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RADIAL POSITIVE SOLUTIONS FOR A NONPOSITONE
PROBLEM IN AN ANNULUS

SAID HAKIMI, ABDERRAHIM ZERTITI

Abstract. The main purpose of this article is to prove the existence of radial
positive solutions for a nonpositone problem in an annulus when the nonlin-

earity is superlinear and has more than one zero.

1. Introduction

In this article we study the existence of radial positive solutions for the boundary-
value problem

−∆u(x) = λf(u(x)) x ∈ Ω,

u(x) = 0 x ∈ ∂Ω,
(1.1)

where λ > 0, f : [0,+∞)→ R is a continuous nonlinear function that has more than
one zero, and Ω ⊂ RN is the annulus: Ω = C(0, R, R̂) = {x ∈ RN : R < |x| < R̂}
(N > 2, 0 < R < R̂).

When f is a nondecreasing nonlinearity satisfying f(0) < 0 (the nonpositone
case) and has only one zero, problem (1.1) has been studied by Arcoya and Zertiti
[1] and by Hakimi and Zertiti in a ball when f has more than one zero [5].

We observe that the existence of radial positive solutions of (1.1) is equivalent
to the existence of positive solutions of the problem

−u′′(r)− N − 1
r

u′(r) = λf(u(r)) R < r < R̂

u(R) = u(R̂) = 0.
(1.2)

Our main objective in this article is to prove that the result of existence of radial
positive solutions of the problem (1.1) remains valid when f has more than one
zero and is not increasing entirely on [0,+∞); see [1, Theorem 2.4].

Remark 1.1. In this article, we assume (without loss of generality) that f has
exactly three zeros.

We assume that the map f : [0,+∞)→ R satisfies the following hypotheses:
(F1) f ∈ C1([0,+∞),R) such that f has three zeros β1 < β2 < β3, with f ′(βi) 6=

0 for all i ∈ {1, 2, 3}. Moreover, f ′ ≥ 0 on [β3,+∞).
(F2) f(0) < 0.
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(F3) limu→+∞
f(u)
u = +∞.

(F4) The function h(u) = NF (u)−N−2
2 f(u)u is bounded from below in [0,+∞),

where F (x) =
∫ x
0
f(r)dr.

Remark 1.2. We observe that our arguments also work in the case Ω = B(O,R),
improving slightly the results in [5]. In fact in [5], besides imposing that f is
increasing, we need (F1), (F2), (F3) and that For some k ∈ (0, 1),

lim
d→+∞

( d

f(d)
)N/2(

F (kd)− N − 2
2N

df(d)
)

= +∞.

On the other hand, it is clear that our hypothesis (F4) is more general than this
assumption.

For a nonexistence result of positive solutions for superlinearities satisfying (F1),
(F2) and (F3) see [6]. Also see [3] for existence and nonexistence of positive solutions
for a class of superlinear semipositone systems, and [4] for existence and multiplicity
results for semipositone problems.

2. Main Result

In this section, we give the main result in this work. More precisely we shall
prove the following theorem.

Theorem 2.1. Assume that the hypotheses (F1)–(F4) are satisfied. Then there
exists a positive real number λ∗ such that if λ < λ∗, problem (1.1) has at least one
radial positive solution.

To prove Theorem 2.1, we need the next four technical lemmas. The first lemma
assures the existence of a unique solution u(., d, λ) of (1.2) in [R,+∞) for all λ, d >
0. The three last lemmas concern the behaviour of the solution of (1.2).

Remark 2.2. In this article we follow the work of Arcoya and Zertiti [1], and we
note that the proofs of Lemmas 2.4 and 2.7 are analogous with those of [1, Lemmas
1.1 and 2.3]. On the other hand, the proofs of the second and third lemmas are
different from that of [1, Lemma 2.1 and 2.2]. This is so because our f has more
than one zero. So we apply the Shooting method. For this we consider the auxiliary
boundary-value problem

−u′′(r)− N − 1
r

u′(r) = λf(u(r)), r > R

u(R) = 0, u′(R) = d,
(2.1)

where d is the parameter of Shooting method.

