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LACK OF COERCIVITY FOR N-LAPLACE EQUATION
WITH CRITICAL EXPONENTIAL NONLINEARITIES
IN A BOUNDED DOMAIN

SARIKA GOYAL, KONIJETI SREENADH

ABSTRACT. In this article, we study the existence and multiplicity of non-
negative solutions of the N-Laplacian equation

—Anu+ V(@)|ulN " %u = M) |u|? e + u|u|pe|“|[3 in Q
u>0 inQ ueWwyN(Q),
u=0 on 0

where Q 15 a bounded domain in RV, N > 2, 0 < ¢g < N—-1< p+1,
B e (1, N 1} and A > 0. By minimization on a suitable subset of the Nehari
manifold, and using fiber maps, we find conditions on V', h for the existence
and multiplicity of solutions, when V' and h are sign changing and unbounded
functions.

1. INTRODUCTION

We consider the following quasilinear elliptic equation in Q@ ¢ RV, N > 2:

—Anu+ V(z)|ulN "2 = Ah(z)|u|? u + u|u\pelulﬁ in Q

w>0 inQ, ueWNQ), (1.1)
u=0 on 0N
whereANu: (|Vu|N2Vu), 0<q<N—1<p+1 Be (1, 5%5] and A > 0.
Let v = Niql’ k== JﬁJ{B >1and k' = . We assume the following:

(Al) V € L*(f2), s > 1 be an indefinite and unbounded function;
(A2) bt # 0, h can be indefinite and vanish in some open subset of Q and
moreover h € L7(Q).

These conditions ensure that Ey (u) := [, ( |Vu|N + V( NulN)dx is weakly lower
semi-continuous on WO' (Q), Where as H(u) := fQ x)|u|?dx is weakly con-

tinuous on WO1 N(Q) Problems of the type are motivated by the following
Trudinger-Moser inequality.
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Theorem 1.1 ([I6]). For N > 2, u € Wol’N(Q)

N
sup /e”‘lu\N*ldx < 00 (1.2)
Q

flull<1

1
if and only if a < an, where ay = Nwﬁ, wy_1 = volume of SNL.

The embedding Wy ™ () 3 u — ell” ¢ LY(Q) is compact for all 8 € (1, 1)
and is continuous for § = % The non-compactness of the embedding can be
shown using a sequence of functions that are truncations of fundamental solution of
—Ap on WO1 N(Q) The existence results for quasilinear problems with exponential
terms on bounded domains was initiated and studied by Adimurthi [IJ.

Starting from the pioneering works of Tarantello [21I] and Ambrosetti-Brezis-
Cerami [5], a lot of work has been done to address the multiplicity of positive so-
lutions for semilinear and quasilinear elliptic problems with positive nonlinearities.
Recently, many works are devoted to the study of these multiplicity results with
polynomial type nonlinearity with sign-changing weight functions using the Nehari
manifold and fibering map analysis (see [2, B, 8, 10, 0T], 2], 2T], 221 23] 24], 25]).
Nonhomogeneous elliptic equation with exponential nonlinearity is also dealt in
[18]. In [19], Quoirin studied the quasilinear equation

—Apu+V(z)uP™t = a(z)u" ™ + b(x)u(z)? " in Q, u(z) =0 on 0L,

where 1 < r < p < ¢ < p*, V(z), a(x) and b(z) are indefinite functions. Under
suitable condition on V', a, b, he showed the existence of four non-negative solutions
when A1 (V) < 0, the first eigenvalue of —Axy +V . Also In [20], Quoirin and Ubilla
showed the existence and multiplicity of non-negative solutions of the following
equation:

—Au+ V(z)uP™! = da(x)u" "t +b(z)u? in Q, wu =0 on 99,
where 1 <r <2 < ¢ < 2 V(2), a(z) and b(z) are sign changing. Our work in
this paper is motivated by the work of Quoirin [I9].

The first and second eigenvalues of the operator —Ay + V on WolN(Q) are de-
noted by A;(V) < A2(V) respectively and ¢y > 0 be its LY -normalized eigenfunc-
tion corresponding to A1 (V). Also A1 (V) is characterized as min{Ey (u) : |u||y =
1}, is simple and principal so that ¢y is unique and positive.

When A (V) <0, the effect of potential V on is relevant as Ey (u) becomes
non-coercive. We will see that in this case, has existence and multiplicity of
non-negative solutions in critical and subcritical case respectively which are distin-
guished by the sign of V' and h. As in [I9] and [9], we define,

a(V,h) :=min{Ey (u) : |Jul|x =1, H(u) = 0},
B(V,h) := min{Ey (u) : H(u) = 1}.
Then a(V, h) is well-defined by assuming the convention that min () = co. It is clear
that A (V) < a(V,h) and A\ (V) = a(V, h) if and only if H(¢y) = 0. Also one can
easily see that 3(V, h) is well-defined if a(V, h) > 0 (see [19, Lemma 4.3]). Also we

introduce some symbols:
EF = {ueWyN(Q): By(u) 20}, Eo:={ueWy™N(Q): Ey(u) =0},
H* .= {ue WyN(Q): H(u) 20}, Hy:={ueWyN(Q): H(u) =0},
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and HF := H* U Hy, B := E* U Ey. We have the following existence result.
Theorem 1.2. Let 8 € (1, %], V and h satisfy (A1), (A2) respectively. Then
there exists Ag > 0 such that for A € (0, Ao), admits a non-negative solution
uy in each of the following cases:

(1) )\1(‘/) > 0,

(2) )\1(‘/) =0and ¢y € H™,

3) M(V) <0< X (V), ¢y € H™ and a(V,h) > 0.

. . 1,N
Moreover, uy is a local minimum for Jy on Wy ().

We have the following multiplicity result in the subcritical case when h(x)
changes sign:

Theorem 1.3. For 3 € (1,525), V and h satisfy (A1), (A2) respectively. Then

for X € (0, A\g), (L.1) has a non-negative second solution vy in each the cases (1)-(3)

above.
Finally, in the critical case, we obtain the following multiplicity result.

Theorem 1.4. For = 2+, h >0 and A (V) > 0 then for A € (0, o), (L) has

at least two non-negative solutions.

Here )\ is the maximum of A such that for A < Ay, the fibering map ¢ — Jy(tu)
has exactly two critical points for each v € E*t N HT.

The Euler functional associated with the problem is Jy @ W, Ny - R
defined as

Ji(u) = iEv(u) - qT>\1H(u) - /QG(u)dx, (1.3)

where g(u) = u|u|Pe‘“|ﬁ and G(u) = [ g(s)ds.

Definition 1.5. We say that u € Wol’N(Q) is a weak solution of (.1 if for all
@€ VVOLN(Q)7 we have

/(|VU|N72VuV¢+V(x)\u|N*2u¢) dz:/g(u)¢dx+/\/h(x)|u|q*1u¢dx.
Q Q Q (1.4)

We remark that the similar existence results with some obvious modification can
be proved for critical exponent problem for p-Laplacian with p < N and g(u) =
NNiz)’
multiplicity in the critical case can be obtained with some condition on p, ¢ as in
[13].

