E, we obtain

‖φu‖2D1,2
r

=
∫

R3
∇φu · ∇φudx = −

∫
R3

∆φu · φudx

=
∫

R3
Q(|x|)φuu2dx

≤ c1S−1|Q|
p−2
p

6p−12
5p−12

‖u‖2p‖φu‖D1,2
r

≤ c2|u|2p‖φu‖D1,2
r
.

It follows that
‖φu‖D1,2

r
≤ c2‖u‖2p ≤ c3‖u‖2E .

Moreover, there exists c4 > 0 such that∫
R3
Q(|x|)φuu2dx ≤ c4‖u‖4E . (2.2)

So, we can consider the functional I : E → R3 defined by I(u) = J(u, φu). By (2.1)
the reduced functional takes the form

I(u) =
1
2
‖u‖2E +

1
4

∫
R3
Q(|x|)φuu2dx−

∫
R3
Q(|x|)F (u)dx. (2.3)

It is clear that I is well defined. Moreover, Our hypotheses imply that I ∈ C1(E,R)
and a standard argument shows that (u, φ) ∈ E ×D1,2

r (R3) is a critical point of J
if and only if u is a critical point of I and φ = φu (see [22]).

Lemma 2.3. If assumptions (V1), (Q0), (Q1), (F1) hold, then I ∈ C1(E,R) and

〈I ′(u), v〉 =
∫

R3
(∇u · ∇v + V (|x|)uv)dx+

∫
R3
Q(|x|)φuuvdx− 〈Ψ′(u), v〉, (2.4)

where Ψ(u) =
∫

R3 Q(|x|)F (u)dx.

Proof. First, we prove the existence of the Gateaux derivative of Ψ. From (F1), we
have

|f(u)| ≤ c(|u|p1−1 + |u|p2−1), (2.5)

|F (u)| ≤ c( 1
p1
|u|p1 +

1
p2
|u|p2). (2.6)

For any u, v ∈ E and 0 < |t| < 1, by the mean value and (2.5), there exists 0 < θ < 1
such that

|Q(|x|)F (u+ tv)−Q(|x|)F (u)|
|t|

= |Q(|x|)f(u+ θtv)v|
≤ cQ(|x|)(|u+ θtv|p1−1 + |u+ θtv|p2−1)|v|
≤ c5Q(|x|)[(|u|p1−1|v|+ |v|p1) + (|u|p2−1|v|+ |v|p2)]
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The Hölder inequality implies

g(x) := cQ(|x|)[(|u|p1−1|v|+ |v|p1) + (|u|p2−1|v|+ |v|p2)] ∈ L1(R3).

Consequently, by the Lebesgue’s dominated convergence theorem, one has

〈Ψ′(u), v〉 =
∫

R3
Q(|x|)f(u)vdx.

Next,we show that Ψ′(·) : E → E∗ is continuous. Assume that un → u in E. By
Lemma 2.1, we know that un → u in Lp(R3;Q), for p ≤ p ≤ p when p <∞ and for
p ≤ p < p when p =∞.

On the space Lp1(R3;Q) ∩ Lp2(R3;Q), we define the norm

‖u‖p1∧p2 = ‖u‖p1 + ‖u‖p2

=
(∫

R3
Q(|x|)|u|p1dx

)1/p1
+
(∫

R3
Q(|x|)|u|p2dx

)1/p2

On the space Lp1(R3;Q) + Lp2(R3;Q), we define the norm

‖u‖p1∨p2 = inf
{
‖v‖p1 + ‖w‖p2 : v ∈ Lp1(R3;Q), w ∈ Lp2(R3;Q), u = v + w

}
.

Since p < p1 ≤ p2 < p, one has un → u in Lp1(R3;Q) ∩ Lp2(R3;Q). Similar to [22,
Theorem A.4], we have

f(un)→ f(u) in Lp
′
1(R3;Q) + Lp

′
2(R3;Q).

