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CAUCHY PROBLEM FOR A GENERALIZED WEAKLY
DISSIPATIVE PERIODIC TWO-COMPONENT
CAMASSA-HOLM SYSTEM

WENXIA CHEN, LIXIN TIAN, XIAOYAN DENG

ABSTRACT. In this article, we study a generalized weakly dissipative periodic
two-component Camassa-Holm system. We show that this system can exhibit
the wave-breaking phenomenon and determine the exact blow-up rate of strong
solution to the system. In addition, we establish a sufficient condition for
having a global solution.

1. INTRODUCTION

In recent years, the Camassa-Holm equation [4],
Up — Uppg + BUUL = 2UpUpy + UlUgee, € >0,2€R (1.1)

which models the propagation of shallow water waves has attracted considerable
attention from a large number of researchers, and two remarkable properties of
were found. The first one is that the equation possesses the solutions in the form of
peaked solitons or ‘peakons’ [4 §]. The peakon u(t,z) = ce™ 1= ¢ # 0 is smooth
except at its crest and the tallest among all waves of the fixed energy. It is a feature
observed for the traveling waves of largest amplitude which solves the governing
equations for water waves [9] 10, 29] [33]. The other remarkable property is that the
equation has breaking waves [4] [T1]; that is, the solution remains bounded while its
slope becomes unbounded in finite time. After wave breaking the solutions can be
continued uniquely as either global conservative [2] or global dissipative solutions
3.

The Camassa-Holm equation also admits many integrable multicomponent gen-
eralizations. The most popular one is

my — Aug + umg + 2uzm + ppy =0
pt+ (pu)z =0 (1.2)

M =1U— Uy

Notice that the C-H equation can be obtained via the obvious reduction p = 0
and A = 0. System (1.2) was derived in [27], where p(¢,x) is related to the free
surface elevation from the equilibrium (or scalar density), and A > 0 characterizes
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a linear underlying shear flow. Recently, Constantin-Ivanov [12] and Ivanov [23]
established a rigorous justification of the derivation of system . Mathematical
properties of the system have been also studied further in many works, for example
[, [6l, [7, T4} 15l 19] 22] 26, 28]. Chen, Liu and Zhang [6] established a reciprocal
transformation between the two-component Camassa-Holm system and the first
negative flow of the AKNS hierarchy. Escher, Lechtenfeld, and Yin [I4] investigated
local well-posedness for the two-component Camassa-Holm system with initial data
(ug, po — 1) € H® x H*~! with s > 2 by applying Kato’s theory [24] and provided
some precise blow-up scenarios for strong solutions to the system. The local well-
posedness is improved by Gui and Liu [20] to the Besov Spaces (especially in the
Sobolev space H® x H*~! with s > 3/2), and they showed that the finite time
blow-up is determined by either the slope of the first component u or the slope of
the second component p [8, [14]. The blow-up criterion is made more precise in [25]
where Liu and Zhang showed that the wave breaking in finite time only depends
on the slope of w. This blow-up criterion is improved to the lowest Sobolev spaces
H* x H*~1 with s > 3/2 [19].

In general, it is difficult to avoid energy dissipation mechanisms in a real world.
We are interested in the effect of the weakly dissipative term on the two-component
Camassa-Holm equation. Wu, Escher and Yin have investigated the blow-up phe-
nomena, the blow-up rate of the strong solutions of the weakly dissipative CH
equation [31] and DP equation [30]. Inspired by the above results, in this paper, we
investigate the following generalized weakly dissipative two-component Camassa-
Holm system

Ut — Utgr — Aty + Bty — 0(2UpUyy + Ulgrs) + MU — Ugy) + ppz = 0,

t>0, xeR,
pt+ (pu), =0, t>0, z€R, (1.3)
u(0,7) = ug(x), p(0,2) = po(z), = €R,
ult,z) = ult,z + 1), p(t2) = pltyz +1), £20, z€R,

or equivalently,
my — Aug + o(umg + 2u,m) + 3(1 — o)uuy, + Am + pp, = 0,

m=u— Ugg,

where Am = A(I — 0, )u is the weakly dissipative term, A > 0 and A are constants,
and o is a new free parameter. When A = 0, A = 0 and p = 1, Guan and Yin
have obtained a new result of the existence of the strong solution and some new
blow-up results [16]. Meanwhile, they have proved the global existence of the weak
solution about the two-component CH equation [I7]. Henry investigates the infinite
propagation speed of the solution for a two-component CH equation [21].

Similar to [12, [14], we can use the method of Besov spaces together with the
transport equation theory to show that system is locally well-posedness in
H* x H*~1 with s > 3/2. The two equations for u and p are of a transport structure
Oif +v0, f = g. It is well known that most of the available estimates require v to
have some level of regularity. Roughly speaking, the regularity of the initial data
is expected to be preserved as soon as v belongs to L'(0,T’; Lip). More specially,
u and p are “transported” along directions of ou and u respectively. Then, the
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solution can be estimated in a Gronwall way involving |u.| L. Hence, one can
use these estimates to derive a criterion which says if fOT |ug (T)|| LoedT < 00, then
solutions can be extended further in time. Compared with the result in [5], we find
that the equation has the same blow-up rate when the blow-up occurs. This
fact shows that the blow-up rate of equation is not affected by the weakly
dissipative term. But the occurrence of blow-up of equation is affected by the
dissipative parameter .