This paper is organized as follows: In section 2, we introduce Nehari manifold
and study the behavior of the Nehari manifold using the fibering map analysis
for . Section 3 contains the existence results for critical and subcritical non-
linearities. In section 4, we show the existence of a second solution. In section 5
we study non-existence results.

We shall throughout use the following notation: The norm on W, N(Q) and
L?(Q) are denoted by || - ||, ||ul|, respectively. The weak convergence is denoted by
— and — denotes strong convergence.

[ulP"~2u where p* = while subcritical case is studied by Quoirin in [19]. The
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2. NEHARI MANIFOLD AND FIBERING MAP ANALYSIS FOR (.1))

The energy functional Jy is not bounded below on the space WO1 ’N(Q), but is
bounded below on an appropriate subset of WO1 N(Q) and a minimizer on subsets of
this set gives rise to solutions of (L.1]). To obtain the existence results, we introduce
the Nehari manifold

Ny = {u e W™ (Q) : (J(w),u) = 0} = {u € Wy () : ¢/,(1) = 0}

where (-,-) denotes the duality between W, ™ () and its dual space. Therefore
u € N, if and only if

Ey(u) — AH(u) — /Qg(u)udx = 0. (2.1)

We note that A contains every non zero solution of (1.1)). Now as we know that
the Nehari manifold is closely related to the behaviour of the functions ¢, : Rt — R
defined as ¢, (t) = Jx(tu). Such maps are called fiber maps and were introduced
by Drabek and Pohozaev in [I0]. For u € Wy (Q), we have

tNV A+l

(bu(t) - N EV(U')

— H(u) — | G(tu)dx,
i) - [ G

6L () = NV By (u) — MOH (u) — /Q g(tw)udz,

!(t) = (N — DtV 2By (u) — g\t  H(u) — /Qg'(tu)ude.

Then it is easy to see that tu € N if and only if ¢/,({) = 0 and in particular,
u € N, if and only if ¢/ (1) = 0. Thus it is natural to split N} into three parts
corresponding to local minima, local maxima and points of inflection. For this we
set

N3 = {u € Ny 9li(1) 2 0} = {tu € Wy () : ¢),(1) = 0, (1) 2 0},
N ={ueNy:¢!'(1) =0} = {tu e W3 N (Q): ¢, (t) =0, ¢'(t) = 0}.
Now we describe the behavior of the fibering map ¢, according to the sign of
H(u) and Ey (u).
Case 1: w € H" N E~. In this case ¢,(0) = 0, ¢/,(t) < 0 for all ¢ > 0 which implies

that ¢,, is strictly decreasing and hence no critical point.
Case 2: uw € H~ N E~. In this case, firstly we define m,, : Rt — R by

my(t) = tN179Ey (u) — tfq/ g(tu)udx.
Q
Clearly, for t > 0, tu € N, if and only if ¢ is a solution of m,(t) = AH (u).

ml,(t) = (N —1— gtV "2"DEy (u) — t*q/ g (tu)ulde + gt =971 / g(tu)udzx
Q Q

S (N1 )2 By () — (14 p— q)t /Q g(tu)u

[ gt
Q

Therefore m/,(t) < 0 for all ¢ > 0, since v € E~. As u € H~ so there exists ¢,(u)
such that my,(t.) = AH (u). Thus for 0 < t < t., ¢, (t) = t9(myu(t) — AH(u)) > 0
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and for ¢t > t., ¢/ (t) < 0. Hence ¢, is increasing on (0, t.), decreasing on (t,,00).
Since ¢,,(t) > 0 for ¢ close to 0 and ¢, (t) — —o0 ast — 0o, we obtain ¢, has exactly
one critical point ¢;(u), which is a global maximum point. Hence ¢ (u)u € Ny .
Case 3: w € ET N H~. In this case, we have

my, (t)

u

= (N —1- )t N2 Ey (u) — t—‘I/

A g (tu)uPde + gt 171 / g(tu)u

Q
= ¢N—2a {(N —1-q)Bv(u)— (1+p—gt'™" (22)

></Qg(tu)u—ﬁtl_N"’B/Q\u|ﬁg(tu)u}.

It is easy to see that lim; o+ m),(¢) > 0 and sum of second and third term in
is a monotone function in ¢. Therefore there exists a unique t, = t.(u) > 0
such that m,(t) is increasing on (0, t.), decreasing on (., 00) and m/ (t.) = 0. As
My (t) — —o00 as t — oo, uw € H™ so 3 t1(u) such that m,(t1) = AH (u). Thus for
0<t<ty, ¢,) >0 and for t > 1, ¢/, (t) < 0. Thus ¢, has exactly one critical
point t1(u), which is a global maximum point. Hence t;(u)u € N,

Case 4: w € ETNH™. In this case, we claim that there exists Ay > 0 and a unique
t. such that for A € (0, A\g), ¢, has exactly two critical points 1 (u) and t2(u) such
that ¢ (u) < t«(u) < t2(u), and moreover ¢ (u) is a local minimum point and to(u)
is a local maximum point. Thus ¢1(u)u € N3 and ta(u)u € N .

To show this we need following Lemmas:

Lemma 2.1. If a(V,h) > 0, B(V,h) > 0, then H C E* and moreover, there
ezists a constant K > 0 such that Ey(u) > K| u||N for allu € Hy .

Proof. Let u € Hy then H(u) > 0 and o(V,h) > 0, B(V,h) > 0 implies that
Ev(u) > 0. Next we show that there exists a constant K > 0 such that Ey (u) >
K||u||N for all w € Hy. Suppose this is not true, then for each n, there exist

Uy € HS' such that Ey (u,) < w Let v,, = 7%=~. Then v,, is bounded. So there

Munl
exists a subsequence v, such that v, — vy weakly in VVO1 N(Q) Also H(vg) > 0
and 0 < Ey(v,) < % implies Fy(vg) < 0. Moreover vy # 0 because if vg = 0
then we obtain [|v,| < Ev(v) + [ [V (2)|[vn|Vdz — 0, which is a contradiction
as ||vy]| = 1. Thus Ey(vg) < 0 < H(vg) imply a(V,h) < 0, B(V,h) < 0 which
contradict the given assumptions. O

Next, we define A = {u € Wol’N(Q) | Ev(u) < (]V]i%q) Jo ¢/ (u)udx}. Then, we
prove the following Lemma.