By the Hölder inequality, we have

|〈Ψ′(un)−Ψ′(u), v〉| ≤ ‖f(un)− f(u)‖p′1∨p′2‖v‖p1∧p2
≤ c6‖f(un)− f(u)‖p′1∨p′2‖v‖E ,

where p′i = pi/(pi − 1), i = 1, 2. Hence

‖Ψ′(un)−Ψ′(u)‖ ≤ c6‖f(un)− f(u)‖p′1∨p′2 → 0 as n→∞.

This shows Ψ′(·) : E → E∗ is continuous. This completes the proof. �

Lemma 2.4. Under the condition (F1), if {un} ⊂ E is a bounded sequence with
I ′(un)→ 0, then {un} has a convergent subsequence.

Proof. Since {un} ⊂ E is bounded and the embedding E ↪→ Ls(R3;Q) is compact
for each s ∈ (p, p), passing to a subsequence, we can assume that un ⇀ u in E, and

un → u in Ls(R3;Q), s ∈ (p, p).

Note that

〈I ′(un)− I ′(u), un − u〉

= ‖un − u‖2E +
∫

R3

(
Q(|x|)φunu2

n −Q(|x|)φununu
)
dx

+
∫

R3

(
Q(|x|)φuu2 −Q(|x|)φuunu

)
dx−

∫
R3
Q(|x|) (f(un)− f(u)) (un − u)dx.

We have

‖un − u‖2E

= 〈I ′(un)− I ′(u), un − u〉 −
∫

R3

(
Q(|x|)φunu2

n −Q(|x|)φununu
)
dx
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−
∫

R3

(
Q(|x|)φuu2 −Q(|x|)φuunu

)
dx+

∫
R3
Q(|x|) (f(un)− f(u)) (un − u)dx.

Since un ⇀ u in E and I ′(un)→ 0, we have

〈I ′(un)− I ′(u), un − u〉 → 0 as n→∞.
On one hand, by (Q1), for p < p < p, we have∫

R3
Q(|x|)(φunu2

n − φununu)dx =
∫

R3
Q(|x|)φunun(un − u)dx

≤ |Q|
p−2
p

6p−12
5p−12

‖un − u‖p‖un‖p‖φun‖6

≤ c7‖un − u‖p‖un‖p‖φun‖D1,2
r
.

Hence, ∫
R3
Q(|x|)

(
φunu

2
n − φununu

)
dx→ 0, as n→∞.

Similarly, ∫
R3
Q(|x|)

(
φuu

2 − φuunu
)
dx→ 0, as n→∞.

On the other hand,

|
∫

R3
Q(|x|) (f(un)− f(u)) (un − u)dx|

≤
∫

R3
Q(|x|) (|f(un)|+ |f(u)|) |un − u|dx

≤ c
∫

R3
Q(|x|)

(
|un|p1−1 + |un|p2−1 + |u|p1−1 + |u|p2−1

)
|un − u|dx

≤ c
(∫

R3
Q(|x|)|un − u|p1dx

)1/p1((∫
R3
Q(|x|)|un|p1dx

) p1−1
p1

+
(∫

R3
Q(|x|)|u|p1dx

) p1−1
p1
)

+ c
(∫

R3
Q(|x|)|un − u|p2dx

)1/p2((∫
R3
Q(|x|)|un|p2dx

) p2−1
p2

+
(∫

R3
Q(|x|)|u|p2dx

) p2−1
p2
)
.

Since un → u in Ls(R3;Q), s ∈ (p, p), we have∫
R3
Q(|x|) (f(un)− f(u)) (un − u)dx→ 0 as n→∞.

So we have ‖un − u‖E → 0. This completes the proof. �

3. Main results

Theorem 3.1. Assume that conditions (V1), (Q0), (Q1) hold. If (F1) and the
following conidition hold

(F2) There exists µ and r > 0 such that max{p, 4} < µ ≤ p <∞, and

µF (u) ≤ uf(u), ∀u ∈ R, inf
|u|=r

F (u) := β > 0.
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Then system (1.1) has a nontrivial solution. Furthermore, if f(u) is odd in u, then
system (1.1) has a sequence {(un, φn)} of solutions in E×D1,2

r (R3) with ‖un‖ → ∞
and I(un)→ +∞.

