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PAIRS OF SIGN-CHANGING SOLUTIONS FOR SUBLINEAR
ELLIPTIC EQUATIONS WITH NEUMANN BOUNDARY

CONDITIONS

CHENGYUE LI, QI ZHANG, FENFEN CHEN

Abstract. We consider the Neumann problem for a sublinear elliptic equation
in a convex bounded domain of RN . Using an variant of Clark Theorem, we

obtain the existence and multiplicity of its pairs of sign-changing solutions.

1. Introduction

Consider the Neumann problem for a semilinear elliptic equation
−∆u(x) = f(u(x)), x ∈ Ω,

∂u

∂n
|∂Ω = 0,

(1.1)

where Ω ⊂ RN (N > 1) is a convex and bounded domain with the smooth boundary
∂Ω and the outward normal n, f(u) : R→ R. Let F (u) =

∫ u
0
f(s)ds, the primitive

of f , and assume it satisfies

lim sup
|u|→∞

F (u)/|u|2 6 a <∞, (1.2)

then we say that (1.1) is sublinear (or subquadratic). If

lim
|u|→∞

F (u)/|u|2 =∞, (1.3)

then (1.1) is superlinear (or superquadratic). For sublinear problem (1.1), there is a
vast of literature. Under the assumptions of sign conditions [4, 5], or monotonicity
conditions [10], or periodicity conditions[11], or Landesman-Lazer type conditions
[6, 7], it has been showed that problem (1.1) possesses at least one solution. Tang
[14, 15, 16] supposed that F satisfies the hypothesis

lim
u∈X0,‖u‖0→∞

‖u‖−2α
0

∫
Ω

F (u(x))dx→∞, (1.4)

where X0 = {u ∈ H1(Ω) :
∫

Ω
u(x)dx = 0}, ‖u‖0 = (

∫
Ω
|∇u(x)|2dx)1/2 for u ∈ X0,

and 0 < α < 1. He proved the existence and multiplicity results of problem (1.1)
by minimax methods. Costa [1] assumed that f satisfies
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(F1) f ∈ C1(R,R), strictly increasing and f(0) = 0,
(F2’) the limits f ′(±∞) = limu→±∞ f ′(u) exist, 0 < f ′(±∞) < λ1 < f ′(0),

where λ1 is the first positive eigenvalue of the problem

−∆u(x) = λu(x), x ∈ Ω
∂u

∂n
|∂Ω = 0.

(1.5)

Then Costa [1] showed that (1.1) has one nontrivial solution in H1(Ω), which
minimizes the functional

ϕΩ(u) =
1
2

∫
Ω

|∇u(x)|2dx−
∫

Ω

F (u(x))dx, (1.6)

over the manifold

M =
{
u ∈ H1(Ω) :

∫
Ω

f(u(x))dx = 0
}
. (1.7)

In [9], under the hypotheses that there are two sequences {aj},{bj} ⊂ R, such
that f(aj) = 0 = f(bj), j = 1, 2, . . . , and f ′(aj) ≥ λ2, f ′(bj) ≥ λ2, j = 2, 4, . . . ,
where λ2 is the second positive eigenvalue of problem (1.5), Li and Li [9] proved
the existences of positive, negative and sign-changing solutions for problem (1.1).

In this article, motivated by [1], a multiplicity result of pairs of sign-changing
solutions for (1.1) shall be obtained, which is a generalization of [1, Theorem 3.7].

Exactly, we have the following conclusion.

Theorem 1.1. Let dΩ denote the diameter of Ω. Suppose that f satisfies (F1) and

(F2) the limits f ′(±∞) = limu→±∞ f ′(u) exist and 0 < f ′(±∞) < ( π
dΩ

)2;
(F3) F (u) = F (−u), for all u ∈ R;
(F4) there exist p ∈ N,M > 0 and ρ > 0 such that dΩ > 2pπ√

M
,M > 4p2f ′(±∞),

and

F (u) >
1
2
M |u|2,∀|u| 6 ρ;

(F4) for Ω there are continuous functions e1(x), e2(x), . . . , ep(x) ∈ X0 \ {0},
which are orthogonal in H1(Ω) and L2(Ω), such that∫

Ω

|∇ej(x)|2dx 6 2(j + 1)π)
dΩ

]2
∫

Ω

|ej(x)|2dx, ∀1 6 j 6 p.