Lemma 2.2. Let a(V,h) > 0, B(V,h) > 0 then there exists Ao > 0 such that for
every A € (0, \o),

Ay = inf {/ (p+2—-N+ ﬁ|u|ﬂ) |u|P+2e\u|B - (N-1- q)/\H(u)} > 0.
wEA{0}NHS Q
(2.3)

Proof. Step 1: inf, ¢\ (o3t Ey(u) > 0. In view of Lemma it is sufficient to
show that

inf [lu|| > 0.
w€A\{0}NHS
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Suppose this is not true. Then we find a sequence {u,,} C A\ {0} N Hy such that
lun|| — 0 and we have

Ey(u,) < (NN—iziq) /Qg'(un)ui dz Vn. (2.4)

From g(u) = u|u|pe‘“|ﬁ7 Holders inequality and Sobolev inequality, we have

/ g (up)ude = / (p +1+ ﬂ\un\ﬁ) |un|p+2e‘""|5d;ﬁ
Q Q

< C/ |un|p+2e(1+5)\un\5dx
Q

< C(/ |“n|(p+2)t/d;c)1/t (/ ot (1+6) [un|? dw)l/t
Q Q

SC'||un||p+2( sup /et(“‘s)”“n”s‘w"‘ﬁdx)1/t7
0

lwnll<1

since |[up|| — 0 as n — oo, we can choose a = t(1 + 8)||uy,||” such that o < avy.
Hence by this, (2.4) and Lemma we obtain 1 < K'[|u,[[PT>™N — 0 as n — oo,
since p + 2 > N, which gives a contradiction.
. 8

Step 2: Let Cy = inf o\ (oynmr Jo (p+2— N+ Blul?) [upt2el""dz. Then
C1 > 0. From Step 1 and the definition of A, we obtain

0< inf / g (w)ulde = inf / (p+1+Blul?) |u|p+26‘“|ﬁd:c.

weA{0}NHS JQ weA{0}NHS JQ
Using this it is easy to check that
inf / (p+2-N+ ,6’|u|5) |u|p+2e‘“|ﬂdx > 0.
weA\{0INHS Ja
This completes step 2.
(k—1) ke

Step 3: Let A < (N*ilq*l)(%) =, where [ = [, |h(2)|*Tdx. Then (2.3)) holds.

Using Holder’s inequality and (A2) we have,

a1 < ([ i) ([ o)
:l%(/Q |u|p+2+ﬁdx)1/’C

k—1

1/k
] (/ (p +2—- N+ ﬂ\u|ﬁ)|u|p+26|“|ﬁda:>
Q

< ()T [ (2= N4 ) e
Q

The above inequality combined with step 2 proves the Lemma. Il

The following Lemma completes the proof of claim made in case (4) above.

Lemma 2.3. Let a(V,h) > 0, 8(V,h) > 0 and X be such that holds. Then
for every u € H \ {0}, there is a unique t. = t.(u) > 0 and unique t; = t1(u) <
te < ta = ta(u) such that tiu € Nj, tou € Ny and Jy(tiu) = ming<i<s, Jx(tu),
Ia(tou) = max;>;, Jy(tu).
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Proof. Fix 0 # u € H*, Then by Lemma[2.1} u € E*. Define m,, : Rt — R by
my(t) = tN 1By (u) — t_q/Qg(tu)udx.

We note that m,,(t) — —oco as t — oo and

ml (1) = (N =1 — N2y (u) — ¢ /

g (tu)u?dx + qt_q_l/ g(tu)udz
)

Q
(2.5)

— (N-2—q [(N —1-q)By(u) — (1+p— q)tl—N/Qg(tu)u

—ﬁtl_N+ﬂ/ﬂ|u|ﬂg(tu)udx] (2.6)

It is easy to see that lim; .o+ m/,(¢) > 0 and sum of second and third term in
is a monotone function in ¢. So there exists a unique t, = t,(u) > 0 such that m,,(¢)
is increasing on (0, ¢,), decreasing on (¢, 00) and m/,(t.) = 0. Using this and (2.5),
we obtain t,u € A\ {0} N H*t. From t2**m/,(t,) = 0 and by definition of m,,, we
obtain

my(ts) = tZH(Nl—l—q) [/Qg’(t*u)(t*u)Qda: — (N - 1)/Qg(t*u)t*udx]

Using Lemmaand that ¢'(s)s?> — (N —1)g(s)s = (p+2— N +ﬂ|3|f3)|s|p+26‘s|ﬁ,

we have

1 , ,
W[/ﬂ (¢ (tau)(tau)® — (N — Dg(tau)tou)da

— (N = 1= @AH (£ (w)]
A,

my(te) — AH(u) =

> —— > 0.
(N —1—q)
Since m,(0) = 0, m,, is increasing in (0,t,) and strictly decreasing in (t,,00),
lim;_, o0 My (t) = —00 and w € Ht. Then there exists a unique t; = t1(u) < t.

and t3 = ta(u) > t, such that m,(t1) = AH(u) = my(t2) implies tyu, tau € N.
Also ml,(t1) > 0 and m/,(t2) < 0 give tiyu € N, and tou € N . Since ¢, (t) =
t2(m., (t) —AH (u)). Then ¢!,(t) < 0 for allt € [0,t1) and ¢/, (t) > 0 for all ¢ € (¢1,t2)
80 ¢y (t1) = ming<i<¢, du(t). Also ¢, (t) > 0 for all t € [t.,t2), ¢, (t2) = 0 and
¢, (t) <0 for all t € (t2,00) implies that ¢, (t2) = max;>s, ¢y (t). O

Lemma 2.4. If o(V,h) > 0, B(V,h) > 0 and A be such that (2.3) holds. Then
NP = {0}.

Proof. Suppose u € N, u # 0. Then by definition of VY, we have the following
two equations

(N = 1) By (u) = /Q o (Wudz + \gH(u), (2.7)

Ey(u) = /Qg(u)ud:zr + AH (u). (2.8)
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Let w € HTNNY and X € (0, \). Then from above equations, we can easily deduce
that

(N—-1-¢q)By(u) < /Qg’(u)uZda:,

which shows u € A\ {0}. Noting that ¢(s)s> — (N — 1)g(s)s = (p+2— N +
ﬁ|s|5)|s|p+26‘s|ﬁ, from (2.7) and (2.8), we obtain

(N —1—q)\H(u) = / (p+2—N+Blul?) |ufPT2elv!’ 4z,
Q

which violates Lemma Hence VY = {0}. In other cases, u € H-NE~NNY and
uw € H-NETNNY, we have 1 is critical point of ¢, and ¢//(1) = 0but u € H-NE~
and v € H~ N E* implies that ¢, has exactly one critical point corresponding to
global maxima i.e ¢!/ (1) # 0 which is a contradiction. Hence N7 = {0}. O

3. EXISTENCE OF SOLUTIONS

In this section we show that Jy is bounded below on Ny. Also we show that
under suitable condition on V and h, Jy attains its minimizer on ET N HT NN}
We define 0 := inf{Jy(u) | u € N} and prove the following lower bound.

Theorem 3.1. Jy is bounded below on Ny. Moreover, there exists a constant
k
C =C(p,q,N) >0 such that 05 > —CA\¥-T.

