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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
p(2)-LAPLACIAN EQUATIONS IN RV

BIN GE, QINGMEI ZHOU

ABSTRACT. This article concerns the existence and multiplicity of solutions
to a class of p(z)-Laplacian equations. We introduce a revised Ambrosetti-
Rabinowitz condition, and show that the problem has a nontrivial solution
and infinitely many solutions.

1. INTRODUCTION

The study of various mathematical problems with variable exponent growth
condition has received considerable attention in recent years; see e.g. [ [16] €] [13]
14, [15]. For background information, we refer the reader to [19, 21I]. The aim of
this paper is to discuss the existence and multiplicity of solutions of the following
p(z)-Laplacian equation in RY:

—Apzyu + luP@ =2y = K(z)f(u), inRY,
u € WHPE/(RN),
where p(z) = p(jz|) € C((RY)) with 2 < N < p~ := infgnp(z) < pt =
supgy p(z) < +00, K : RY — R is a measurable function and f € C(R,R).

Problem (1.1)) has been widely studied. The following equation also has been
studied very well

(1.1)

—Apyu+ [uf O = f(z,u), nRY,
= Wl,p(m) (RN)

When p(z) = p(jz|) € C(RY) with 2 < N < p~ < pt < 400, the authors in
[] proved the existence of infinitely many distinct homoclinic radially symmetric
solutions for , under adequate hypotheses about the nonlinearity at zero (and
at infinity).

The case of p Lipschitz continuous with 1 < p~ < pt < N was discussed
by [7, 12]. Fu-Zhang [12] uses a nonlinearity on the right-hand side of the form

h(z)|u?@=1 where h € LP(RN) N LI@(RN), 1 < B(z) < p(z), q(z) = p*iii(?(m)’
Np(z)

p*(z) = Npa) and they prove the existence of at least two nontrivial solutions to

(1.2)
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problem (L.2). In [7], through the critical point theory, three main results on the
existence of solutions of problem obtained, treating separately the three cases;
i.e., when the nonlinear term f(z,u) is sublinear, superlinear and concave-convex
nonlinearity.

Fan and Han [7] established the existence of nontrivial solutions for problem
under the case of superlinear, by assuming the following key condition:

(F1’) there exist § > p™ and M > 0 such that
t
0 < 0F(t) = 9/ F(s)ds < f(D)t, V|t] > M.
0

This condition is originally due to Ambrosetti and Rabinowitz [2] in the case p(z) =
2, and then was used in [3, 5, [8, [9] for p(x)-Laplacian equations. Actually, condition
(F1) is quite natural and important not only to ensure that the Euler-Lagrange
functional associated to problem has a mountain pass geometry, but also to
guarantee that Palais-Smale sequence of the Euler-Lagrange functional is bounded.
But this condition is very restrictive eliminating many nonlinearities. In this paper,
we introduce a new condition (F1), below, which is different from the Ambrosetti-
Rabinowitz-type condition (F1’).

(F1) there exist a constant M > 0 and a decreasing function 7 in the space

CR\ (—M, M),R), such that

0 < (0" +7(O)F () = (p* + (1)) / f(s)ds < F(t)t, |t > M,

where 7(t) > 0, lim;_, o [t|7(t) = 400 and lim;_ 4o Z\thl @ds = +4o0.

Remark 1.1. Obviously, when infj;>s; 7(¢) > 0, condition (F1) and (F1°) are
equivalent. However, condition (F'1) is weaker than (F1’) when inf};>a 7(¢) = 0.
For example, let |[t| > M = 2, and assume that F(t) = \t|p+ln|t|. Then f(t) =
(p™ + 7(t))sgn(t)|t[*” ~Lln|t| satisfies condition (F1) not (F1°), where 7(t) = €
C(R\ (—M, M),R).