Then (1.1) has p distinct pairs (u(x),−u(x)) of sign-changing classical solutions,
and has no positive and negative solution, provided that dΩ ∈ ( 2pπ√

M
, π√

f ′(±∞)
).

Remark 1.2. If f satisfies lim|u|→0 F (u)/|u|2 =∞, then, for all dΩ > 0, p > 1, we
can find M > 0 and ρ > 0 such that (F4) holds.

Remark 1.3. Usually, in some applications, the role of e1(x), e2(x), . . . , ep(x) is
played by the eigenfunctions φj ∈ X0 (j > 1) of problem (1.5) (see (2.10) and (2.11)
below).

This article is organized as follows. In Section 2, we give some Lemmas. In
Section 3, we prove Theorem 1.1 by using a variant of Clark Theorem as stated
next.
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Theorem 1.4 ([12, 13]). Let X̂ be a Banach space, ϕ̂ ∈ C1(X̂,R) be even, and
M̂ ⊂ X̂ be C1− submanifold. Suppose that ϕ̂|M̂ satisfies the Palais-Smale condi-
tion; ϕ̂ is bounded from below on M̂; there exist a closed, symmetric subset K̂ ⊂ M̂
and p̂ ∈ N such that K̂ is homeomorphism to Sp̂−1 ⊂ Rp̂ by an odd map, and
sup{ϕ̂(x) : x ∈ K̂} < ϕ̂(0). Then ϕ̂|M̂ possesses at least p̂ distinct pairs (u,−u) of
critical point with corresponding critical values less than ϕ̂(0).

As an example, we apply Theorem 1.1 to Bγ(0) ⊂ R2 and yield an interesting
result.

Theorem 1.5. Let f satisfy (F1)–(F4) with Ω = {(x1, x2) ∈ R2 : x2
1 + x2

2 < r2},
then, for r ∈ ( 2pπ√

M
, π

2
√
f ′(±∞)

), the problem

−∆u(x) = f(u(x)), x2
1 + x2

2 < r2

∂u

∂n
|x2

1+x2
2=r2 = 0,

(1.8)

has p-distinct pairs (u(x),−u(x)) of sign-changing classical solutions.

In the proof of Theorem 1.5, by some accurate analysis about the corresponding
eigenvalue problem with zero points of Bessel functions, we find that condition (F5)
is naturally satisfied.

2. Preliminaries

In this article, for simplicity, for u ∈ L2(Ω), we denote by ‖u‖L2 its L2-norm.
Clearly, problem (1.1) has the trivial solution u(x) = 0. In order to find its non-
trivial solutions, we consider the functional

ϕΩ(u) =
1
2

∫
Ω

|∇u(x)|2dx−
∫

Ω

F (u(x))dx

=
1
2

∫
Ω

|∇u(x)|2dx− ψΩ(u), u ∈ X,
(2.1)

where ψΩ(u) =
∫

Ω
F (u(x))dx, X = H1(Ω) is the usual Sobolev space with the inner

product

(u,w) =
∫

Ω

[u̇(x)ẇ(x) + u(x)w(x)]dx (2.2)

and the corresponding norm

‖u‖ = (u, u)1/2 = (
∫

Ω

[|∇u(x)|2 + |u(x)|2]dx)1/2. (2.3)

Under the assumptions (F1) and (F2), we know that ϕΩ ∈ C2(X,R), ψΩ(u) is
weakly continuous in X, and ψ′Ω(u) : X → X∗ is completely continuous. Moreover,
critical points of ϕΩ in X are classical solutions of problem (1.1).