Proof. Let u € Ny. Then

N/ uda:f/G(u)dxf)\(ﬁf%)H(u). (3.1)

If w € Hy , then Jy(u) is bounded below by 0. If u € H' then by using Holder’s
inequality, we have

_ 1/k
H(u) < l%( || (T Dk dx) ’
Q

where [ = [, |h(z)*/¥~1dz. Also, It is easy to see that

1 1 1
- _ S (= )|y pt2ts 9
FOu = Glu) = (5 = ) 27, (32)
From the above inequalities, we obtain
k—1
Iw) 2 (- — / Juf Ty — AN —q = DI (/ |u|(q+1)kdx)1/k,
- p+2 N(g+1) Q
+243

where k = 2212
R defines as

s By considering the global minimum of the function p(z) : Rt —

! Lok (AN =g )
)= (5~ 552)° ( N(g+1) ):”
it can be shown that

pKA(quf 1)(p+2>z’;21>,;1]

inf Ja(u) 2 klg+1)(p+2-N

UEN,\
From this, it follows that
0r > —C(p,q, N)ATT, (3.3)
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where
1 k
1 1\ l(p+2)=T(N —q— 1)
k71 k71 N(p+2_N)k—1(q+1>k—1
Hence Jy is bounded below on Nj. O

The following lemma shows that minimizers for Jy on any subset of N, are
usually critical points for Jy.

Lemma 3.2. Let u be a local minimizer for Jy in any of the subsets /\/')\i NEtNHT
of Nx such that u ¢ ./\/}(\’, then u is a non-negative critical point for Jy.

Proof. Let u be a local minimizer for Jy in any of the subsets of Ny. We can take
u >0 as Jy(lu]) = Jx(uw) for every u. Then, in any case v is a minimizer for Jy
under the constraint I(u) := (J{(u),u) = 0. Hence, by the theory of Lagrange
multipliers, there exists 4 € R such that J{(u) = pli(w). Thus (J{(u),u) =
p(I4 (u), u) = pgll(1)=0, but u ¢ NY and so ¢//(1) # 0. Hence = 0 completes the
proof. ([l

Lemma 3.3. If a(V,h) >0, B(V,h) > 0 and {u,} € Ny N H{ be a sequence such
that Jx(uy) is bounded. Then the sequence {uy} is bounded.

Proof. On Ny,

In(up) = (i _ L)EV(un) _ MH(%)

N p+2 (¢+1(p+2) (3.4)
. .
+ /Q (}mg(un)un — G(un)> dx.
As u, € H, we have
(p+2-N) Ap+1-9q)
By (uy) < (up) + ———————H(uy).
N vl = D)+ 1y )
Then by using Lemma [2.I] and Hélders inequality, we obtain
+2—N) AMp+1—gq)
Klun|¥ < 8F2=N) n) < J NEAL N O |71,
[uall™ < NoT2) v(un) < Jx(un) (q+1)(p+2)|| 2y llunll
and hence {u,} is bounded. O

Lemma 3.4. Let «(V,h) >0, B(V,h) > 0, and let A satisfy (2.3). Then given u €
N\ {0}, there exist € > 0 and a differentiable function & : B(0,e) € Wy (Q) — R
such that £(0) = 1, the function §(w)(u —w) € Ny and for all w € Wol’N(Q),

NR(u,w) — [, (g(u u) Jwdz — Xg+1) [o, h(z)|u|?  uw d

(N—q—lEV — [o 9 (wutdx + q [, g(u)udzx ’
(3.5)

(€'(0), w) =

where R(u,w) = [,,(|Vu|N2VuVw + V() |[u|N ~2uw)dz.
Proof. Fix u € Ny \ {0}, define a function G, : R x Wy™¥ (Q) — R as follows:

Gu(t,v) = tN"11By (u —v) — 71 /Q g(t(u —v))(u —v)dz — \H (u — v).
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Then G, € C*(R x Wy (Q);R), Gu(1,0) = (J5(u),u) = 0 and

%Gu(l,()) =(N—-1—-q)Ey(u) 7/9

g (wids +q | gluuds 20,

Q
since NY = {0}. By the Implicit function theorem, there exist € > 0 and a differen-
tiable function ¢ : B(0,€) € Wy ™ () — R such that £(0) = 1, and G, (6 (w), w) = 0
for all w € B(0,¢) which is equivalent to (J3 ({(w)(uv — w)),&(w)(u — w)) = 0 for
all w € B(0,¢€) and hence £(w)(u — w) € Ny. Now differentiating G, (£(w),w) =0
with respect to w we obtain . ([

Lemma 3.5. Let o(V,h) >0, B(V,h) > 0 then exists a constant Cy > 0 such that

(r+1—0)
Or < — @ norow Co

Proof. a(V,h) > 0, B(V,h) > 0 implies that E* N Hf # 0. Let v € EY N HT.
Then by the fibering map analysis, we can find t; = t;(v) > 0 such that t;v € Nyf.
Thus

1 1 1
= — - — E — -
Jx(t1v) (N pn 1) v (t1v) /QG(tlv)da: + ) /Qg(tlv)tlv dx
q+ N / / 1 / / 2
< 2T | yto)tivde — | G(tw)dr — ———— t10)(tv)2da,
S Na+ D Qg( 1v)tivde ; (t1v)dx NaT D Qg(lv)( 1v)°dz
(3.6)
since t;v € Ny N E*. We now consider the function
_ q+N _ _ 1 , 9

Then
(g+N-2) , (N -1) 1

(s) = L2 = rigys — DT o) - ()
p'(s) = N@+1)g() <Nm+1ﬂ() @+UN9()2
)

_(lg+N-2-p)(p+1)— (N —1)q
_( N(g+1) )“@
g—p+N-2-0-p—1 B
+5( N D Jo@lsl” = qr sl

Now it is not difficult to see that coefficients in the first and second term are
negative, since p > N — 2. As p(0) = 0, it follows that p(s) < 0 for all s € RT.
Also it can be easily verified that

i PG _ _(p+l-g)p+2-N)
s—0 |s|Pt2 N@g+1)(p+2)
lim pls) =— b
5—00 |s|p+2+ﬁe|5‘6 N(q—|— 1)

From these two estimates, we obtain

(p+1_q) p+2 s|?
p(s) < _W (P+2_N+ﬂ|5|ﬁ) |s[P* el*l”. (3.7)

Therefore, using (3.6 and , we obtain

(p+1—gq)

A= TR0+ D)

/ (p +2-N+ 5|t1’l}|5) |tlv‘p+2€|tlvlﬁdx
Q
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< _L/ |t v\p+2+6dx
N(g+1)(p+2)
Hence 6, < infueN;mH+ J)\(U) < % Cy, where Cy = fQ |tly‘p+2+ﬁd$.