Remark 2.3. For suitable d, problem (2.1) has a solution u := u(., d, λ) such that
u > 0 on (R, R̂) and u(R̂) = 0. So, such solution u of (2.1) is also a positive solution
of (1.2).

In this sequel, we suppose that the nonlinearity f ∈ C1([0,+∞)) is always
extended to R by f |(−∞,0) ≡ f(0).

Lemma 2.4. Let λ, d > 0 and f ∈ C1([0,+∞)) a function which is bounded from
below. Then problem (2.1) has a unique solution u(., d, λ) defined in [R,+∞), In
addition, for every d > 0 there exist M = M(d) > 0 and λ = λ(d) > 0 such that

max
r∈[R, bR]

|u(r, d, λ)| ≤M, ∀λ ∈ (0, λ(d)).
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Proof. The proof of the existence is given in two steps. In first, we show the
existence and uniqueness of a local solution of (2.1); i.e, the existence a ε = ε(d, λ) >
0 such that (2.1) has a unique solution on [R,R + ε]. In the second step we prove
that this unique solution can be extended to [R,+∞).
Step 1: (Local solution). Consider the problem

−u′′(r)− N − 1
r

u′(r) = λf(u(r)), r > R1

u(R1) = a, u′(R1) = b,
(2.2)

where R1 ≥ R. Let u be a solution of (2.2). Multiplying the equation by rN−1 and
using the initial conditions, we obtain

u′(r) =
1

rN−1

{
RN−1

1 b− λ
∫ r

R1

sN−1f(u(s))ds
}
. (2.3)

from which u satisfies

u(r) = a+
bRN−1

1

N − 2

( 1
RN−2

1

− 1
rN−2

)
− λ

∫ r

R1

1
tN−1

[ ∫ t

R1

sN−1f(u(s))ds
]
dt. (2.4)

Conversely, if u is a continuous function satisfying (2.4), then u is a solution of
(2.2).

Hence, to prove the existence and uniqueness of a solution u of (2.2) defined in
some interval [R1, R1 + ε], it is sufficient to show the existence of a unique fixed
point of the operator T defined on X (the Banach space of the real continuous
functions on [R1, R1 + ε] with the uniform norm),

T : X = C([R1, R1 + ε],R)→ X

v 7→ Tv,

where

(Tv)(r) = a+
bRN−1

1

N − 2

( 1
RN−2

1

− 1
rN−2

)
−λ

∫ r

R1

1
tN−1

[ ∫ t

R1

sN−1f(v(s))ds
]
dt, (2.5)

for all r ∈ [R1, R1 + ε] and v ∈ X. To check this, Let δ > 0 such that δ > |a| and
B(0, δ) = {u ∈ X : ‖u‖ ≤ δ}. For all u, v ∈ B(0, δ), we have

(Tu− Tv)(r) = λ

∫ r

R1

1
tN−1

[ ∫ t

R1

sN−1{f(v(s))− f(u(s))}ds
]
dt,

then

|(Tu− Tv)(r)| ≤ λ
∫ r

R1

1
tN−1

[
∫ t

R1

sN−1 sup
ζ∈(0,δ]

|f ′(ζ)| |v(s)− u(s)|ds]dt

≤ λ
∫ r

R1

1
tN−1

[ ∫ t

R1

sN−1ds
]
dt sup
ζ∈(0,δ]

|f ′(ζ)| ‖u− v‖.

However,∫ r

R1

1
tN−1

[
∫ t

R1

sN−1ds]dt =
∫ r

R1

1
tN−1

[
tN

N
− RN1

N
]dt

≤
∫ r

R1

t

N
dt− RN1

N

∫ r

R1

dt

tN−1
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=
1

2N
(r2 −R2

1)−
RN1
N

( 1
(2−N)rN−2

− 1
(2−N)RN−2

1

)
=
r2 −R2

1

2N
+

1
N(N − 2)

.
RN1
rN−2

− R2
1

N(N − 2)

≤ (R1 + ε)2 −R2
1

2N
, because r ∈ [R1, R1 + ε]

=
ε(2R1 + ε)

2N
;

therefore,

‖Tu− Tv‖ ≤ ε(2R1 + ε)
2N

λ sup
ζ∈[0,δ]

|f ′(ζ)|‖u− v‖

≤ ε(R1 + ε)
N

λ sup
ζ∈[0,δ]

|f ′(ζ)|‖u− v‖.

