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OSCILLATION CRITERIA FOR SECOND-ORDER NONLINEAR
PERTURBED DIFFERENTIAL EQUATIONS

PAKIZE TEMTEK

ABSTRACT. In this article, we study the oscillation of solutions to the nonlinear
second-order differential equation

(r@e O @112 0)) + Pt,2! ()e((®) + Q(2(t)) = 0.

We obtain sufficient conditions for the oscillation of all solutions to this equa-
tion.

1. INTRODUCTION

This article concerns the oscillation of solutions to the nonlinear second-order
differential equation

(rya) e 12 (0) + P2 O)v(() + Qa() =0, £ 215 (11)

where r € CY(I,RT), P,Q € C(I x R,R), ¢(z) € C(R,R"), I = [Tp,<) C R,
0 < ¥(z) < v and « is a positive constant. Throughout this article, we assume the
following conditions:

(E1) Q € C(I x R,R) and there exist f € C'(R,R) and a continuous function
q(t) such that

Q(t, x)
zf(x) >0 and >q(t) forxz #0.
(@) el =) for 7
(E2) P e C(I xR,R) and there exists a continuous function p(t) such that
P(t, ='(t))

PO @) >p(t) for 2’ #0.
We restrict our attention to solutions satisfying sup{|z(¢)| : ¢ > T} > 0 for all
T > Tp.

A solution of is said to be oscillatory if it has arbitrarily large zeros, and
otherwise it is said to be non-oscillatory. If all solutions of are oscillatory,
is called oscillatory.

The oscillatory behavior of solutions of second-order ordinary differential equa-
tions, including the existence of oscillatory and non-oscillatory solutions, has been
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the subject of intensive investigations; see for example [I]-[I3]. Some criteria in-
volve the behavior of the integral of alternating coefficients. In this article, we give
general integral criteria for the oscillation of , which contain some of the results
in the references as particular cases.

2. MAIN RESULTS

Let h(-) and K(-,+,-) : R x R x RT — R be continunous functions such that for
each fixed ¢, s, the function K (¢, s,.) is nondecreasing. Then there exists a solution
to the integral equation

+/tK(t,5,v(s))d5, t > to. (2.1)

Furthermore there exists a “minimal solution” v in the sense that any solution y of
this equation satisfies v(t) < y(¢) for all ¢ > t;. See [I, p. 322].

Lemma 2.1 (citewl). If v is the minimal solution of (2.1) and
t
—I—/ K(t,s,u(s))ds, t>to,

then u(t) > v(t) for all t > tq.
Similarly for a mazimal solution w(t) of (2.1)): if u(t) Jrft (t,s,u(s))ds,
then u(t) < w(t) for all t > tg.

Our main results reads as follows.
Theorem 2.2. Assume (E1), f'(z) >0, p(t) <0, q(t) > 0 and [, (575 7w At =
Also assume that there exists a positive function p(t) such that

| awotie = o. (2:2)

to
p()p(t) = r(t)p'(t). (2.3)
Then every solution of (1.1) is oscillatory.

Proof. For the shake of contradiction, suppose that has a non-oscillatory so-
lution z(t). Without loss of generality, suppose that it is an eventually positive so-
lution (if it is an eventually negative solution, the proof is similar), that is, z(t) > 0
for all ¢ > tg. We consider the following three cases.

Case 1. Suppose that 2/(¢) is oscillatory. Then there exists t; > tp such that

2'(t1) = 0. From (L)), we have
@ O e ([ Pa)]

to 7(s)

= v O o) e ([ 2a)

to

+p(O ()l O ) exp [ t P )
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OO OF e e ([ L)

which implies that

OVl 0 0 e ([ 22as)

< r(t)w((t) |2 (t1)]* 12 (1) exp (/t 1 fgj;ds) =0, Vt>t;.

it follows that #'(¢) < 0 for all ¢ > ¢;, which contradicts to the assumption that
2’ (t) is oscillatory.
Case 2. Assume that 2/(¢) < 0. From (1.1]), we obtain

~[r(Ov (@)’ @) ' (1)) = [r(t)p(e(t) (= ()]