(]

By Lemma [3:1] Jy is bounded below on N. So, by Ekeland’s Variational prin-
ciple, we can find a sequence {u,} € Ny \ {0} such that

Ix(un) S@,\—l—%, (3.8)
1
JIa(v) ZJ,\(un)—EHv—unH Vv e N,. (3.9)

We claim that if «(V,h) > 0, 3(V,h) > 0 then u,, € ETNH". Now from (3.8) and
Lemma [3.5] we have

(p+1-q)

In(un) £ ——F——"— 3.10
") S N+ D +2) (310
As u,, € N, we have
1 1 1
= (= — N\E _— — . A1
) = (7 = 57 Bvlen) + [ (o(un)un = Glu))de. (31
From ([3.10) and (3.11)), we obtain
1
By(u) > —PH1=9 ooy (3.12)

(N=q+1)(p+2)

Also as u, € N, we have

J)\(un)

s ML
_(N p+2)EV( n) (q+1)(p+2)H( n)+/g)(p g(un)un — G( n)>d~

By this equality, (3.12]) and (3.10]), we obtain
Cs
> — . .
H(un) 2 135>0 ¥n (3.13)
Thus we have u,, € Ny, " ET N H*. Now we prove the following result.

Proposition 3.6. Let o(V,h) > 0, S(V,h) > 0 and )\ satisfies (2.3). Then
|75 (un) ||+ — 0 as n — oo.

Proof. Step 1: liminf,, ., Fy(u,) > 0. Applying Holders inequality in , we
have K'||u,|9%! > H(u,) > <& > 0 which implies that liminf, e |lun| > 0.
Using this and Lemma we obtain liminf, . FEy (uy) > 0.

Step 2: We claim that

K :=liminf {(N —1—q)Ev(up) —/ g (un)u2de + q/ g(un)undx} > 0. (3.14)
Assume by contradiction that for some subsequence of {u,}, still denoted by {u,}
we have

(N—l—wEwa—/

g (up)u? dx + q/ g(up)undr = o,(1).
Q

Q
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From this and the fact that Ey(u,) is bounded away from 0, we obtain that
liminf, oo [, ¢ (un)uzdz > 0. Hence, we obtain u, € A\ {0} for all n large.
Using this and the fact that u, € Ny \ {0}, we have

on(1) = AN —q—1)H(u,) — /Q(g’(un)ui — (N = D)g(un)up)de < —Ap,

by , which is a contradiction.

Finally, we show that ||J}(uy)||« — 0 as n — co. By Lemma we obtain a
sequence of functions &, : B(0,€,) — R for some €, > 0 such that &,(0) = 1 and
&n(w)(un —w) € Ny for all w € B(0,¢,). Choose 0 < p < ¢, and f € W™ (€2) such
that || f|| = 1. Let w, = pf. Then ||w,| = p < €, and n, = &, (w,)(u, —w,) € N
for all n. Since n, € Ny, we deduce from and Taylor’s expansion,

iy =l 2 Tatn) = () = () = 1)+ ol = 1)
= (1= &a (a4 (1) )+ o ()50, )+ 0 — )

(3.15)
We note that as p — 0, we have %an — Uy = [Jun(€,(0), f) — f|l. Now dividing
(3.15) by p and taking the limit p — 0, and using u,, € Ny, we obtain
1 L Ca|lf]
Ji (un < = (lunlllEL (0] + 1) < = =222, 3.16
(Ia(un), ) < = (uallllgn (O}l +1) < ——= (3.16)
by Lemma and (3.14). This completes the proof. |

We can now prove the following result.

Lemma 3.7. Let a(V,h) > 0, B(V,h) > 0 and let X satisfy (2.3). Then there exists
a function uy € Ny N HT N ET such that Jy(uy) = infy,e a0 Ja(w).

Proof. Let u,, be a minimizing sequence for J on NV, \{0} satisfying (3.8) and (3.9)).
Then {u,} is bounded in W™ () by Lemma Also there exists a subsequence
of {uy,} (still denoted by {u,}) and a function uy such that u, — wuy weakly in
W N(Q), u, — uy strongly in L(Q) for all @ > 1 and u,(z) — ux(z) a.e in Q.
Also H(uy,) — H(uy). By Proposition [3.6] [|.J§(un)|« — 0. Then we have
Vuy(x) = Vuy(z) a.e. in £,
g(un) — g(uy) strongly in L' (),
|V, [N 2V, — [Vupy |V 2Vuy,  weakly in (L%(Q))N

In particular, it follows that u) solves and hence uy € Ny. Moreover, 0, <
Ja(uy) <liminf,_ o Jx(u,) = 0. Hence uy is a minimizer for Jy on N).

Using (3.13)), we have H(uy) > 0 and Ey (uy) > 0, since B(V, h) > 0. Therefore
there exists t1(uy) such that ¢1(uy)uy € Ny. We now claim that ¢ (uy) = 1 (i.e.
uy € N)\"') Suppose t1(uy) < 1. Then t3(uy) = 1 and hence uy € N, . Now
Ia(t1(ur)uy) < Ja(uy) = 05 which is impossible, as t1(uy)uy € Ny. O

Theorem 3.8. Let «(V,h) >0, 5(V,h) > 0 and X be such that (2.3) holds. Then
uyx € Ny NET N HY is also a non-negative local minimum for Jy in Wol’N(Q).

Proof. Since uy € Ny, we have t1(uy) = 1 < t,(uy). Hence by continuity of
u — t.(u), given € > 0, there exists § = d(e) > 0 such that 1 + € < t.(uy — w) for
all |w|| < 8. Also, from Lemma [3.5] we have, for § > 0 small enough, we obtain a
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C! map t : B(0,6) — R such that t(w)(uy —w) € Ny, t(0) = 1. Therefore, for
0 > 0 small enough we have t1(uy —w) = t(w) < 14+€ < t.(uy—w) for all ||w| < .
Since t, (uy —w) > 1, we obtain Jy(uy) < Jx(t1(ur —w)(uy —w)) < Jx(ux —w) for
all ||w|| < §. This shows that u) is a local minimizer for J). We can take uy > 0
as J,\(‘U)\DZJ,\(’U)\). O

The following Lemma is taken from [19].

Lemma 3.9. (i) If either A (V) >0 or Ay (V) =0 and ¢y € H™ then 3(V,h) > 0.
(i1) If v € H—, M (V) <0 < Xa(V) and a(V,h) > 0 then 5(V,h) > 0.

Proof. (i) follows from S(V,h) > A1(V) and B(V,h) = A\ (V) if and only if ¢y €
HT.

To prove (ii), define G(V,h) = min{Ev (u); H(u) > 0, [lul|y = 1}. This min-
imum is achieved say uo and positive. Also §(V,h) > 0 implies 3(V,h) > 0. If
H(up) = 0 then B(V,h) > a(V,h) > 0. If H(ug) > 0 then 5(V,h) is actually an

eigenvalue of —Ay + V. Since ¢y € H™ we see that (V,h) > Ay(V) > 0. O
Now the proof of Theorem [I.2] follows from Lemma [3.9] and Theorem [3.8|

4. MULTIPLICITY RESULTS

4.1. Existence of a second solution in the subcritical case (1 < 8 < %)

Lemma 4.1. For B € (1,:%5), u, — u implies G(tu,) — G(tu) in L'(Q) for all
teR.