Hence

‖Tu− Tv‖ ≤ λ

N
sup
ζ∈(0,δ]

|f ′(ζ)|ε(R1 + ε)‖u− v‖. (2.6)

Similarly,

‖Tu‖ ≤ |a|+ |b|R
N−1
1

N − 2

( 1
RN−2

1

− 1
(R1 + ε)N−2

)
+
λ

N
sup
ζ∈[0,δ]

|f(ζ)|ε(R1 + ε). (2.7)

Now, by (2.6) and (2.7), we can choose ε = ε(δ) > 0 (depending on δ) sufficiently
small such that T is a contraction from B(0, δ) to B(0, δ). Consequently, T has a
fixed point u in B(0, δ). The fixed point u is unique in X for a δ as large as we
wanted.

Step 2: Let u(.) = u(., d, λ) be the unique solution of (2.1) (we take a = 0, b = d
and R1 = R in (2.2)), and denote by [R,R(d, λ)) its maximal domain. We shall
prove by contradiction that R(d, λ) = +∞. For it, assume R∗ := R(d, λ) < +∞. u
is bounded on [R,R∗). In fact, using (2.4) and that f is bounded from below, we
have

dR

N − 2
≥ dRN−1

N − 2

( 1
RN−2

− 1
rN−2

)
= u(r) + λ

∫ r

R

1
tN−1

[ ∫ t

R

sN−1 f(u(s))ds
]
dt

≥ u(r) + λ inf
ξ∈[0,+∞)

f(ξ)
∫ R∗

R

1
tN−1

[ ∫ t

R

sN−1ds
]
dt, ∀r ∈ [R,R∗),

then, there exists K1 > 0 such that u(r) ≤ K1 for all r ∈ [R,R∗).
On the other hand, using again (2.4), we obtain

u(r) ≥ dRN−1

N − 2

( 1
RN−2

− 1
rN−2

)
− λ max

ξ∈[0,K1]
f(ξ)

∫ R∗

R

1
tN−1

[ ∫ t

R

sN−1ds
]
dt

≥ −K2, ∀r ∈ [R,R∗),

for convenient K2 > 0. Hence u is bounded.
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By using this and (2.3) and (2.4), we deduce that {u(rn)} and {u′(rn)} are
the Cauchy sequence for all sequence (rn) ⊂ [R,R∗) converging to R∗. This is
equivalent to the existence of the finite limits

lim
r→R∗−

u(r) = a and lim
r→R∗−

u′(r) = b.

Now, consider the problem

−v′′(r)− N − 1
r

v′(r) = λf(v(r)), R∗ < r

v(R∗) = a, v′(R∗) = b
(2.8)

and by step 1, we deduce the existence of a positive number ε > 0 and a solution
v of this problem in [R∗, R∗ + ε]. It is easy to see that

w(r) =

{
u(r), if R ≤ r < R∗

v(r), if R∗ ≤ r ≤ R∗ + ε,

is a solution of (2.1) in [R,R∗ + ε] which is a contradiction, so R∗ = +∞.
To prove the second part of the lemma, we consider the operator T defined by

(2.5) on X0 = C([R, R̂],R) with R1 = R, a = 0 and b = d. Taking M = δ > 2dR
N−2

and

λ(d) = min
{ M

2M1 maxξ∈[0,M ] |f(ξ)|
,

1
M1 maxξ∈[0,M ] |f ′(ξ)|

}

with M1 =
∫ eR
R

1
tN−1

[ ∫ t
R
sN−1ds

]
dt.

By (2.6) and (2.7), we deduce that T is a contraction from B(0,M,X0) into
B(0,M,X0), where

B(0,M,X0) = {u ∈ X0 : max
r∈[R, bR]

|u(r)| ≤M}.