The basic elementary framework is as follows. Section 2 gives the local well-
posedness of system and a wave-breaking criterion, which implies that the wave
breaking only depends on the slope of u, not the slope of p. Section 3 improves
the blow-up criterion with a more precise conditions. Section 4 determine the
exact blow-up rate of strong solutions of system . Finally, section 5 provides
a sufficient condition for global solutions.

Notation. Throughout this paper, we identity periodic function spaces over the
unit S in R?, ie. S=R/Z.

2. FORMATION OF SINGULARITIES FOR o # (

We consider the following generalized weakly dissipative two - component Ca-
massa - Holm system:
Ut — Uy — Aty + Uty — 0(2Uglyy + Ulgry) + AU — Uy ) + ppe =0,
t>0, zeR,
pt+ (pu)z =0, t>0, z€R, (2.1)
u(0,z) = uo(z), p(0,2) = po(x),
u(t,z) =ult,x +1), p(t,x)=p(t,x+1),

where A > 0 and A are constants, and o is a new free parameter.
System (2.1)) can be written in the “transport” form

— 1
3 20u2+gu§+§p2)—/\u t>0,z€R
u(va) = UO(I),p(O,SE) = pO(z)v reR

u(t,z) =u(t,x +1),p(t,z) = p(t,x+1), t>0,z€R

ug + ouuy = —0,G x (—Au +

where G(z) = o 13) 4 e 5, and (1-02)71f = G« f for all f € I2(S).

Applying the transport equation theory combined with the method of Besov
spaces, one may follow the similar argument as in [20] to obtain the following local
well-posedness result for the system . The proof is very similar to that of [20,
Theorem 1.1] and is omitted.

Theorem 2.1. Assume (ug,po — 1) € H*(S) x H*~1(S) with s > 3/2, then there
exist a mazimal time T = T(||(uo, po — 1)||gsxms—1) > 0 and a unique solution
(u, p—1) of equation in C([0,T); H* x H*=1)NnCY([0,T); H*~! x H*~2) with
initial data (ug,po). Moreover, the solution depends continuously on the initial
data, and T is independent of s.



4 W. CHEN, L. TIAN, X. DENG EJDE-2014/123

Lemma 2.2 ([26]). Let 0 < s < 1. Suppose that fo € H®, g € L*([0,T]; H?®),
v,v, € L1([0,T); L), and that f € L°([0,T); H*) N C([0,T);S’) solves the one-
dimensional linear transport equation

Oif +v0.f =g

f(0,2) = fo(x)

then f € C([0,T]; H®). More precisely, there exists a constant C depending only on
s such that

t t
1£Ollne < Vol +C( [ Nalwdr+ [ 1V ().
then .
£ Ollne < O ol +C [ g,

where V(t) = fot (JJo(T)||pee + ||z (T)|| Lo )dT.

We may use [19] Lemma 2.1] to handle the regularity propagation of solutions to
. In addition, Lemma was proved using the Littlewood-Paley analysis for
the transport equation and Moser-type estimates. Using this result and performing
the same argument as in [I9], we can obtain the following blow-up criterion.

Theorem 2.3. Let o # 0, (u, p) be the solution of (2.1)) with initial data (ug, po —
1) € H(S) x H*71(S) with s > 3/2, and T be the mazimal time of existence. Then

t
T<oo [ ()i = oc. 23)
0

Regarding the finite time blow-up, we consider the trajectory equation of the

system ([2.1)),
dq(t, x)

dt

=u(t,q(t,z)), tel0,7) (2.4)

q(0,2) =2, x€S,
where u € C*([0,T); H*~1) is the first component of the solution (u, p) to (2.1]) with
initial data (ug,po) € H*(S) x H*71(S) with s > 3/2, and T > 0 is the maximal
time of the existence. Applying Theorem [2.1} we know that ¢(¢,-) : S — S is the
diffeomorphism for every ¢ € [0,7"), and

qz(t,x) = exp (/0 ux(T,q(T,,l‘))dT) >0, VY(t,z)e[0,T)xS. (2.5)

Hence, the L>-norm of any function v(t,-) € L*,t € [0,T) is preserved under the
diffeomorphism ¢(¢, -) with ¢ € [0,T); that is, ||v(¢,)||Le = |Jv(t, ¢(t, )|l Lo

Lemma 2.4 ([T1]). Let T > 0 and v € C*([0,T); H*(R)), then for every t € [0,T),
there exists at least one point (t) € R with m(t) := infyer[ve (¢, 2)] = v (¢, &(¢)).
The function m(t) is absolutely continuous on (0,T) with

dm(t) _
— = Vi (£, E(t))  a.e. on (0,T).