Proof. Let u,, — u then tu, — tu for every t € R. By compactness of embedding
u— o eI’ we have Jo eltunl” < C for some C > 0. From this one can
easily show that g(tu,) — g(tu) in L*(2). Also there exists M > 0 such that
G(s) < (1+ g(s))M for every s € R. Then using this and by applying Lebesgue
dominated convergence theorem, we obtain G(tu,) — G(tu) in L*(). O

Lemma 4.2. If a(V,h) > 0, B(V,h) > 0. Then Jx achieve its minimizers on
Ny NHf NE*.

Proof. Note that a(V,h) > 0 and 3(V,h) > 0 imply Hi N E* # (. Let u, €
Ny N H N ET be a minimizing sequence for Jy. Then Jy(u,) is bounded. By
Lemma {un} is a bounded sequence. Therefore u,, — uy weakly in Wy ()
and H(u,) — H(up). Also H(ug) > 0 as u,, € Hy . We claim that ug # 0. Let
us assume this for a moment, if H(ug) = 0, a(V,h) > 0 then Ey(up) > 0 and if
H(ugp) > 0, B(V,h) > 0 then Ey(up) > 0. Thus ug € Hy N E* and we have ¢y,
has a global maximum at some %y so that tgug € /\/’; N HO+ N ET. Next we claim
that u,, — wug. Suppose this is not true then by using Lemma we have

J,\(touO) < lim J,\(toun).
n—oo
On the other hand, u,, € Ny implies that 1 is a global maximum point for ¢, ;
ie., ¢y, (to) < @y, (1). Thus we have

lim Jy(toun) < lim Jy(u,) = inf Ix(w),
n—00 n—00 wEN NH NE+

which is a contradiction. Hence u,, — uo and moreover ug € N, ; N HJ N ET, since

NY =0.
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Now we show that ug # 0. Suppose up = 0. Then Ey(u,) = AH(up) +
Jo 9(un)unde — XH(ug) + [, g(uo)uodz = 0 as n — oo. Therefore we have u,, — 0

strongly in W, (Q) as n — oo, since |Ju,||¥ < By (u,) + Jo IV (@)||un|Ndz — 0
as n — oo. Now let v, = up/|up|. Then v, — vy weakly in Wy (Q) and
H(v,) — H(vg). Also By (uy) < N%H Jo ' (un)uldz, since u,, € Ny . Thus

+2—N
EV(vn) S (p+1)HU ||p /|U |p+2€|‘un”ﬁ|vn|[ dx

(N—-1-gq)
2—N
Ol 2 gl ol g
(N—1-¢q) Jo "

By using Holders inequality, Sobolev embeddings, Moser Trudinger inequality and
u, — 0 strongly in Wol’N(Q), one can easily show that [, |vn\p+2e”“"”ﬁ|”"|5 and
Jo vy [PF2+Bellunll’lvnl” are bounded. Thus limsup Ey (v,) — 0 as n — oo. So
Ey(vp) <0. Also

AH (vp,)
= ||“n||N717qEV(Un) - ||un||717q/ g(llunllvn) wnllv, dz
Q

T — B B
< un N By (vn) + [lun| [P q/ o, [PH2ellen % lonl” gy
Q

A L/t 1/t
< Kun ¥ a7 ([ o) sup [ el
Q Q

llwnll<1

1/t
< Klnun”Nflfq _|_K2||uan+1quUn”p+2(H Su|p<1/ﬂea|wn|ﬁ> — 0 asn— oo,
wy, ||<

since |Jup|| — 0 as n — oo we can choose a < ay. Thus H(vy) = 0. It is easy to
see that vy # 0. Hence a(V,h) < 0, which is a contradiction because «(V,h) > 0.
Hence ug # 0. (]

The proof of Theorem [T.3| follows from Lemmas and

4.2. Existence of a second solution in the critical case (8 = {— 1) For
showing the existence of a second solutions we assume h > 0. Then u € Ho for
every u € WO1 N(Q) In this subsection, We show that the minimizing sequence
in NV, is a Palais-Smale sequence below the critical level. We analyze the critical
level and show that the weak limit of minimizing sequence is the required second
solution of . To proceed further, we cut-off the nonlinearity from uy. For this
we define

Gz s) = g(z,ux) s <ur() nd Jla.s) — h(z)ul(xz) s <ux(z)
g( ) ) {g(x,s) SZ’LL)\(LL') and k'( s ) {h(m)sq 8>U)\(.%‘>,

where G(z,s) = [; §(z,t)dt and K(z,s) = [ k(z,t)dt. Define Jy, : wiN Q) = R
as

j,\() %EV /Gxudx— /Kwu (4.1)
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where G(x,u) = G(u) + g(ux)ux — G(uy) and K (z,u) = K (u) + qﬁh(az)u(f\ﬂ. So
Ia(u) = Jx(u) — /Q(g(u,\)uA — G(uy))dx — qi—qu(uA) (4.2)

Then we have J} (u) = J} (u), Ny = Ny, Ny = N, Ny = N7, MY = VY. Define
¢1 = inf jk(u), c1 = inf Jy(u).

ueN ueNy

Then Jy(u) < Jx(u) for every u and ¢, < ¢;. It is easy to see that uy is also a local
minimum of Jy. Next we define

L u
Uy := {u =0orueWyN(Q): [ul| <t (W)}
and -
Uy := {u € W(}’N(Q) ul > t7 (m)}

Then we claim that Ny = {u € Wol’N \ {0} : JJu|| = t‘(ﬁ)} Indeed, for u € N
and u € Hf as h > 0. Let v = ToT € W, N (). Then by Lemma there exists
a unique ¢~ (v) such that ¢t~ (v)v € N, . Using this and the fact that u € N we
have ¢~ (v) = ||u|. For other side, let u € W™ (Q)\ {0} such that ¢t~ (v) = |u.
Then ¢~ (v)v € Ny which implies u € Ny .

So, combining above discussion, we have W, M)\ WV, L = Ui UU,. Also, it is easy
to see that N; C U;. In particular, uy € U;. Fix ng € N and for any M > 0, we
define

= mi Iy (y(t 4.3
par = min max A((1)) (4.3)

where Fyy = {y € C([0,1] : WM (Q)) : v(0) = ux, ¥(1) = ur + M¢p,}. Then we
have the lemma:

Lemma 4.3. There exist M > 0 such that ux+M ¢y, € Uy and moreover, pps > ;.

Proof. Firstly, we can easily choose a suitable constant S > 0 such that 0 < ¢t~ (u) <
S for all u : |lu]| = 1. Recall the inequality: For any p > 2, there exists a constant
C(p) > 0 such that

Cp)

[EofP > [&1]P + pl&a P72 (€1, &2 — &) + w1

Let M > 0 be such that %MN > 5. Then we show that wy,, := ux+Meon,, € Us.
By using uy is a solution of (1.1), h > 0 and support(¢,,) C Bs, (0), we have

ewng IV = /Q 1V (un + M)Vl

|§2 — &1]P,  for every &1,& € €

C(N
> /(|VU>\\N + MN|Vuy|N"2Vuy - Vi, + 2N( )1|MV¢no(x)|N)dx
o _

> /Q (|Vu>\|N + MN (g(uA) + Mo(z) [ua Ty — V(ac)|u,\|N_2u>\) (bno)

C(N)MN
9N — 1
C(N)MN

> [V + S5
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C(N)
2N 1

MN > § >t (),

l[wn ||
Next, we show that pps > c¢;. For this, it is sufficient to show that every path
starting from wuy to uy + M ¢, intersects N/\_ As uy € Uy, uy + M¢y,, € Uy and
~ is a continuous, so there exists some ty such that

uy + todn, )

[ux +todn,ll /-

Hence uy + to¢pn, € N . O

Jun + todng | = ¢ (

Also, we note that Jy (uy + tv) — —oo as t — oo for any v € Wy () \ {0}. We
obtain an upper bound on py; in the following Lemma. Proof here is adopted from
[14].