So, the unique fixed point of T belongs to B(0,M,X0). The lemma is proved. �

Lemma 2.5. Assume (F1), (F2) and let d0 > 0. Then there exists λ1 = λ1(d0) > 0
such that the unique solution u(r, d0, λ) of (2.1) satisfies

u(r, d0, λ) > 0, ∀r ∈ (R, R̂],∀λ ∈ (0, λ1).

Proof. For λ > 0, we consider the set

Ψ = {r ∈ (R, R̂) : u(.) = u(., d0, λ)is nondecreasing in (R, r)}.

Since u′(R) = d0 > 0, Ψ is nonempty, and clearly bounded from above. Let
r1 = sup Ψ (which depends on λ). We have two cases:
Case 1. If r1 = R̂, the proof is complete.
Case 2. If r1 < R̂, we shall prove u(.) = u(., d0, λ) > 0, for all r ∈ (R, R̂] for all λ
sufficiently small. In order to show it, assume that r1 < R̂. Then u′(r1) = 0, and
since

u′(r) =
1

rN−1

[
RN−1d0 − λ

∫ r

R

sN−1f(u(s))ds
]
,

then u(r1) > β1. Hence the set Γ = {r ∈ [r1, R̂] : u(t) ≥ β1 and u′(t) ≤ 0, ∀t ∈
[r1, r]} is nonempty and bounded from above. Let r2 = sup Γ > r1. We shall prove
that for λ sufficiently small r2 = R̂. We observe that u′(r) ≤ 0 for all r ∈ Γ, then
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u(r) ≤ u(r1), for all r ∈ [R, r2]. Therefore, by the mean value theorem, there exists
c ∈ (r1, r2) such that

u(r2) = u(r1) + u′(c)(r2 − r1),
but

u′(c) = − λ

cN−1

∫ c

r1

tN−1f(u(t))dt,

then

u(r2) > u(r1)− λR̂

N
sup

[β1,u(r1)]

|f(ζ)|(R̂−R).

If M = M(d0) > 0 and λ(d0) > 0 (defined in Lemma 2.4), then

β1 < u(r1) ≤M, ∀λ ∈ (0, λ(d0)).

Let K = K(d0) > 0 such that |f(ζ)| < K(ζ − β1) for all ζ ∈ (β1,M ]. We deduce
that

u(r2) > u(r1)− λKR̂

N
(R̂−R)(u(r1)− β1), ∀λ ∈ (0, λ(d0)),

Thus, if λ ∈ (0, λ1) with λ1 = min{λ(d0), N

K bR( bR−R)
} we have u(r2) > β1, which

implies that r2 = R̂. �

Lemma 2.6. Assume (F1)–(F3). Let λ > 0. Then
(i) limd→+∞ r1(d, λ) = R

(ii) limd→+∞ u(r1, d, λ) = +∞

Proof. If (i) is not true, then there exists ε > 0 so that for all n there exists dn such
that

|r1(dn, λ)−R| ≥ ε,
from which

r1(dn, λ) ≥ R+ ε (because r1(dn, λ) ≥ R),

then there exists R0 ∈ (R, R̂) and a sequence (dn) ⊂ (0,+∞) converging to∞ such
that un := u(., dn, λ) satisfies

un(r) > 0, u′n(r) ≥ 0, ∀r ∈ (R,R0], ∀n ∈ N.

Let r = R+R0
2 . By the equality

un(r) =
dnR

N−1

N − 2

( 1
RN−2

− 1
rN−2

)
− λ

∫ r

R

1
tN−1

[ ∫ t

R

sN−1f(un(s))ds
]
dt,

we observe that (un(r)) is unbounded. Passing to a subsequence of (dn), if it is
necessary, we can suppose limn→+∞ un(r) = +∞. Now, consider

Mn = inf
{f(un(r))

un(r)
: r ∈ (r,R0)

}
.

By (F3), limn→+∞Mn = +∞. Let n0 ∈ N such that λMn0 > µ3 where µ3 is the
third eigenvalue of −[ d

2

d2r + N−1
r

d
dr ] in (r,R0) with Dirichlet boundary conditions.