Next, we decompose the Sobolev space X = H1(Ω) as

X = X0 ⊕X1, X0 = {u ∈ X :
∫

Ω

u(x)dx = 0}, X1 = R. (2.4)

Let us recall the problem (1.5) has eigenvalues

0 = λ0 < λ1 < λ2 6 λ3 6 · · · → ∞, (2.5)



4 C. LI, Q. ZHANG, F. CHEN EJDE-2014/112

and the corresponding eigenfunctions

φ0(x) ≡ 1, φ1(x), φ2(x), φ3(x), . . . . (2.6)

In particular, for the first positive eigenvalue λ1, one has the Poincare type inequal-
ity ∫

Ω

|u(x)|2dx 6 1
λ1

∫
Ω

|∇u(x)|2dx,∀u ∈ X0. (2.7)

Using the estimate of lower bound for λ1, [8],

λ1 > (
π

dΩ
)2, (2.8)

we have ∫
Ω

|u(x)|2dx 6 (
dΩ

π
)2

∫
Ω

|∇u(x)|2dx,∀u ∈ X0. (2.9)

In addition, it is a well-known that∫
Ω

φj(x)dx = 0, ∀j > 1, (2.10)

which implies
φj ∈ X0, ∀j > 1. (2.11)

Under assumptions of (F1) and (F2), Costa [1] proved that
(i) M = {u ∈ X = H1(Ω) :

∫
Ω
f(u(x))dx = 0} ⊂ X is a C1− manifold of

codimension 1;
(ii) u ∈ X is a critical point of ϕΩ in X if and only if u ∈M and it is a critical

point of ϕΩ|M.
Also for u ∈ X, writing u = ν + c, ν ∈ X0, c ∈ R, he also obtained that

(iii)
∫

Ω
F (ν + c)dx 6

∫
Ω
F (ν)dx;

(iv) ‖νn‖ → ∞ as ‖νn + cn‖ → ∞, νn + cn ∈M.

Lemma 2.1. If f satisfies (F1) and (F2), then
(v) for each ν ∈ X0, there exists a unique c(ν) ∈ R such that ν + c(ν) ∈M;
(vi) c(−ν) = −c(ν) for all ν ∈ X0 if f is also odd.

Proof. (v) For any fixed ν ∈ X0, define

gν(c) =
∫

Ω

f(ν + c)dx, ∀c ∈ R. (2.12)

If ν ∈ C1(Ω̄), we easily know that f(ν(x) + c1) > 0 for all x ∈ Ω̄ and c1 >
maxΩ̄ |ν(x)|, while f(ν(x)+c2) < 0 for all x ∈ Ω̄ and c2 < −maxΩ̄ |ν(x)|. Therefore,
by the continuity of gν(·), there exists c = c(ν) ∈ R such that

∫
Ω
f(ν+ c(ν))dx = 0.

For the general case ν ∈ X0, one can take νk ∈ C1(Ω̄)∩X0, νk → ν in X. There
are c(νk) ∈ R such that

∫
Ω
f(νk + c(νk))dx = 0. We claim that {c(νk)} is bounded.

Otherwise, |c(νk)| → ∞, then ‖νk+c(νk)‖ → ∞. Since νk+c(νk) ∈M, by (iv), we
have ‖νn‖ → ∞, a contraction. Therefore, we may assume that c(νk)→ c(ν) ∈ R.
By (F2), there are constants η > 0 such that 0 6 f ′(u) 6 η, for all u ∈ R. Thus,
we have

|
∫

Ω

f(ν + c(ν))dx| = |
∫

Ω

f(ν + c(ν))dx−
∫

Ω

f(νk + c(νk))dx|

6 η
∫

Ω

[|ν − νk|+ |c(νk)− c(ν)|]dx→ 0;
(2.13)
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that is, ν+c(ν) ∈M. The uniqueness of c(ν) can be obtained from the monotonicity
of f(u).