Lemma 4.4. Let pps be defined as in (4.3)). Then ppr < Ja(ux) + %a%_l.

Proof. Let 6, > 0 be such that §,, — 0 as n — oo. Then we define a sequence of
Moser functions in 2 as

N—1
logn) "™ 0< < L,
1 logé—”
— = 1 .
Pn(z) = Ww/N Uogn‘)l‘/N =< % <L
N-1 || > 1
O0n = 7

with support(¢,) C Bs,(0). We choose this ball in such a way that V < 0 on

Bs, (0). It can be easily seen that || Ve,|xy =1 for all n. We prove the Lemma by

contradiction argument. Suppose ppr > Jy(uy) + %a%il. Then for each n, there

exist t, such that

1
iug J)\('UJ)\ thgZ)n) = J)\('UJ)\ +tn¢n) > J)\(UA) + Na%_l. (4.4)
>

Then from (4.4), we obtain {t,} is a bounded sequence, otherwise J(uy+tnd,) —
—00.

Now using the one dimensional inequality: (1 + t> + 2tcosa)N/? < 1 4tV +
Ntcosa + Ot +tV=1) for t > 0 to estimate |V(uy + td,)|Y in Jy(uy + tndn) as
in [14], we obtain

ﬁ 2 N—-2 =2 N-1 €2}
In(ux + tndn) < N + a(upn) +t:0(9, “(logn)™ ) +t, "O(d,(logn) ~

Using (@.4), and choosing d,, = (logn)~'/", we obtain
tN > a1 (4.5)

since t, is bounded. Now t, is a point of maximum for one dimensional map
t — Jx(ux + tnon) and hence, %JA(uA + tdn)|t=t, = 0. So,

/Q(IV(UA +tndn) |V TV (un + tndn) Vo + V(@) ua + tadn|V 7 (un + tndn)dn)da

= / g(u)\ + tn¢n)¢n dx + >\/ h(l’)‘u)\ + tn¢n|q_1(u)\ + tn¢n)¢n dz
: . (4.6)
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Let ¢, = minmg% ux(z). Then

N
/g(u,\+tn¢n)¢>ndm>/l , g(uA+tn¢n)e‘u)\+tn¢'n|1\771qsndx
Q z| <5

WN— 6n N . N

Now using Taylor’s expansion and (4.5)), for some K > 0, we obtain

N Ncn 1

1>tnn0 N—1 tnno N—-1

> (tnn(O)FT + 222 (b0 (0)

> Nlogn + Ko(logn) /N7,

since t,, is bounded away from zero. Using (4.7)) and (4.8]), we obtain
1)

WN— A N . 1
/QQ(UA o) > JX] 1 (;) b (0)|tncop (0) [P+ e(0nFtndn () N T

—1,6p
L (2) M 61 (0) o (0) Vo8 Ko low ) )

oLt (0) 72 (log ) e 5 toEm

(o =+ tntn(0)) ¥

\%

(4.9)

%

— OO asn — OoQ.

So, the right hand side of (4.6) tends to oo as n — oo but the left hand side is

bounded, which is a contradiction. Hence pps < Jy(uy) + ]%,oz% L O

Lemma 4.5. Let o(V,h) > 0, 3(V,h) > 0, then gwen u € Ny N H*, there
exist € > 0 and a differentiable function £~ : B(0,e) € WyN(Q) — R such that
£7(0) = 1 and the function &~ (w)(u —w) € Ny and for all w € W™ (),

((€7)'(0),w)
NRuw —Jolg w+g( Juw) dz — g + 1) [, h(z)|u|? fuwda
(N—q—lEV — Jo ¢’ (wudz + q [, g(u)udz

Proof. First, we note that if u € J\/’;, then u € A\ {0}, satisfies (2.3). Then Lemma

there exist ¢ > 0 and a differentiable function ¢~ : B(0,¢) € W3V (Q) — R
such that £7(0) = 1 and the function £~ (w)(u — w) € N, for all w € B(0,€). Since
u € Ny , we have

<N—1—@Emw+q/

Q

g(u)udr — / g (u)u? dr < 0.
Q
Thus by continuity of J} and {~, we have
Pe- (w)(u—wy) (1)
= (¥ = 1= B (€ (w)(u—w) +q [ g€ (w)u—w) (w)u—w)

- [ 4 )= )= w) <o,
if € is sufficiently small. This concludes the proof. ]

We recall the following results which will be used later.
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Proposition 4.6 ([15]). Let {v, : |[va]| = 1} be a sequence in W™ (Q) converging
weakly to a non-zero v. Then for every p < (1 — Hv||N)N%11,

N
sup/ exp(pan|v,|¥-T) < oo.
n Jo

Lemma 4.7 ([I7, [14]). Let {v,} C W'V (Q) be Palais-Smale sequence; that is,
J(vn) — ¢, J'(v,) = 0 as m — oo. Then there exists a subsequence {v,} of {v,}
and v € W™ (Q) such that G(v,) — G(v), g(vn) — g(v) strongly in L'().

Now we show the existence of a second non-trivial solution which is different
from wuy.

Theorem 4.8. Let o(V,h) >0, B(V,h) > 0 and X satisfies (2.3). Then there exist
a minimizing sequence {v,} in Ny and vy such that v, — vy weakly in Wol’N(Q),
vy 1$ a non-negative solution for (1.1) and moreover it is different from uy.
Proof. We note that N, is a closed set, as ¢~ (u) is a continuous function of u and
J» is bounded below on N, . Therefore, by Ekeland’s Variational principle, we can
find a sequence {v, } € N such that
~ ~ 1
Ia(vy) < inf Jy(u) + —
WENT n
NN , (4.10)
In(v) > Jx(vn) — ~flv—wall Vve Ny

Now v, € Ny N Har then by Lemma we have {v,} is a bounded sequence
in WV (Q). From ([@.10), we have Jx(v) > Jx(vn) — L{jv — v,|| for all v € Ny . Tt
is easy to see that v, € Ny implies v, € A\ {0}. Then liminf,, .. Ey(v,) > 0,
follows from the Step 1 of Lemma[2.2] Thus by Lemma[£.5 and following the proof
of Proposition we obtain ||.J5(v,)|[« — 0 as n — oo. Thus following the proof
as in Lemma [3.7] we have vy, weak limit of sequence {v,}, is a solution of (L.I).
Taking ¢ = v as a test function in (1.4), we have