We take a nonzero eigenfunction φ3 associated to µ3; i.e.,

φ′′3(r) +
N − 1
r

φ′3(r) + µ3φ3(r) = 0, r < r < R0

φ3(r) = 0 = φ3(R0).
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Since φ3 has two zeros in (r,R0), we deduce from the Sturm comparison Theorem
[7] that un0 has at least one zero in (r,R0). Which is a contradiction (because
un(r) > 0 for all r ∈ (R,R0] and all n ∈ N).

(ii) Let r1 be the same number as in the proof of lemma 2.5. we have u′(r1) = 0.
However,

u′(r1) =
1

rN−1
1

[
dRN−1 − λ

∫ r1

R

tN−1f(u(t))dt
]
,

then

dRN−1 = λ

∫ r1

R

tN−1f(u(t))dt.

Hence
lim

d→+∞
u(r1, d, λ) = +∞.

�

Lemma 2.7. Assume (F1)–(F4) and let γ1 be a positive number. Then there exists
a λ2 > 0 such that:

(a) For all λ ∈ (0, λ2) the unique solution u(r, d, λ) of (2.1) satisfies

u2(r, d, λ) + u′2(r, d, λ) > 0, ∀r ∈ [R, R̂], ∀d ≥ γ1.

(b) For all λ ∈ (0, λ2), there exists d > γ1 such that u(r, d, λ) < 0 for some
r ∈ (R, R̂].

Proof. (a) Let λ, d > 0 and u(.) = u(., d, λ) the unique solution of (2.1). We define
the auxiliary function H on [R,+∞) by setting

H(r) = r
u′2(r)

2
+ λrF (u(r)) +

N − 2
2

u(r)u′(r), ∀r ∈ [R,+∞).

We can prove, as in [2, 5] the next identity of Pohozaev-type:

rN−1H(r) = tN−1H(t)+λ
∫ r

t

sN−1[NF (u(s))−N − 2
2

f(u(s))u(s)]ds, ∀t ∈ [R, r].

Taking t = R, in this identity we obtain

rN−1H(r) =
RNd2

2
+ λ

∫ r

R

sN−1
[
NF (u(s))− N − 2

2
f(u(s))u(s)

]
ds,

hence

rN−1H(r) ≥ RNd2

2
+ λm

(rN
N
− RN

N

)
, (2.9)

where m is a strictly negative real such that NF (u)− N−2
2 f(u)u ≥ m for all u ∈ R,

so

rN−1H(r) ≥ RNγ2
1

2
+ λm

( R̂N
N
− RN

N

)
, ∀r ∈ [R, R̂], ∀d ≥ γ1.

We note that m exists by (f4). Hence there exists λ2 > 0 such that

H(r) > 0, ∀r ∈ [R, R̂], ∀d ≥ γ1, ∀λ ∈ (0, λ2). (2.10)

Therefore,

u2(r, d, λ) + u′2(r, d, λ) > 0, ∀r ∈ [R, R̂], ∀d ≥ γ1, ∀λ ∈ (0, λ2).

(b) We argue by contradiction: fix λ ∈ (0, λ2) and suppose that

u(r, d, λ) ≥ 0, ∀r ∈ [R, R̂], ∀d ≥ γ1.
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Choose % > 0 such that there exists a solution of ω′′ + N−1
r ω′ + %ω = 0, where

ω(0) = 1, ω′(0) = 0,
R̂−R

4
is the first zero of ω.

We note (see [8]) that ω(r) ≥ 0 and ω′(r) < 0 , for all r ∈ (0, bR−R
4 ].

By (F3), there exists d0 = d0(λ) > γ1 such that

f(u)
u
≥ %

λ
, ∀u ≥ d0. (2.11)

On the other hand, let r1 = r1(d, λ) and r2 = r2(d, λ) be the same numbers as in
the proof of Lemma 2.5. By Lemma 2.6, we can assume that

r1 = r1(d, λ) < R+
R̂−R

4
< R̂ and u(r1, d, λ) > d0, ∀d ≥ d0,

the definitions of r1 and r2 imply

u′(r, d, λ) ≤ 0, ∀r ∈ [r1, R̂], ∀d ≥ d0. (2.12)