(vi) for all ν ∈ X0 naturally −ν ∈ X0, by (v), there is c(−ν) ∈ R such that∫
Ω

f(−ν + c(−ν))dx = 0. (2.14)

Since f(u) is odd, we have ∫
Ω

f(ν − c(−ν))dx = 0. (2.15)

By the uniqueness of c(ν), we obtain c(ν) = −c(−ν), namely, c(−ν) = −c(ν). �

Lemma 2.2. Suppose f satisfies (F1) and (F2). Then the functional ϕΩ(u) is
bounded from below on M and satisfies the Palais-Smale condition on M.

Proof. By (F2), there exist m and b,

0 < m < (
π

dΩ
)2 6 λ1, b > 0, (2.16)

such that

F (s) 6 b+
1
2
m|s|2, ∀s ∈ R. (2.17)

For u ∈M, writing u = ν + c ∈ X0 ⊕X1, we have

ϕΩ(u) =
1
2

∫
Ω

|∇ν(x)|2dx−
∫

Ω

F (ν + c)dx

>
1
2

∫
Ω

|∇ν(x)|2dx−
∫

Ω

F (ν)dx

>
1
2
‖∇ν‖2L2 −

1
2
m‖ν‖2L2 − b|Ω| .

(2.18)

This inequality and (2.9) implies

ϕΩ(u) >
1
2

[1−m(
dΩ

π
)2]‖∇ν‖2L2 − b|Ω| =

1
2
D‖∇ν‖2L2 − b|Ω| > −b|Ω| (2.19)

with D = 1−m(dΩ
π )2 > 0. Thus, ϕΩ(u) is bounded from below on M.

Let {uj} ⊂ M be such that {ϕΩ(uj)} is bounded and (ϕΩ|M)′(uj) → 0. Let
uj = νj + cj ∈ X0

⊕
X1. Then (2.19) implies ‖∇νj‖2L2 6 2

D (ϕΩ(uj) + b|Ω|), thus
{νj} is bounded in X. The fact uj = νj + cj ∈ M and (iv) derives {uj} is also
bounded in X, so we may assume that, by passing to a subsequence if necessary,

uj ⇀ u ∈ X weakly in X. (2.20)

uj → u ∈ X strongly in L1(Ω) and in L2(Ω). (2.21)

Thus, for j > 1, noticing∫
Ω

f(u(x))dx =
∫

Ω

[f(u(x))− f(uj(x))]dx =
∫

Ω

f ′(ζ)(u(x)− uj(x))dx, (2.22)

with ζ between u(x) and uj(x), it follows that

|
∫

Ω

f(u(x))dx| 6
∫

Ω

|f ′(ζ)||u(x)− uj(x)|dx 6 η
∫

Ω

|u(x)− uj(x)|dx→ 0;

consequently, u ∈M.
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Let us denote by ∇ϕΩ,∇JΩ : X → X the gradient of ϕΩ, JΩ, respectively, which
are defined by the Riesz-Frechet representation theorem, namely, ∇ϕΩ,∇JΩ ∈ X
are unique elements such that

ϕ′Ω(w)h = 〈∇ϕΩ(w), h〉, J ′Ω(w)h = 〈∇JΩ(w), h〉,∀w, h ∈ X. (2.23)

Then, from the boundness of {uj}, we easily know that ∇ϕΩ(uj),∇JΩ(uj) are
bounded. Moreover,

[(ϕΩ|M)′(uj)− (ϕΩ|M)′(u)](uj − u)

= (ϕ′Ω(uj)− ϕ′Ω(u))(uj − u)− 〈∇ϕΩ(uj),∇JΩ(uj)〉
‖∇JΩ(uj)‖2

J ′Ω(uj)(uj − u)

+
〈∇ϕΩ(u),∇JΩ(u)〉
‖∇JΩ(u)‖2

J ′Ω(u)(uj − u)

= ‖∇uj −∇u‖2L2 −
∫

Ω

(f(uj)− f(u))(uj − u)dx− CjJ ′Ω(uj)(uj − u)

+ C0J
′
Ω(u)(uj − u),

(2.24)

where C0 = 〈∇ϕΩ(u),∇JΩ(u)〉
‖∇JΩ(u)‖2 is a constant, Cj = 〈∇ϕΩ(uj),∇JΩ(uj)〉

‖∇JΩ(uj)‖2 is bounded since
∇JΩ(uj)→ ∇JΩ(u) 6= 0.