/ (VAN 2V Vi + V() |ua| Y 2up0y) do
Q

:/g(w\)v;dm—i-)\/h(x)|v)\|q_1v,\v;dx.
Q Q

Using this we obtain
Ey(vy) = /Q (Vo5 ¥ + V(@)oy |V )de

= —/ g(vx)vy dx — )\/ h(z)vA|* tosvy dz < 0.
Q Q

since §(z,s) > 0 and k(z,s) > 0 for all s € R. As H(vy) >0, a(V,h) > 0 and
B(V,h) > 0 so by using Lemmawe obtain that [|vy || = 0. Hence vy > 0 in Q.
Finally, we show uy # vy. By , we see that J. A(vn) — ¢1 which is equivalent
to Jx(v,) — ¢1 as n — 0.
Case 1: Suppose uy = vy, ¢g = ¢1, then

In(up) =co=c1 = nll)ngo I (vn)



EJDE-2014/15 LACK OF COERCIVITY FOR N-LAPLACE EQUATION 19

1 A
lim [lon |l /QG(’U )dx qulH(v )

1 A
= lim —|v, |~ — de — ——H
Jim = f|vn /QG(UA) T (ux)

1 1
lim NH%HN + Ja(uy) — NHUA”N

n—oo
Thus limy, o [|Un]| = |lurl]- Since Vu,(z) — Vuy(z) a.e. pointwise then we have
v, — uy strongly in Wol’N(Q) and uy € N, , as N, is a closed set. This is a
contradiction as uy € N

Case 2: Suppose uy = vy, ¢g < ¢1. For proving this case, we use the same idea
as in [I4]. Using Jy(v,) — ¢1 and Lemma we have

N
lim v, || = clN—/ V(x)|u>\|N—|—N/ G(ux) + ——=H(uy). (4.11)
n—o0 Q (9] q_'_ 1
Setting
Un ux
Wy, = and wy=—""—,
llvnlln limy, oo |||

we have |wy|| < 1 and w, — wy weakly in W™V (92). Now, the following two
possibilities occurs:

(i) |lwa|l = 1, in this case we have lim,,_,« ||vn|| = [|ua|l. Then we have v,, — wuy
in Wy (Q) and uy € Ny, which gives a contradiction as uy € Ny
(i) [Jwa] < 1 and we have ¢; < g + & aN ' Then there exists € > 0 small
enough such that
(1+6) < S A—
[N (e = Ja(un))] 7T
Set
foim =y [ V@lufde+ [ Glunds+ 2 H )
=—= x)|u x un)dz + ——H (uy).
’ N Ja * Q A qg+1 A

Then from ([4.11)) we have lim, o ||vn]|Y = N(c1 + Bo). Also for sufficiently large
: . Jenl 75
N an||Up|| N1 an
(1 +&)flonl| ™= < = ,
[N(c1 — Ja(un)] ™1 (1= [lwal[V)V/N

Choosing p such that (1+e)||vn||% <p< W

<7 — U
simce wy = (N(ci+Bo))/N -

Now,
_N
/ f(vp) (v — uy)de = / o [PFEelv =Y (v, — uy)dx
Q Q

1/t , N N_\ 1/t
< (/ |vnfm|t) ! (/ e(1+et IIvnIIN—l\wnlN—l) /
Q Q

choose t > 1 sufficiently close to 1 such that (1 + e)t’||vn||% <p< W
Then by Proposition [£.6, we have

/ fop)(vy, —ux)de — 0 as n — oo.
Q

From this and J3 (u,)(vn, — ux) — 0 as n — oo we obtain

/ Vo |N 72V, (Vu, — Vuy)de — 0 as n — oo
Q
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Moreover, since v,, — u) we have
/ |Vur |V 2Vuy(Vu, — Vuy)dz — 0 as n — oo
Q

Hence, by using |a — b|N < 2N¥72(|a|¥2a — [b|V=2b)(a — b) for all a,b € RN we
have

/|an—Vu)\|N—>0 as n — 0o.
Q

Thus v, — uy strongly in VVOLN(Q)7 which is again a contradiction as uy € ./\f;r
Thus u) and vy are distinct. O

The proof of Theorem follows from Theorems and .

5. NON-EXISTENCE OF SOLUTIONS

We derive non-existence results for . Let ) be the largest domain where
h >0 and ¢(h*) be the eigenfunction corresponding to the first eigenvalue A; (€2}))
of Ax+V in Wy (). We also assume that Q) # 0. First, we recall the Picone’s
identity (see [4]),

Theorem 5.1. Let v >0, u >0 in Wol’N(Q). Then

ulv
oN-1

[VulN = V( )IVolN2V0 >0 ae. in O

moreover, equality holds if and only if u is a multiple of v.

In the following Lemma, we only show the non-existence of solutions that are
positive in Q.
Lemma 5.2. If \i(V,Q;f) < 0, then for every A > 0, (L)) has no solution such
that u > 0 in Q;

Proof. We extend ¢(h™) by zero outside Q) so that ¢(h*) € Wy N (). Also we
have

[ A9 Vg )M yds = a@) [ o)V
Qh. h
If w is a solution of (1.1]). Then for ¢ > 0, consider % as a test function and
we obtain
N-2 (h+)N N—2 ¢(h+)N )
V(—/——odZet o )+ V —)d
/QI <|Vu| Vu v((u+e)N—1)+ ul u(u+€)N_1 x

B . S(HY R GDANS
—A/Q;h(x)u (u_i_e)N—ldx—i_/Q;:g( )(U+E)N—ld :

After subtracting the above two equations and taking limit as e — 0, we see that the
left-hand side is non-negative by Theorem and the right hand side is negative
which is a contradiction. ([

Lemma 5.3. Let h > 0 and A\;(V) > 0. Then there ezists \° > 0 such that (1.1)
has no solution for A > Y.
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Proof. Assume by contradiction that for all A > 0, (Py) has a solution uy. Then

|N1

— Anuy 4 V(@) |Jux [N ~2uy = uy|uy|Pel™ + Ahud, in Q. (5.1)

We can choose A > 0 large such that
M(V) = AtiH=N gt <0 (5.2)

for all ¢ > 0, and for almost every 2 € RY. Also we have
J0v6ul™ « Vie iz =(v) [ otaa,
Q Q

where )\1(V) is an eigenvalue of —Ax +V corresponding to ¢1. Now multiply (5.1)

by r and integrating by parts we obtain

u;+e)N

J (o= 9 ()« Vi ()
_)\/h u/\ uAfJZ)N 1)dm+/ﬂg(u,\)((mf{;]\[1)dm.

After subtracting the above two equations and letting € — 0 we obtain that the left
hand side is non-negative by Theorem and the right hand side

/Q (/\1(V) - )\h(x)ug\Jrl_N — g(u,\)u/\ ) qb{vdm <0,

by (5.2), a contradiction and hence the result follows. d
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