Lemma 2.5. Assume (ug,po — 1) € H*(S) x H*=X(S) with s > 3/2, and (u, p) is
the solution of system [2.1)), then |[(u,p —1)||31 2 < |(wo, po — D315 f2-
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Proof. Multiplying the first equation in (2.1)) by w and using integration by parts
gives

%/(u +u )dm+2)\/(u +u )dx+2/uppmdx:0
s s

Rewriting the second equation in (2.1)) in the form (p — 1); + pyu + pu, = 0, and
multiplying by (p — 1) and using integration by parts, we have

d
%/ (p—l)zdx+2/uppmdac—2/upmdx+2/uxp2dx—2/uzpdx:O.
5 s 5 5 s

Combining the above equalities, we have

d (u +u 4 (p— )2)dx+2/\/(u2+ui)d$:0,

dt s

jt (u? +u + (p— )2—1—2)\/ (u? +u2)dr)dx = 0.
0

So we have

/(uz—f—ui—l—(p—l)z—f—?)\/t(u +u2)dr)dx
S

0
- /S(ug + u%m + (po — 1)2)d$ = ||(uo, po — 1)\|%{le2~

Since 2\ fot (u? 4+ u2)dr > 0, we obtain

1w, p = Dl 2 = /S (u® +uz + (p = 1)*)dz < [|(uo, po — 1)l 512
The proof is complete. O

Lemma 2.6 ([32]). (1) For all f € H*(S), we have

9 e+1

1

where 2(%_1) is the best constant.

(2) For all f € H3(S), we have
max f*(z) < | f,

z€[0,1]

e+1
2(e—1)"

113

where the possible best constant ¢ € (1,13, and the best constant is

Lemma 2.7. If f € H3(S), then

1
2 PR
Jg[%ﬁ]f 2 (z) < 2||f||H2

Proof. From [32] Theorem 2.1], the Fourier expansion of f(z) can be written as

flx) = % + i ap, cos(2mn).

n=1

Then

Z (2nmay, sin(2mna)).
n=1
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Using that > > 1/n? = 72/6, we have

2
<
max fz(z) <

IA
M8
s
2
_N
£
Y
(]
‘H
-

IA

| =
(2
=
(=2
3

'S
3

N
S

[

1
_ 2 2
The proof is complete. ([

Applying the above lemmas and the method of characteristics, we may carry out
the estimates along the characteristics ¢(¢, ) which captures sup,cg u.(t, ) and
inf,csuq(t,x).

Lemma 2.8. Let o # 0 and (u, p) be the solution of (2.1)) with initial data (ug, po—
1) € H%(S) x H*71(S), s > 3/2, and T be the mazimal time of existence.
(1) When o > 0, we have

A2 2o +C3
sup u, (¢, ) < ||ugz||Le + \/2 + ”'OOHIzil; (2.6)
zeS a o

(2) When o < 0, we have

A2 (2
inf uy(t, ) > —||uge||ne — ) = — —2; 2.7
inf g (t,2) > =gl = — 1/ 55 — = (2.7)

where the constants are defined as follows:

_[sle+1) | 1442 (e+1)[3—o0]
Cl_\/2(6—1)+( 5 T e

M (wo, po = Dl 12 (2.8)

f@“) A B30y gy D2 (29)

2(e — 1) 5 2(e — 1)

Proof. The local well-posedness theorem and a density argument imply that it
suffices to prove the desired estimates for s > 3. Thus, we take s = 3 in the proof.
Here we may assume that ug # 0. Otherwise, the results become trivial.
Differentiating the first equation in with respect to x and using the identity
—02G x f = f — G * f, we have
9 3 — 3—o

1 1
um+auum+gux = fp2+7gu2+A8§G*u—G*(gui+7u2+fp2)—)\ux.
2 2 2 2 2 2 (2.10)
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(1) When o > 0, using Lemma [2.4] and the fact that

itelp[vx(t y2)] = = Inf [—v, (¢, 2)],

we can consider m(t) and 7n(t) as

m(t) := ug(t,n(t)) = gsclelg(%(t,x)), tel0,T). (2.11)
This gives
Uz (t,m(t)) =0 a.e. ontel0,7T) (2.12)

Take the trajectory q(¢,x) defined in (2.4). We know that ¢(t,-) : S — S is a
diffeomorphism for every ¢ € [0, T),then there exists x1(t) € S such that
a(t,z1(t)) =n(t), te€l0,T). (2.13)
Let
C(t) = p(t q(t,z1)), te€[0,T). (2.14)

Then along the trajectory ¢(t,z1(t)), equation (2.10) and the second equation of
(2.1) become

(1) = = Zm2(6) = M) + 5C(0) + St alt, 1) 15)
& (1) = —~(om(s),
where
f:3_0u2+A5§G*u G*( us +320u +1p2) (2.16)

Since 092G * u = 0, G * O, u, we have
3—o

f:L —|—A3G>k8u—G*( u? + 5

1
u2)—§G*1—G*(p—1)
—1Gx(o-1)?
- - 1
S3Tgu2+A8xG*3xu—G*(3Tou2)—iG*l—G*(p—l)

‘3 U|2

1
+A\8G*8u\+|G*( u2)\+§\G*1\+|G*(p—1)\.