Define v(r) = u(r1)ω(r − r1), hence v′′(r) + N−1
r−r1 v

′(r) + %v(r) = 0, for all r ∈
(r1, r1 + bR−R

4 ) with u(r1) = v(r1), v′(r1) = 0, v(r1 + bR−R
4 ) = 0, v(r) > 0 and

v′(r) ≤ 0, for all r ∈ (r1, r1 + bR−R
4 ), thus

v′′(r) +
N − 1
r

v′(r) + %v(r) ≥ 0, ∀r ∈ (r1, r1 +
R̂−R

4
),

if u(r) ≥ d0, for all r ∈ (r1, r1 + bR−R
4 ), hence by (2.11) and the Sturm comparison

theorem (see [7]), u have a zero in (r1, r1 + bR−R
4 ). Which is a contradiction. Hence,

there exists r∗ ∈ (r1, r1 + bR−R
4 ) such that u(r∗, d, λ) = d0.

Now, consider the energy function

E(r, d, λ) =
u
′2(r, d, λ)

2
+ λF (u(r, d, λ)), ∀r ≥ R.

By (2.9), (2.12) and the equality H(r) = rE(r) + N−2
2 u(r)u′(r), we obtain

rNE(r, d, λ) ≥ rN−1H(r, d, λ)

≥ RNd2

2
+ λm

( R̂N
N
− RN

N

)
, ∀r ∈ [r1, R̂],

hence, there exists d1 = d1(λ) ≥ d0 such that

E(r, d, λ) ≥ λF (d0) +
2

(R̂−R)2
d2
0, ∀r ∈ [r1, R̂], ∀d ≥ d1.

However,

E′(r) = −N − 1
r

u′(r)2 ≤ 0, ∀r ∈ [R, R̂],

hence
E(r∗) ≥ E(r), ∀r ∈ [r∗, R̂],

thus
u′(r)2

2
≥ 2d2

0

(R̂−R)2
, ∀r ∈ [r∗, R̂], ∀d ≥ d1,
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and by (2.12), we deduce

u′(r) ≤ − 2d0

R̂−R
, ∀r ∈ [r∗, R̂], ∀d ≥ d1.

The mean value theorem implies that there exists a c ∈ (r∗, r∗ + bR−R
2 ) such that

u
(
r∗ +

R̂−R
2

)
− u(r∗) =

R̂−R
2

u′(c).

Hence

u
(
r∗ +

R̂−R
2

)
≤ 0.

Which is a contradiction (because u′(r∗ + bR−R
2 ) < 0). �

Proof of theorem 2.1. Let d0 > 0. By Lemmas 2.5 and 2.7, there exists λ∗ > 0 such
that, if λ ∈ (0, λ∗) then

(i) u(r, d0, λ) > 0 for all r ∈ (R, R̂]
(ii) u′(r, d, λ)2 + u(r, d, λ)2 > 0 for all r ∈ [R, R̂] and all d ≥ d0,

(iii) there exist d1 > d0 and r ∈ (R, R̂] such that u(r, d1, λ) < 0.

Define Γ = {d ≥ d0 | u(r, d, λ) > 0, ∀r ∈ (R, R̂), ∀d ∈ [d0, d]}. By (i), d0 ∈ Γ
then Γ is nonempty. In addition, by (iii) Γ is bounded from above by d1. Take
d∗ = sup Γ. it is clear that

u(r, d∗, λ) ≥ 0, ∀r ∈ [R, R̂].

Since d∗ < d1, we deduce (using (ii)) that

u(r, d∗, λ) > 0, ∀r ∈ (R, R̂). (2.13)

u(., d∗, λ) will be a solution searching, if we prove u(R̂, d∗, λ) = 0. Assume that
u(R̂, d∗, λ) > 0. Then by (2.13) and the fact that u′(R, d∗, λ) = d∗ > 0, we have
that

u(r, d, λ) > 0, ∀r ∈ (R, R̂],∀d ∈ [d∗, d∗ + δ],
where δ is sufficiently small. Hence d∗+ δ ∈ Γ, which is a contradiction. Therefore,
u(R̂, d∗, λ) = 0. �
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