The aim of this paper is twofold. First, we want to handle the case when p~ >
N and the unbounded area RY. Although important problems can be treated
within this framework, only a few works are available in this direction, see [4].
The main difficulty in studying problem lies in the fact that no compact
embedding is available for WP(@)(RN) < L[>°(RN). However, the subspace of
radially symmetric functions of W12 (RN), denoted further by W@ (RN), can
be embedded compactly into L>(RY) whenever N < p~ < pt < +oo (cf. [4]
Theorem 2.1]). Second, instead of some usual assumption on the nonlinear term f,
we assume that it satisfies a modified Ambrosetti-Rabinowitz-type condition (F1).

To state our results, we first introduce the following assumptions:

(H1) K € LYRY) N L>(RY) is radial, nonnegative, K(x) > 0 for any z € RY

and sup,;-.q essinf|, <4 K(x) > 0.

(H2) f(t) = o(t?" 1) for t near 0.

Now, we are ready to state the main result of this paper.

Theorem 1.2. Suppose that (H1), (H2), (F1) hold. Then problem has a

nontrivial radially symmetric solution. Furthermore, if f(t) = f(—t), then problem
(1.1) has infinitely many pairs of radially symmetric solutions.
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In the remainder of this section, we recall some definitions and basic properties
of variable spaces LP(®) (RY) and W) (RN). For a deeper treatment on these
spaces, we refer to [10, [11].

Let p € L®(RY), p~ > 1. The variable exponent Lebesgue space LP(*)(RY) is
defined by

L) (IRN) ={u: RY — R : u is measurable and / |u\p(1)dx < 400}
N

R

endowed with the norm [uly) = {A > 0: [on |§|p(m)dz < 1}. Then we define the
variable exponent Sobolev space

W@ (RN) = {y € LPE(RY) : |Vu| € LP@ (RN)}
with the norm ||ul| = [ul,(m) + [Vulpa)-

Proposition 1.3 ([7]). Set ¢(u) = [pn (|Vu(2)[P® + |u(z)P@)dz. If u,uy €
WLrE) (RN, then

1) flull < W(=1;>1) & I(u) < 1(=1;>1);

2) If Jull > 1, then [[ul*” < (u) < [uf?";

(3) If lull < 1, then |[ul*” < d(u) < [[ul?";

(4) limg— oo [|ukll = 0 < limg— 400 Y (ug) = 0;

2. PROOF OF THEOREM

In this section we prove Theoremwhen inf)y > 7(t) = 0. If infjy> 5 7(t) > 0,
then conditions (F1’) and (F1) are equivalent, and the proof is rather standard. We
may assume that M > 1, and that there is constant Ny > 0 such that |7(¢)| < Np
for all t € R\(—M, M).

We introduce the energy function ¢ associated to problem defined by

w) = L w(2) P Ll () 1PEN g — DF(Wdr. u 1,p(z) (mpN
o) = [ (V@ @) o [ K@) Fude, e W @Y)

Due to the principle of symmetric criticality of Palais (see [20]), the critical points
are critical points of ¢ as well, so radially symmetric, weak solutions

of ¢l 1) g
of problem (1.1]).
Claim 2.1. Let W ={w € er’p(x)(RN) Nlw|| = 1}. Then, for any w € W, there
exist 6, > 0 and N\, > 0, such that

(W) <0, YveWnB(w,dy), YA > Ay,
where B(w, 8,) = {v € WP (RN ¢ ||v — w|| < 8, }-

Proof. Since the embedding W, ?™*(RY) < L (R¥) is compact, there is constant
C > 0 such that |u|e < Cllul|. Thus, for all w € W and a.e. = € RY, we
have |w(z)] < C. By the definition of 7(¢), we deduce that there exists ¢ty €
{t e R: M < |t| < |A|C} such that 7(t5) = miny<|s<|zjc 7(t). Then [A| > & and
lim| | 40 [tA| — 400. From condition (F1), we conclude that F'(t) > CyltlP  H(t))
for all [t| > M, where H(t) = exp(f]‘vt[l @ds) Hence, using lim|_, 4 Il\fll 7(8) g =

S
+00, it follows that H ([t|) increases when [¢| increases, and limy 4 oo H([t|) = +o00.