> p(t)]a (8)]* 2 () (e(t) + q(t) f(2(t))
= —p(t)(=2' (1)) (x(t)) + q(t) f(z(t)) > 0
then there exists an M > 0 and a t; > tg, such that
r(((t) (=2 () > M, Vit > ty. (2.4)
It follows that

r
o M 1/a 1

t) < — — dt, Vt>t
I()_ /t1 (7) Tl/a(t) 9 = Ul

which implies lim;_, o, () = —oo; this contradicts the assumption that x(t) > 0.
Case 3. Suppose that z/(t) > 0. Define w(t) = p(t)r(t)y(z(t))(z'(t))*. Differ-
entiating w(t) and using (1.1)),

w'(t) = [r®)e () (@' (1)) p(t) + r(H)(x() (@ () (t), vt =to.  (25)

Then we obtain

W) P00 Qo))
@) () F(t)
o (r(Ep(e(6) (& (1)
i t0) =t

Noticing that

( w(t) )’: w' () f(x(t) — w(t) f'(2(t))2' (¢)
f(=(t))
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PO Qta()olt)
F(() 0]
SO ®) (@ (0)° wt) f () (1)
* F(a(D) Ple@) 0 2T

Integrating the above from ty to ¢, we obtain

w(t) w(to) _/t[P(va'(S)W(x(S))p(S) Q(s,z(s))p(s)
) i )

fla@®) — flx(to) f(z(s)) f(z(s)
_ PS)r(s)(x(s))(2'(s)” N w(S)f'(JC(S))ﬂC'(S)}dS
f(z(s)) f2(z(s) 7
(t) (to) [ So(s) 1 PBIP(s) = p'(8)r(s))(@'(5)) Y (2(s))
Fo) < Ty~ J, oo+ ()
w(s) f'(z(s))z'(s)
P PGy
Using (2.2), and z'(t) > 0, we have
Cw()
0= B TGm)
this is a contradiction. The proof is complete. ([

Theorem 2.3. Assume that f'(z) > 0 and (x(t)) = 1. Also assume that

po(t) = exp (/t: fggd‘S» (2.6)
> dt
/to (oD ~ (2.7)

and po(t) satisfies (2.2)). Then every solution of (1.1)) is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of (|1.1). Without loss of generality, we
assume that z(t) is eventually positive. Let w(t) = po(t)r(t)|2’(t)|* 12'(t). Then

w(t)a! () = po(r(t)|a' (1" (@ ()2 = 0 for t > g
and
w'(t) = (r(t)]2’ (1)|*7 ' (t) po(t) +r(t)]a ()] 2’ ()ph(t) VE=to. (28
In view of and , we obtain
w'(t) = (=P(t,2'(t)) — Q(t, z(t)))po(t) + |2/ ()|* 2’ ()p(t)po (2),
w'(t) < (=p()|=’ (6] 2" (1) — a(t) f(2(8)))po(t) + |2’ (£)|*~ 2" ()p(t)po(t), (2.9)

< —q(t)po(t) Vt=to.

Since
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integrating from ¢y to t, we have

w(t) w(to) ' " w(s)f'(w(s))a'(s)
> — M + /to q(s)po(s)ds + /to ds

ff(l'(t)) - f(l‘(to fQ(l'(S)) , VYt >tg.

By using ([2.2)), there exists a constant m > 0 and ¢; > tg such that

o _wlto) /tt(I(s)Po(s)ds + /tt1 LD, >m Vt>t, (2.10)

f(z(to)) f2(a(s))

which means that

LBy [,
7)) > +/tl F2(2(s)) ds. (2.11)

Because that x(t) is positive, (2.11)) implies —w(¢) > 0, or equivalently z’(¢) < 0.
Let

u(t) = —w(t) = —po(t)r(t)]a'(t)|* 12’ (t) = po(t)r(t) (=2’ ()", (2.12)
thus can be written as

") f (@ (s) (=2 (5))
u(t) > mf(x(t)) + , P22 (5) u(s)ds. (2.13)
peine fx() [ (2(s))(=2"(s))
K(t,s,u) = 72(2(5)) u. (2.14)

Then, for any fixed ¢t and s, K (¢, s, u) is nondecreasing in u. Let v(t) be the minimal
solution of the equation

olt) = mf(a(e) + [ L @G, o) (2.15)

Applying Lemma [2.3] we obtain
u(t) > v(t) V>t (2.16)
Dividing both sides of (2.15| - by f(z(t)) and deriving both sides of (2.15)),
!