2
Based on the following formulas:

|3—U|u2<\3—0| e+1

2 = 9 2(6 )H ||H1’
e+1 9 9
Al0,G * Opu| < A||Gellpelfuslrz < ﬁ + ZA [z |72
e+1 9
G < G oo 1 . xT 9
Gx(Zu) < | nLugwm < 5oy el
3— e+ 1 |3 — o]
G # (G2 < Gl 2T e € 50 - Bl
e+1
fG 1 <— G
G+1] < 3161~ < 7.
e+1 1 9
G - < |G -1 <0+ o =152,
G (p= D) < 1Glaellp e < 5 + o= 11
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1 1 e+1
= — 12 < 2G| 1 < p—1)2
516 (0= 171 < 3G =0 = Dler < s llo = 11,
from the above inequalities and Lemma we obtain an upper bound of f,
5(e+1) A2 (e+1)]3 -0
< —I|lp—1 A
£ < S+ o= 11+ (G + S T el
5(e+1) A2+1 (e+1)]3 -0 9
< _ 2.17
T Vi S P v [ [CTNC R bl [ AP (2.17)
1
Similarly, we obtain a lower bound of f,
-3 3— 1
<22 2+A|0G*8u|—|—|G*( +T"u2)|+§|c*1\
+|G*(p—1)|+§G*(p—1)2
Betl) e A% (e+D(ol+23—al)\, 1o
< -1 i
= 4(6—1) ( )H HL2+( 4 + 4(6—1) )”uHHl
5(e+1) A% 2e+(e+ 1)(|o] +2I3 - o)) 9
< - 1 1 2.
— 4(6 _ 1) ( + 4(6 _ 1) )H(Umpo )”H XL
(2.18)

Combining ([2.17)) and ( -, we obtain

5(e +1) i2+2€+(€+1)(|0|+2|3—0|)

< - 1|3 . (219
if|_4(6*1) ( 4 4(671) )”(uO,PO >||H1><L2 ( )
Since s > 3, it follows that u € C¢(S) and
inf u,(t,2) <0, supuy(t,z) >0, te[0,T). (2.20)
zeS zeS
Hence, we obtain
m(t) >0 forte[0,T). (2.21)
From the second equation in (2.15)), we have
C(t) = C(0)e Ji o, (2:22)

lp(t, a(t, 21))] = [C()] < 1C0)] < llpoll L~

For any given x € S, we define

A2
Pu(t) = m(t) — oLz~ — [ 25 +

Notice that Py (t) is a C'-function in [0,7) and satisfies

lpollf~ + CF
EE—

2 2
HpOHLU 1 < m(O) . ||U01||L°° <0.

_ A2
P1(0) = m(0) — [luosllze =1/ —5 +
Next, we claim that
Pi(t) <0 forte|0,T). (2.23)

If not, then suppose that there is a ¢ty € [0,7") such that Pj(ty) > 0. Define
t1 = max{t < tp: Pl(t) = 0}, then P1(t1) = O, P{(tl) > (. That iS7

A2
m(ta) = uoslloos +\/ 25 +

lpolli~ + CF

- m/(t1) = P (t1) > 0.
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On the other hand, we have

() = = Sm3(r) = Am(tn) + 5C(00) + fltnsaltr, )

o A2 20402 A\2
S _§<HUOZHL°° + \/2 + ||p0||L 1 + 7)
g g g
)\2

1 2 1 2
+ % + §HPOHL0<: + 501 < 0.

This yields a contraction. Thus, Pi(t) < 0 for t € [0,7). Since z is chosen

arbitrarily, we obtain ({2.6)).
(2) When o < 0, we have a finer estimate

204 (G G x(p— 1)+ 3G (o~ 1)

—f < —A(0,G % 0,u) + G

- 1 1
< Al0:G * Opu| + |G * 5 2UU2|+§|G*1|+|G*(p—1)|+§|G*(p—1)2|
5e+1) A2 (5—-o0)e+3—0 5 1
< —_— -1 172 = =C5.
(2.24)
We consider the functions m(t) and £(t) in Lemma [2.4]
m(t) = inf [u, (t,2)], t€[0,T) (2.25)

Then ug,(t,£(t)) = 0 a.e. ont € [0,T). Choose z2(t) € S, such that ¢(t,z2(t)) =
£(t), t € [0,T). Let ¢(t) = p(t,q(t,z2)),t € [0,T). Along the trajectory q(t,x2),
equation (2.10) and the second equation of (2.1)) become

m/(t) = —%mQ(t) — xm(t) + %Cg(t) + f(t, q(t,z2))

¢'(t) = —=C(t)m(?).