So ‖∇uj −∇u‖L2 → 0. Thus, with the aid of (2.21), we conclude that uj → u ∈
M in X. �

3. Proof of Theorem 1.1

For p ∈ N, ρ > 0, and e1(x), e2(x), . . . , ep(x) in (F4) and (F5), we define the
subset K ⊂M as follows

K = {ν + c(ν) ∈M : ν =
p∑
j=1

µjej(x), µj ∈ R(1 6 j 6 p),
p∑
j=1

µ2
j = ρ̂2}, (3.1)

where ρ̂ = ρ/(2
√
p). Then, by Lemma 2.1, the map

ν + c(ν) 7→
(
− µ1

ρ̂
,−µ2

ρ̂
, . . . ,−µp

ρ̂

)
(3.2)

is an odd homeomorphism from K to Sp−1 ⊂ Rp.

Proof of Theorem 1.1. We consider the subset K ⊂ M in (31). Without loss of
generality, we may assume that |ej(x)| 6 1, for all 1 6 j 6 p, x ∈ Ω. Thus, for any
u(x) = ν(x) + c(ν) =

∑p
j=1 µjej(x) + c(ν) ∈ K, we have

|ν(x)|2 6
p∑
j=1

µ2
j

p∑
j=1

|ej(x)|2 6 pρ̂2, ∀x ∈ Ω. (3.3)

From
∫

Ω
f(ν(x) + c(ν))dx = 0, we know that there exists x̂ ∈ Ω such that f(ν(x̂) +

c(ν)) = 0. By (f1), we obtain ν(x̂) + c(ν) = 0, namely, c(ν) = −ν(x̂). Thus

|c(ν)| = |ν(x̂)| 6 √pρ̂, (3.4)

|u(x)| 6 |ν(x)|+ |c(ν)| 6 2
√
pρ̂ = ρ, ∀x ∈ Ω, (3.5)

so, combining (3.5) with (F4)–(F5) shows that

ϕΩ(u) =
1
2

∫
Ω

|∇u(x)|2dx−
∫

Ω

F (u(x))dx
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=
1
2

∫
Ω

|∇ν(x)|2dx−
∫

Ω

F (ν(x) + c(ν))dx

6
1
2

∫
Ω

|∇ν(x)|2dx− M

2

∫
Ω

(ν(x) + c(ν))2dx

=
1
2

p∑
j=1

µ2
j‖∇ej(x)‖2L2 −

1
2
M

p∑
j=1

µ2
j‖ej(x)‖2L2 −Mc(ν)

p∑
j=1

µj

∫
Ω

ej(x)dx

− 1
2
Mc2(ν)|Ω|

6
1
2

p∑
j=1

µ2
j‖∇ej(x)‖2L2 −

1
2
M

p∑
j=1

µ2
j‖ej(x)‖2L2

6
1
2

p∑
j=1

µ2
j [(

2(j + 1)π
dΩ

)2 −M ]‖ej(x)‖2L2 < 0,

using
∫

Ω
ej(x)dx = 0. Thus sup{ϕΩ(u) : u ∈ K} < 0 = ϕΩ(0). Hence, by Lemma

2.2 and Theorem 1.4, ϕΩ|M possesses at least p distinct pairs (uj ,−uj) of critical
points on M such that ϕΩ(uj) < 0 with uj 6= 0(1 6 j 6 p). Since uj ∈ M \ {0};
that is,

∫
Ω
f(uj(x))dx = 0, however, the continuous function f(s) satisfies f(s) > 0

if s > 0, and f(s) < 0 if s < 0, thus, we conclude that uj must change its sign.
In addition, from (ii), we also know that there is no positive and negative critical
point of ϕΩ. In other words, problem (1.1) possesses p distinct pairs (uj(x),−uj(x))
of sign-changing classical solutions (1 6 j 6 p), and has no positive and negative
solution. �

Remark 3.1. Costa [1, Theorem 3.7], by minimizing method, shows that there
exists u0 = u0(x) ∈M \ {0} such that

ϕΩ(u0) = inf
u∈M

ϕΩ(u) < 0. (3.6)

In fact, by our previous arguments in Theorem 1.1, we know that u0(x) is a sign-
changing classical solution of (1.1).