Proof. From (F1), we have

|F (u)| ≤ c( 1
p1
|u|p1 +

1
p2
|u|p2).

Note that

I(u) =
1
2
‖u‖2E +

1
4

∫
R3
Q(|x|)φuu2dx−

∫
R3
Q(|x|)F (u)dx

≥ 1
2
‖u‖2E −

∫
R3
Q(|x|)F (u)dx

≥ 1
2
‖u‖2E −

c

p1
‖u‖p1p1 −

c

p2
‖u‖p2p2

≥ 1
2
‖u‖2E − c8‖u‖

p1
E − c9‖u‖

p2
E .

Since p1, p2 > 2, we can take a small ρ such that

I|∂Bρ ≥
1
2
ρ2 − c8ρp1 − c9ρp2 := δ > 0,

where Bρ = {u ∈ E : ‖u‖E < ρ}.
For z ∈ R, set

h(t) := F (t−1z)tµ, ∀t ∈ [1,+∞).
For |z| ≥ r and t ∈ [1, |z|/r], by (F2), one has

h′(t) = f(t−1z)(− z
t2

)tµ + F (t−1z)µtµ−1

= tµ−1
(
µF (t−1z)− t−1zf(t−1z)

)
≤ 0.

So, we have

F (z) = h(1) ≥ h(
|z|
r

) ≥ β

rµ
|z|µ.

Since µ > 4, there exists a constant max{p, 4} < α < p such that α < µ, and hence

lim
|u|→∞

F (u)
|u|α

= +∞. (3.1)

For any finite dimensional space E1 ⊂ E, by the equivalence of norms in the
finite space, there exists a constant c(α) > 0, such that

‖u‖α ≥ cα‖u‖E , ∀u ∈ E1 (3.2)

where α is the constant appearing in (3.1). For any σ > 0, by (F1), there is a
constant cσ > 0 such that

|F (u)| ≤ cσ|u|p, ∀|u| < σ.

Hence, by (3.1), we know that for M > 0, there is a constant CM > 0 such that

F (u) ≥M |u|α − CM |u|p, ∀u ∈ R. (3.3)

By (3.2) and (3.3), we have

I(u) ≤ 1
2
‖u‖2E +

c4
4
‖u‖4E −M‖u‖αα + CM‖u‖

p
p
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≤ 1
2
‖u‖2E +

c4
4
‖u‖4E −Mcαα‖u‖αE + CM‖u‖

p

E ,

for all u ∈ E1. Consequently, there is a large r1 > 0 such that I < 0 on E1\Br1 .
Consequently, there is a point e ∈ E with ‖e‖E > ρ such that I(e) < 0.

Now, we prove that I satisfies the Palais-Smale condition. By Lemma 2.4 we
know that it is sufficient to prove {un} is bounded in E. Indeed, if a sequence
{un} ⊂ E such that I(un) is bounded and I ′(un) → 0, then there is positive
constant M0 such that for large n, one has

M0 + ‖un‖E ≥ I(un)− 1
µ
〈I ′(un), un〉

≥ (
1
2
− 1
µ

)‖un‖2E + (
1
4
− 1
µ

)
∫

R3
Q(|x|)φunu2

ndx

+
∫

R3
Q(|x|)

(f(un)un
µ

− F (un)
)
dx

≥ (
1
2
− 1
µ

)‖un‖2E .

This implies {un} is bounded.
Obviously, I(0) = 0. Hence I possesses a critical value η ≥ δ by [20, Theorem

2.2], thus problem (1.1) has a nontrivial solution. Moreover, obviously, I is bounded
on each bounded subset of E and f(u) is odd which implies I is even. Hence the
second conclusion follows from [20, Theorem 9.12]. This completes the proof. �

Note that µ > 4 in condition (F2). Now, we consider the weak case µ = 4. At
this one, we have the following Theorem.