Let Po(t) = m(t) + ||uoz|Le + (’)—2 - %37 Vo € R. Then Py(t) is a C''-function
in [0,T") and satisfies
A2 (2
P2(0) = m(0) + fluosllz= + 1/ —5 = —= 2 m(0) + [[uoe[l 2= = 0.
Now we claim that
Py(t) >0 forte[0,T). (2.26)

Assume that there is a ¢y € [0,T) such that Ps(#p) < 0. Define t5 = max{t < # :
Pg(t) = O}, then Pg(tg) = O, Pé(tg) S 0. That iS,
A2 C2
mlt2) = —lluoellz=~ =1/ 5 = 72, m'(t2) = P;(t2) < 0.
In addition, we have

' (t2) = ~ S (t2) —~ Am(t2) + 5C(t2) + (12, altz, )

o A2 02 N, A1
> ——(—uozllpee =\ = — —= + = Z _Z¢2>0.
- 2( el o2 o +0) +20 2 2~

This is a contradiction. Then we have Py(t) > 0 for ¢t € [0,T), since x is chosen
arbitrarily. [
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Now, we present the following estimates for ||p||z(s), if ou, is bounded from
below.

Lemma 2.9 ([5]). Let o # 0 and (u, p) be the solution of with initial data
(uo, po—1) € H*(S)x H*71(S), s > 3/2, and T be the mazimal time of the existence.
If there is a M > 0 such that inf(; 4)cj0,7)xs OUs = —M, Then we have following
two statements.

(1) If o > 0, then ||p(t, )| L=(s) < [lpollLoe sy

(2) If ¢ <0, then ||p(t,)||lL=(s) < llpollL=(s)e™",
where N = ||ugs|| L + (C2/v/=0) and Cs is given in (2.24).

Proof. The proof of Lemma[2.9]is similar to that of [5, Proposition 3.8], so we omit
it here. d

From the above results, we can get the necessary and sufficient conditions for
the blow-up of solutions.

Theorem 2.10 (Wave-breaking criterion for o # 0). Let o # 0 and (u, p) be the
solution of with initial data (ug, po — 1) € H*(S) x H*71(S), s > 3/2, and T
be the mazimal time of existence. Then the solution blows up in finite time if and
only if
lim inf ou,(t,x) = —o0. (2.27)
t—T— x€S
Proof. Assume that T < oo and (2.27) is not valid, then there is some positive
number M > 0, such that ou,(t,z) > —M, VY(t,z) € [0,T) x S. From the above
lemmas, we have |u,(t,z)| < C, where C = C(A, M, o, A\, || (v, po — 1) || grescrs—1)-
Thus, Theorem implies that the maximal existence time T" = oo, which contra-
dicts the assumption T' < oo.
On the other hand, the Sobolev embedding theorem H® «— L% with s > 1/2
implies that if holds, the corresponding solution blows up in finite time. The
proof is complete. ([l

3. BLOW-UP SCENARIOS

Theorem 3.1. Let ¢ > 0 and (u,p) be the solution of (2.1 with initial data
(ug, po — 1) € H5(S) x H*=1(S),s > 3/2, and T be the mazimal time of existence.
Assume that there is some xg € S such that po(zo) = 0 uoy(xo) = infyes upz(x)
and
(w0, po = 1)l[7r1 <2
( 8e—10 ﬁ) 4(e —1) (3.1)
18(e—1) 20/ (1842 + 19)e — (1842 +17) + (23— 0| + o) (e + 1)’

then the corresponding solution to system (2.1)) blows up in finite time in the fol-
lowing sense: there exists a T such that

2
< = _
0<T<—+ (720(6 1)(1 + |u0w(xo)|)>
- (0(326 40 — 324e — 324A% + 3244 1 306) — 36)\%(e — 1)  (3.2)

+ (203 = o] + o) (e = (o, po — 1)312)

and that iminf, _p- (inf,eg u, (¢, 2)) = —o0.
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Proof. Here we also consider s > 3. We still consider along the trajectory ¢(t, z2)

defined as before. In this way, we can write the transport equation of p in

along the trajectory of ¢(t,z2) as
L) o1, (0 st €(0). (33)

By the assumption, we have

m(0) = uz(0,£(0)) = inf uos(2) = oz (o).
Choose £(0) = zo and then po(£(0)) = po(xo) = 0. Then by (3.3), we derive
p(t,&(t)) =0, Vte|0,T). (3.4)
Evaluating the result at x = £(¢) and combining with ug.(¢,£(t)) = 0, we have

7ﬁ@y:_gm%@_xmuy+3_Uu%aaw)+A«%*uw@£@»
~ex G+ 2270 1 L0 60)

:_%m%w—MMﬂ+f@MmmD

= T lmlt)+ 27+ 2+ fatt).

We modify the estimates:

g

1 e+1
AlGy *ug| < Al|Gallpzus|l2 < 18 20e — 1)

6+ (0= 1)) < G120~ 1l < 75+ 51 + 3o~ U
Similarly, we obtain the upper bound of f as
po J0—8e (1842 +19)e — (1842 +17) + (23 — o| + o) (e + 1)
~ 18(e—1) 4(e —1)
x [|(uo, po = Vl[Fr1 w2 := —Ca.
By assumption , we obtain % —(C3<0and

A2 A2 A2
‘W< -Zm+ 2+ < tel0,7). .
m'(t) < 2(m()+0)+20_ 05,20 C3<0, te€[0,T) (3.6)
So m(t) is strictly decreasing in [0, 7). If the solution (u, p) of (2.1)) exists globally
in time, that is, T' = oo, we will show that it leads to a contradiction.