4 B. GE, Q. ZHOU EJDE-2014/133

Fix w € W. By ||w|| = 1, we deduce that u({z € RV : w(x) # 0}) > 0, and that
there exists a ,, > M such that p({z € RY : [f,w(z)| > M}) > 0, where p is the
Lebesgue measure.

Set ; = {x € RN : [f,w(x)| > M} and Qp := R¥\Q;. Then M(Ql) > 0.

Therefore, for any = € Q;, we have that |w(z)| > %—I Now take &, = QCt . Then,

for any v € W N B(w, dy), |v —wle < Cllv —wl| < # Hence, for all z € Qy,

we deduce that |v(x)| > # and [Mv(z)] > M for any © € Q; and A € R with
|A| > 2¢,. Thus, for |A\| > 2¢,, by the above estimates and H(|t|) increases when

|t| increases, we have

[ K(x)F(Au(x))dxzclwp*/ K (@) o(@)|” H(ho(z)])de
: 2.1)
> O (o HON ) | K@)

On the other hand, by continuity, we deduce that there ex1sts a Cy > 0 such that
F(t) > —Cy when [t| < M. Note that F(t) > 0 if |¢| > M. Hence,

K(z)F(Mv(x))dx = / K(z)F(Mv(x))dx

Q2 QaU{z€RN:|Xv(z)|>M}

+ / K (2)F(w(z))dz
QaU{z€RN: | \v(z)|<M} (2.2)
>

/ K (2)F(\(x))dz
QaU{zeRN:|Xv(z)|<M}

> —Co| K.
Hence, for v € W N B(w, d,,) and |[A| > 1, from (2.I)) and (2.2), we have

(M) :/ |/\| ) (IVolP® 4 o)z — K ()P Owo(a))de
ry P() RN
< |)‘|p+ _Cl|)‘|p+(%)p+H(‘)‘|f)/Q K(x)dz + C2|K|;
— AP [1—01( w)p H(|A|§) (@dx} + CLlK
— —00,
as |A| — +o00, because limy_, 4o H(|t]) = 4o0. 0

Claim 2.2. There exist v > 0 and p > 0 such that inf), =, ©(u) > p > 0.
Proof. Note that |u|eo — 0 if ||u] — 0. Then, by hypothesis (H2), we have

| K@Fde = [Kho(ul) = [Kho(lul™),

which implies

W= L (vur® L @ e — 2V F(w)dz
P = [ S (VuP) e~ [ KG@F@d

1 + +
ZFHUHP = [Klo([[ul”).

Therefore, there exist 1 > v > 0 and p > 0 such that infj, -, p(u) > p > 0. O
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Claim 2.3. The functional ¢ satisfies the (PS) condition.

Proof. Let {un} C WP (RM) be a (PS) sequence of the functional ¢; that is,
lo(un)| < ¢ and [{¢'(uy), h)| < epllh| with €, — 0, for all h € W,}’p(m)(RN). We
will prove that the sequence {u,} is bounded in WP (RN). Indeed, if {u,}
is unbounded in er’p(z)(RN), we may assume that |u,| — oo as n — oo. Let
Up = ApWy, where A, € R, w, € W. It follows that |\,| — oo.

Let Q7 := {z € RY : |\,w,(z)] > M} and QF := R¥\Q?. Then

—€n|An| = —€n[un|

< <<P/(un)7 Up,)

RN RN
< / |An [P (|an|1’(r) + |wn|P(m)) dx — K () f Anwp) Apwpdx
BY or
- K(x)f(Anwn))\nwndl‘,
on
which implies that
Qp RN

oy

Note that 0 < (p™ + 7(tx,)) F(Apwy) < f(Apwn)Aw, in QF. So,

1
K(z)F(\w,)der < ——— K(z)f(Aywp)A\pywy,dx.
[ K@FOuunde < s | K@) )

Then it follows that
o(un) = (Anwn)
|\, |P(®) (@)
_ /RN e (|Vw, [P + |wn|p(a:))dgg - /RN K(z)F(A\wy)dx
p(z)

| An|
= YVw, [P + |w, [P®)) de — K(x)F(\wy,)dz
L o (9l o) do— [ K@EOwn)