Lemma 3.2. Assume that conditions (V1), (Q0), (Q1), (F1) and the following
conditions hold:

(F3) F (u)
|u|4 → +∞ as |u| → +∞.

(F4) uf(u) ≥ 4F (u) for all u ∈ R.
If p < 4 < p, then system (1.1) has at least one nontrivial solution. Furthermore,
if f(u) is odd in u, then system (1.1) has a sequence {(un, φn)} of solutions in
E ×D1,2

r (R3) with ‖un‖ → ∞ and I(un)→ +∞.

Proof. From the proofs of the first segment in Theorem 3.1, we know that there
exist constants ρ > 0 and δ > 0 such that

I|∂Bρ ≥ δ > 0.

Moreover, for any finite dimensional space E1 ⊂ E, by the equivalence of norms in
the finite space, there exists a constant C > 0, such that

‖u‖4 ≥ C‖u‖E , ∀u ∈ E1. (3.4)

Since p < 4, by (F1) and (F3) we know that for any M > c4
4C4 , there is a constant

CM > 0 such that
F (u) ≥M |u|4 − c(M)|u|p, ∀u ∈ R. (3.5)

Hence

I(u) ≤ 1
2
‖u‖2E +

1
4

∫
R3
Q(|x|)φunu2

ndx−M‖u‖44 + CM‖u‖
p
p.
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By (3.4) and (3.5), we know

I(u) ≤ 1
2
‖u‖2E +

c4
4
‖u‖4E −MC4‖u‖4E + CM‖u‖

p

E ,

for all u ∈ E1. Consequently, there is a large r1 > 0 such that I < 0 on E1\Br1 .
Consequently, there is a point e ∈ E with ‖e‖E > ρ, such that I(e) < 0.

Next we prove that I satisfies the Palais-Smale condition. Indeed, if a sequence
{un} ⊂ E is such that {I(un)} is bounded and I ′(un)→ 0, then there is a positive
constant M1 such that for large n, one has

M1 + ‖un‖E ≥ I(un)− 1
4
〈I ′(un), un〉

=
1
4
‖un‖2E +

∫
R3
Q(|x|)

(1
4
f(un)un − F (un)

)
dx

≥ 1
4
‖un‖2E .

This implies {un} is bounded. Hence {un} ⊂ E has a convergent subsequence by
Lemma 2.4. This shows that I satisfies the Palais-Smale condition. Finally, the
conclusions follows from [20, Theorem 2.2 and 9.12]. �

Corollary 3.3. Assume that conditions (V1), (Q0), (Q1), (F1), (F3) and the fol-
lowing conditions hold:

(F4’) u→ f(u)/|u|3 is increasing on (−∞, 0) and on (0,+∞).
If p < 4 < p, then system (1.1) has at least one nontrivial solution. Furthermore,
if f(u) is odd in u, then system (1.1) has a sequence {(un, φn)} of solutions in
E ×D1,2

r (R3) with ‖un‖ → ∞ and I(un)→ +∞.

Proof. It is sufficient to prove that (F4’) implies (F4). In fact, whenever u > 0,

F (u) =
∫ 1

0

f(ut)u dt =
∫ 1

0

f(ut)
(ut)3

u4t3dt ≤
∫ 1

0

f(u)
(u)3

u4t3dt =
1
4
f(u)u.

Whenever u < 0,

F (u) =
∫ 1

0

f(ut)u dt = −
∫ 1

0

f(ut)
(−ut)3

u4t3dt ≤
∫ 1

0

f(u)
(u)3

u4t3dt =
1
4
f(u)u.

This shows (F4) holds. �

Theorem 3.4. Assume that condition (V1), (Q1), (F1), (F3) and the following
condition hold:

(F5) F (u) ≥ 0 for all u ∈ R and G(s) ≤ G(t) whenever (s, t) ∈ R+ × R+ and
s ≤ t, where G(u) = f(u)u− 4F (u).