Let t; = W Integrating (3.6) over [0, t1] gives

9
+ Ay

(31 A2
m(t1) = m(0) +/ m/ (t)dt < |ugy(z0)| + (% —C3)t; = —1. (3.7)
0
For t € [t1,T), we have m(t) < m(t1) < —1. From (3.6, we have
A
M@g—am@+ﬁ? (3.8)
Integrating over [t1,T), by (3.7), yields
1 1 1 1 o
- + < - + <-Z(t-t), telt,T),
mt)+2 217 mt)+2 " mty)+ 2T 1) [t1,7)
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1 A
mt)< g~ — - — -0, ast—il+——.

So, T < t; + =2, which is a contradiction to T = co. Consequently, the proofis

o—\’
complete. |

Theorem 3.2. Let 0 # 0 and (u,p) be the solution of with initial data
(ug,po — 1) € H*(S) x H*71(S), s > 3/2, and T be the mazimal time of the
existence.

(1) When o > 0, assume that there is an o € S such that po(xo) = 0, ugy(xo) =

infyeg uos(x) and upz(xo) < —1/ ;}—2 +9 - 2 where Cy is defined in (2.8). Then

g

the corresponding solution to system (2.1)) blows up in finite time in the following
sense: there exists a T, such that

2()\+0’U,Om($0))
0<Ty <— ,
LS OVt ouoe(0))? — (A2 4 0C2)
and
liminf{inf u,(t,2)} = —o0.
iminf (inf (1))
(2) When o < 0, assume that there is some xy € S such that ug;(xg) >
\/ (’)—; - %% - %, where Cy is defined in (2.9). Then the corresponding solution

to system (2.1) blows up in finite time in the following sense: there exists a Ty such
that
2(A + oz (z0))

0<Ty < — ,
2= (N F guge(x0))? — (A2 — 0C2)
and
lim inf{sup u, (¢, z)} = oo.
t—T, xS
Proof. (1) When o > 0, using the upper bound of f in (2.17)) and (3.4), we have
A2 A1
w'(t) < =2 (mt)+2) + -+ 52 teo,T).
2 o 20 2

By the assumption m(0) = g (wg) < —4/ 3—2 + %f — 2, we have that m/(0) < 0
and m(t) is strictly decreasing over [0,7'). Set

1 1 A1 1
b= ——m——————— ——i—fC’Q) € (0,=).
2 o(uge(z0) + 2)2 (20 3¢1)€0:3)
Since m(t) < m(0) = ugy (o) < —2, it holds
, o )\>2 A1, ( A)Q
<2z - 2oy < - Z) .
m/ () < —2(m(t) + 2) "+ 5=+ 508 < —do (m(t) +
By a similar argument as in the proof of Theorem we obtain
A+ ougg (o) A 1
t) < BN .
M) S GoTon(wo) + 00 o > T TN T dounn(ao)

1
Thus, we have 0 < Tl S 7m
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(2) when o < 0, we consider the functions m(t) and n(t) as defined in (2.11]) and
take the trajectory ¢(t,x1) with x; defined in (2.13)), then

m(6) =~ SmA (1) - Am<»+;pun<»+f@qwzo> o
3.9

> -2 (m(t)+ )’ +—+ftq(tx1))
From the lower bound of f in -7 we obtain

_ o(_ A2 A1,
>_Z z Z =z .
W)= =2 (m0+2) + - - 505 teloT)

By the assumption m(0) > wg.(xg) > (’)z - %3 — 2, we have that m’(0) > 0 and
m(t) is strictly increasing over [0, 7).
Set
(cupe (7o) + A)? — (A2 — 0C3) c 1
2(ougz (o) + A)? '

Since m(t) > m(0) > wupz(zo) > —A we obtain

9:

m’(t)z—%(m(t)+§)2+g‘—2—7(}2 > 00( ()+§)2.

Similarly, we obtain

_ A+ ougg(z0) A 1

t) > -z N —
M) 2 BoTuon(zo) + M0 o > 1T T30 Gouen(ag)

Therefore, 0 < T <

—m. The proof is complete. (I

Remark. If 0 = 3 and A = 0, then all solutions of system (2.1)) with initial data
(ug, po — 1) € H3(S) x H*~1(S) with s > 3/2 satisfying ug # 0 and pg(x¢) = 0 for
some zo € S, blow up in finite time.