As an application and illustration of Theorem 1.1, Theorem 1.5 is applied to the
Neumann problem:

−∆u(x) = f(u(x)), x2
1 + x2

2 < r2

∂u

∂n
|x2

1+x2
2=r2= 0,

(3.7)

where x = (x1, x2) ∈ R2, r > 0. To prove Theorem 1.5, we shall use some properties
of Bessel functions.

Proof of Theorem 1.5. First consider the eigenvalue problem

−∆u(x) = λu(x), x2
1 + x2

2 < r2

∂u

∂n
|x2

1+x2
2=r2 = 0.

(3.8)

By [3, Chpater 5,Section 5], positive eigenvalues λjk of (3.8) satisfy

J ′j
(
r

√
λjk
)

= 0, j = 0, 1, 2 . . . , k = 1, 2 . . . , (3.9)
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where Jj(·) is the j-order Bessel function, and the corresponding eigenfunctions are

ujk(x) = ujk(x1, x2) = Jj(
√
λjkτ)(cos jθ + sin jθ)

with x1 = τ cos θ, x2 = τ sin θ, 0 6 τ 6 r, 0 6 θ 6 2π. Now we choose

ej(x) = u0
j (x) = J0(

√
λ0
jτ), j = 1, 2, . . . p. (3.10)

From the integral expression

J0(t) =
1

2π

∫ π

−π
cos(t sin θ)dθ, (3.11)

we know that |ej(x)| 6 1. And since −4ej(x) = λ0
jej(x), by Green’s formula, we

obtain ∫
Ω

|∇ej(x)|2dx = λ0
j

∫
Ω

|ej(x)|2dx. (3.12)

Since J ′0(t) = −J1(t) for all t ∈ R, by (3.9), we have

J1(r
√
λ0
j ) = 0, j = 1, 2, . . . . (3.13)

Let a0
j be the jth positive zero point of J0(t). Then according to Schafheitlin’s

investigation of the zero points of J0(t) [17, Section 15.32, P.489], a0
j satisfies the

estimate

(j − 1)π +
3
4
π < a0

j < (j − 1)π +
7
8
π, j = 1, 2, . . . , (3.14)

thus by (3.14) and the property of positive zero points of J1(t), we obtain

(j − 1)π +
3
4
π < r

√
λ0
j < jπ +

7
8
π, j = 1, 2, . . . ; (3.15)

therefore,

λ0
j <

(j + 1)2π2

r2
, j = 1, 2, . . . p. (3.16)

From (3.12) and (3.16), for 1 6 j 6 p, we derive that∫
Ω

|∇ej(x)|2dx = λ0
j

∫
Ω

|ej(x)|2dx 6 (j + 1)2π2

r2

∫
Ω

|ej(x)|2dx. (3.17)

So, by Theorem 1.1 with dΩ = 2r, ϕΩ possesses at least p distinct pairs (uj ,−uj)
of critical points such that ϕΩ(uj) < 0, which are p distinct sign-changing classical
solutions of (1.8). �

Theorem 3.2. Suppose f satisfies (F1)–(F3) and lim|u|→0 F (u)/|u|2 =∞. Then,
for all r ∈ (0, π

2
√
f ′(±∞)

), (1.8) has infinitely many distinct pairs (u(x),−u(x)) of

sign-changing classical solutions.

The above theorem is a corollary of Theorem 1.5 with Remark 1.2.
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