— K(z)F(Awy,)dz
Q3

1
> T/ A [P (|an|p<w> + |wn|p<m)) da
pT JrN
S
pt+7(ts,) Jap
1
> T/ P (|an|p<w) " |wn|P<w>) da
P JrN

1
B p+ + T(tkn)

K(z) f(Apwn ) \pwpdx — /m K(z)F(A\wy,)dz

{/ |)\n|p($) <|an\p(”“') + |wn|p(”“')) dx + 5n|)\n|}
RN
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1
() K nWn ) ApWn QT — K(x)F(Awn,
pt+7(ta,) Jog () GntenAntoncte Qp (@) F O )de

T(t)\ ) /
- n A [P@) (1920, [P 4w, [P ) d
P+ 7)) S P (0P a0 do

1
Errer T(t)\n)sn|)\n| + T (Apwy,)
T(t)\ ) - 1

= . >\np - En )\n +T )\nwn

p+(p++No)| | pt Anl 1 )

‘)‘n|pi_17—(t>\ ) €n

= |\ | ———=r — — | + T (N w,,

| ‘{p+(p++N0) p+] (nten)

‘)‘n|pi_17—(t>\ ) En
> ni T \Ae)  Zm
- |/\"‘[ p*(p* + No) p+] ©

where

! K(z) f(AMwn) A\pwy, do — K(z)F(M\w,) dx

TN w,) = ——+——
ntn) = ) Jog o

is bounded from below. We know that |A\,| — 400, and so |ty,| — +o0, as
n — +oo. It follows from (F1) and p~ > N > 2 that

lim Pl r(t,) > lim 2elTE0)

= +00.
n—-+o0o n—-+oo M

This means that lim,_ 4o ¢(u,) — +oo. This is a contradiction. So, the se-
quence {u, } is bounded in er’p(x)(RN). Note that the embedding W, """ (RN) —
L>(RY) is compact, there exists a u € WP (RY) such that passing to subse-
quence, still denoted by {u,}, it converges strongly to u in L>(RY), and in the
same way as the proof of [I7, Proposition 3.1] we can conclude that u,, converges
strongly also in W, ? (w)(RN ). Thus, ¢ satisfies the (PS) condition. O

Proof of Theorem[I.4 Due to Claims 22 and 23] we know that ¢ satisfies
the conditions of the classical mountain pass theorem due to Ambrosetti and Ra-
binowitz [2]. Hence, we obtain a nontrivial critical point, which gives rise to a
nontrivial radially symmetric solution to problem .

Furthermore, if f(t) = f(—t), then ¢ is even. We will use the following Zs
version of the mountain pass theorem in [18]. O

Theorem 2.4. Let E be an infinite-dimensional Banach space, and p € C(E,R) be
even, satisfying the (PS) condition, and having p(0) = 0. Assume that E=V ® X,
where V' is finite dimensional. Suppose that the following hold.
(a) there are constants v,p > 0 such that infop, ux @ > p.
(b) for each finite-dimensional subspace E C E, there is an o = o(E) such that
© <0 on E\B,.

Then ¢ possesses an unbounded sequence of critical values.

From Claims and © satisfies (a) and the (PS) condition. For any finite-
dimensional subspace E C E, SNE = {w € E : |w| = 1} is compact. By Claim
[2.] and the finite covering theorem, it is easy to verify that ¢ satisfies condition
(b). Hence, by the Zs version of the mountain pass theorem, ¢ has a sequence of
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critical points {uy }52 ;. That is, problem (1.1)) has infinitely many pairs of radially
symmetric solutions.
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