4. BLOW-UP RATE

Theorem 4.1. Let 0 # 0. If T < oo is the blow-up time of the solution (u,p)
to ([2.1) with initial data (ug,po — 1) € H*(S) x H*=Y(S), s > 3/2 satisfying the
assumptions of Theorem[3.2 Then

2
1 fug(t,2)(T — 1)} = — 2, 0, 41
Jim {inf ug(t,2)(T -8} = ——, o> (4.1)
2
lim {supu,(t,z)(T —t)} = ——, o <O. (4.2)
t—=T~ xcS o

Proof. We assume that s = 3 to prove the theorem.
(1) when o > 0, from (3.5)) we have

o 2

m' (1) = =2 (m(t)+ 2) "+ 2 4 1t q(t,2)) (4.3)

2 20
From (2.19)), note that
5(e+1) N A? N 2e+ (e+1)(|o| +2[3—0)

-0 3 ie—1) (o, po — V)2 xrzs (4.4)
Then
—5mlt)+ 2)2 - ; =M < m/(1) < = (m(t) + 2)2 + ; +M. (45)
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Choose € € (0, %), since lim,_p— (m(t) + 2) = —oo, there is some ty € (0,7,
such that m(tp)+2 < 0 and (m(t0)+§)2 > é(% +M). Since m is locally Lipschitz,
it follows that m is absolutely continuous. We deduce that m is decreasing on [tg, T')
and

(m(t)+5)2>3(i2+M) t e [to,T) (4.6)
o e\20 ’ 05 ’
Combining (4.5 with (4.6), we have

o d 1 o

——e< —(—— ) < = t € [tg,T). 4.7

2 g_dt<m(t)+%>_2+€’ € lto, T) (47)
Integrating over (¢, T) with ¢ € [tg, T) and noticing that lim;_,p— (m(t)—kg) = —00,

we obtain

o 1 o

——e)(T—-t) < —————~ < (=+e)(T —-1).

G- —0s— g < (Grar-n
Since € € (0, §) is arbitrary, in view of the definition of m(t), we have

lim {m(t)(T —t)+ i(T —t)} = _E;

t—T~ o o
that is, lim;_, 7 {inf,cg ua(t, 2)(T — )} = —2.
(2) When o < 0, we consider the functions m(t) and 7(t) as defined in (2.11)).
From and (£.4)), we have m/(t) > —g(m(t) + %)2 + % - M.
Because m(t) — oo as t — T, there is a t; € (0,7), such that m(t1) >
\/(’)—z —2M _ 2 > 0. Thus, we have that m/(t) > 0 and m(t) is strictly increasing

g

on [t1,T), and

m(t) > m(ty) > 0. (4.8)
By the transport equation for p, we have
dp(t,n(t _
D) — i oyo(e, m(e).
Then .
plt. (1)) = p(tr,n(t))e” I ™t e [, 7). (4.9)
Combining (4.8) with (4.9)) yields
p*(t,n(t) < p*(ti,n(t), t€[t,T) (4.10)

From (3.9) and (4.10)), we have

o M2 A2 1
ISR SRy
<-’<75<—+5)27A—2+12(t (t1) + M |
=M=\ TG ) Ty TP e '
Choose € € (0, —%), and pick a t € [t1,T'), such that
A2 171 A2
(t f) 7(7215, ¢ Mf—). 412
(m(t2)+2)" > 2 (320 m(t)) + M = 2 (4.12)
From (4.11)) and (4.12)), we have
o d 1 o
——e< —(—— )<= t e te, T). 4.13
2 5—dt<m(t)+§>—2+6’ € 02, T) (4.13)
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Integrating (4.13)) over [¢,T) with ¢ € [t2,T) and lim;_,7— m(t) = co gives

o 1 o

T NT—t)<——— < (T heyT 1)

G- —05 xS (G +aT -y
Since € € (0, —%) is arbitrary, in view of the definition of m(t), we have

2
lim {supu,(t,z)(T —t)} = ——.
t—=T~ xcS g

This completes the proof of Theorem O

5. EXISTENCE OF A GLOBAL SOLUTION

In this section, we provide a sufficient condition for the global solution of system
(2.1) in the case when 0 < o < 2.

Lemma 5.1. Let 0 < 0 < 2 and (u, p) be the solution of with initial data
(ug, po — 1) € H*(S) x H*71(S), s > 3/2, and T be the mazimal time of existence.
Assume that infzcg po(x) > 0.

(1) When 0 < o <1, it holds

1

infacES pO(x)

1 2 Cat
|supug(t,z)] < —————CF "e?v.
z€S infres p; 7 ()

(2) When 1 < o <2, it holds

Cst
> 04637

inf <
| inf us(t, 2)]

1

515 Gat
. 2(7 04 62_”’
infyes pi 7 (x)

| sup g (£, 7)| < ——
sup u )| < —m——
z€eS e mfwes po(a?)

inf <
I;gsux(tw)I <

Cst
0463,

where constants C3 and Cy are defined as follows:

5(e +1 A2 2e+(e+1D)(lo]+2|13—-0c
C3=1+(7)+(I+ ( 4()6(|—|1) | |))||(U07p0_1)||%{1><L27

4(e —1)
Cy =1+ |luozlZoe + lloll7e-

Proof. A density argument indicates that it suffices to prove the desired results for
s > 3. Since s > 3, we have u € C§(S) and

inf u,(t,x) <0, supug(t,z) >0, tel0,T).
zes z€eS
(1) First we will derive the estimate for |inf,eg u,(¢,2)|. Define m(t) and £(t)
as in (2.25)), and consider along the characteristics g(¢, z2(t)). Then
m(t) <0 fortel0,T). (5.1)
Let ((t) = p(t,&(t)) and evaluating (2.10) and the second equation of system (2.1))
at (t,£(t)), we have

g

() = 2 m?(#) = Mm(t) + 3¢(0)+ 1t q(t, )

2 (5.2)
¢'(t) = —C(t)m(),
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where f is defined in (2.16]). The second equation above implies that ¢(t) and ¢(0)
are of the same sign.