If p < 4 < p, then system (1.1) has at least one nontrivial solution. Furthermore,
if f(u) is odd in u, then system (1.1) has a sequence {(un, φn)} of solutions in
E ×D1,2

r (R3) with ‖un‖ → ∞ and I(un)→ +∞.

Proof. Similar to the proof of Lemma 3.2, we know that there exist ρ > 0, δ > 0
such that

I|∂Bρ ≥ δ > 0.
Moreover, for any finite dimensional subspace E1 ⊂ E, there is a large r1 > 0 such
that I < 0 on E1\Br1 .
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Now, we prove that I satisfies the Cerami condition. Indeed, if a sequence
{un} ⊂ E is such that {I(un)} is bounded and (1 + ‖un‖)I ′(un) → 0, then we
claim that {un} is bounded. If this is false, then we can assume ‖un‖ → +∞. Set
vn = un

‖un‖E , then ‖vn‖E = 1. By virtue of Lemma 2.1, passing to a subsequence,
we may assume

vn ⇀ v in E,

un → u in Ls(R3;Q), s ∈ (p, p).

Since {I(un)} is bounded, there exists a constant C1 > 0 such that∫
R3

Q(|x|)F (un)
‖un‖4E

dx ≤ C1 <∞.

Set Ω = {x ∈ R3 : v(x) 6= 0}. Then |un(x)| → +∞ for a.e. x ∈ Ω. If meas(Ω) > 0,
then, by (F4)

F (un)
‖un‖4E

=
F (un)
|un|4

|vn(x)|4 →∞, as n→∞.

Since Q(|x|) > 0, using Fatou’s lemma, we obtain∫
R3

Q(|x|)F (un)
‖un‖4E

dx→∞.

A contradiction, so meas(Ω) = 0. Therefore, v(x) = 0 a.e. x ∈ R3. Next, as in [19],
we define

I(tnun) = max
t∈[0,1]

I(tun).

For any M > 0, set ṽn =
√

4M un
‖un‖E =

√
4Mvn. Since |F (u)| ≤ c( 1

p1
|u|p1 + 1

p2
|u|p2)

for u ∈ R,

|
∫

R3
Q(|x|)F (ṽn)dx| ≤ c

p1

∫
R3
Q(|x|)|ṽn|p1dx+

c

p2

∫
R3
Q(|x|)|ṽn|p2dx→ 0,

as n→∞. Consequently, for large n, one has

I(tnun) ≥ I(ṽn)

≥ 1
2
‖ṽn‖2E +

1
4

∫
R3
Q(|x|)φṽn ṽ2

ndx−
∫

R3
Q(|x|)F (ṽn)dx

≥M.

This means that limn→∞ I(tnun) = ∞. In view of the choice of tn we know that
〈I ′(tnun), tnun〉 = 0 or → 0. Hence, by (F5) and the oddness of f , one has

∞← 4I(tnun)− 〈I ′(tnun), tnun〉

= t2n

∫
R3

(
|∇un|2 + V (|x|)|un|2

)
dx+

∫
R3
Q(|x|) (f(tnun)tnun − 4F (tnun)) dx

≤ ‖un‖2E +
∫

R3
Q(|x|) (f(un)un − 4F (un)) dx

= 4I(un)− 〈I ′(un), un〉.

This is a contradiction, so {un} is bounded. Consequently, {un} ⊂ E has a conver-
gent subsequence by Lemma 2.4. This shows that I satisfies the Cerami condition.
Note that if we use Cerami condition in place of the Palais-Smale condition, then
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[20, Theorems 2.2 and 9.12] are still true. Therefore, the conclusion follows from
[20, Theorems 2.2 and 9.12]. This completes the proof. �
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equations, Mediterr. J. Math. 3 (2006) 483-493.
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