Next we construct a Lyapunov function for our system as in [13]. Since here we
have a free parameter o, we could not find a uniform Lyapunov function. Instead,
we split the case 0 < 0 < 1 and the case 1 < ¢ < 2. From the assumption of the
theorem, we know that ¢(0) = p(0,£(0)) >0

When 0 < ¢ <1, we define the Lyapunov function

¢(0)

wi(t) = ¢(0)¢(t) + @(1 +m?(t)),

which is always positive for ¢ € [0,T). Differentiating wi(¢) and using (5.2)) gives

(1) = CO)C (1) — fﬁfﬁ) @+ m2@)¢ @) + 2D mym (1)

0
= —CO ) = o1+ mAO) (C(Bm(r)
2%(0)

+ 2 (e)(= T (1) — wm(t) + 3¢(0) + )
(

¢(t)
¢(0) ¢(0) 22¢(0)
2=Lm3(t) + ™0~ 0

m(t)f

(5.3)
m2(t) + 2C<((f))m(t)f

¢(t)

where

€ 2 e e o
igejBJr(illJrQ . +i()e| |1—;2|3 D)H(Uo,Po*l)”%{le%

This gives
wl(t) < w ( ) Cst __ (CQ( )+1+m2(0)) Cst
< (1+ [Juoz|[Z + [lpol| 7o et =: Caet,

where Cy =1+ [[uoz |70 + [lpollZo-
Recalling that ¢(t) and ¢(0) are of the same sign, the definition of wy () implies
C(t)¢(0) < wy(t) and [€(0)||m(t)] < wi(t). By (5.4), we obtain

: _ wi(t) 1 s
|;relgum(t, z)| = |m(t)] < 0] < focs po(@) Che®t, fort € [0,7).

When 1 < o < 2, we define the Lyapunov function
C2(t) + 14+ m2(¢)

(5.4)

) =70 L 55)
Then
(0 = i) T 0 - xm) + 1+ )
(5.6)
) O
< SO0 w171+ ) < SR+ m* )11+ 1) < Cuun(t)
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Thus, we obtain
wo(t) < wy(0)e“3t = (¢2(0) + 1 + m?(0))e“s!
< (1+ JluosIZ + llpol|7o)e" = Cue®.

Applying Young’s inequality ab < % + % to (5.5) with p = 2 and ¢ = 52 yields
2—o
wo(t 0(2-0)\ & 14+m2) 72\ =25
oy = () ()
¢ (0> (=

2—o

2 2 2
O /( 2=\ & 2—c/(14+m°) 2 225
Z 7(4- ’ ) + (( 70073) )

2 2 C 2

> (14m?) 2" > [m(t)]>.

So we have

CUQ(t) = 1 51— Cst
= ) <— .
¢7(0) infoes pg ° (2)

(2) Now, we estimate |sup,eg ux(t,x)|. Consider m(t),n(t),q(t,z1) as in (2.11)
and (2.13)), and

i <
| inf u, (t,2)] < (

' (t) = S (0) = Am(t) + 3C(0) + J (. q(t,01)) .
() = =C()m(t)
for t € [0,T), where ((t) = p(t,n(t)). We know that
m(t) >0 fortel0,T). (5.8)
When 0 < ¢ < 1, we define the Lyapunov function
(1) = (o) ST, (59)

¢ (1)
Then from (5.6) and (5.8), we have @] (t) < C3w;(t), then w1 (t) < Cye®?t. Hence,
by a similar argument as before, we obtain

20 o,
¢7(0)
Then
01 (t 1 1 L 3t
(o) < () < L ___creef e,
z€S ¢ (O) infaecs pgia (.Z')
When 1 < ¢ < 2, consider the Lyapunov function
i} S s ¢(0 _
a2(t) = OG0 + S 1+ (). (5.10)
From (5.3) and (5.8), we have @} (t) < C3ws(t) and wy(t) < Cye®3t. Therefore,
D (t) 1

Iitelg ug (t, )| = [m(t)| < 20)

The proof is complete. O

IN

, Cyest, tel0,7).
1nfo;eSPO(37) * [ )
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Theorem 5.2. Let 0 < o < 2 and (u, p) be the solution of (2.1) with initial data
(ug, po — 1) € H*(S) x H*=(S), s > 3/2, and T be the mazimal time of existence.
If infyes po(x) > 0, then T = 400 and the solution (u, p) is global.

Proof. Assume on the contrary that T < 400 and the solution blows up in finite
time. It then follows from Theorem [2:3] that

T
| l@lz=dt = <. (5.11)

However, from the assumptions of the theorem and Lemma we have |ug(t,z)| <
oo for all (t,z) € [0,T) x S. This is a contradiction to (5.11)). So T' = +o0, and it
means that the solution (u, p) is global. O
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