( v(t) ) = (m+ t Mv(s)ds)':wv(t). (2.17)

f(z(t)) 72(2(s)) 20 0)
On the other hand
U(t) / _ ’U/(t) f/(lﬂ(t))(—xl(t))v
<f($(t))) - f(=() + 72(2(t) (t)- (2.18)

Combining (2.17)) and (2.18]), it follows that
v'(t) = 0. (2.19)
So v(t) = v(t1) = mf(xz(t1)), t > to. From (2.16)), we obtain

_ mfeE Ve — L
(1) 2 (mf(a(t)V° o

Integrating both sides of this inequality above from ¢; to ¢, we have
t
ds
~aft) + a(ta) = (mfa(t))' [ T
)2 0 ] G
Letting ¢ — oo, and using (2.7)), it follows that lim;_ . (t) < —o0o, which contra-
dicts to that x(t) is eventually positive. The proof is complete. [

Vit >t (2.20)
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In what follows, we always assume that H(t) € C?(R;R) and it satisfies the
following two conditions:

(H1) H(t) > 0 for all t > to, H(t) is a bounded;

(H2) H'(t) = h(t) is a bounded.

Theorem 2.4. Assume that f'(z) > 0, fto (r(t[)lil/a =00, Y(z(t)) =1, and
p(t) <0, q(t) >0, (2.21)
or
p(t) <0, q(t) <0, lim p(t) =M > 0. (2.22)

Suppose further that there exists a function H(t) that satisfies (H1), (H2), and such
that

b H(t)p(t)dt = oo, (2.23)
lir(;1 sup v(t)r(t) < oo, (2.24)
where
p(t) = v(t)(q(t) — p(t)h(t) — (r(t)h(?))"), (2.25)
= ex t p(s) _ () s
o(t) = p(/to (T(S) H(s))d ) (2.26)

Then every solution of (1.1)) is oscillatory.

Proof. Assume to the contrary that (1.1)) has a non-oscillatory solution z(t). With-
out loss of generality, we may assume that x(t) > 0 for all ¢ > ¢3. Define

:L‘/ a_l.%"
u(t) = v(t)r(t) (M

fz(t))
Differentiating, we obtain

) () P(t,2'(1)

wit) = (@‘ 7)1 0 - )
Artt) _ O 0r e ()2 (a(1))
RE0) 72a()

, p(t h(t

u(t) < (TEt; - H((t))>u(t) o) [ -
oo L (1)) (2(1))
72()
)

+ h(t)). (2.27)

+ (r®A)]

p(t)l2’()]*~ 2’ (1)
fx(t))

+ (r(®)h(0)

—q(t)

u(t) = q(t)v(t) + v(t)(r(H)A(L))’

Multiplying by H(t), it follows that
(VH(E) < —H(t)u'(t) — h(t)u(t) (2.28)
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We consider the following three cases.

Case 1. u(t) is oscillatory. Then there exists a sequence {t,}, (n = 1,2,...),
t, — 0o as n — oo and such that u(t,) =0 (n = 1,2,...). Integrating both sides
of (2.28)) from ty to t,, we obtain

" et < — [ H @ @) / " h(Eu(t)dt
= —HOu) 5~ [ Ou0) + )

= H(to)u(to) — H(tn)u(tn) = H(to)u(to);

that is,
tn
lim H(t)g@(t)dt S H(ﬁo)u(to),
typ—00 to
which contradicts (2.23)).

Case 2. u(t) is eventually positive. Integrating both sides of (2.28)) from ¢ to
00, we obtain

/ T HWp(b)dt < Hito)ulto) — lim H(tu(t) < H(to)u(to),

0

which also contradicts(2.23)).

Case 3. u(t) is eventually negative. If limsup,_ . u(t) > —oo, then there
exists a sequence {f,}, (n=1,2,...), that satisfies {¢,} — oo as n — oo and such
that lim; o u(t,) = limsup,_, . u(t) = My > —oo. Because H(t) is a bounded
function, then there exists a My > 0 such that H(f,) < My, (n=1,2,...). According

to (2.28]), we obtain

/t " HW@ (0t < Hito)ulto) — H(Eu(Fn) < Hito)ulto) — Mau(h,).  (2.29)

0
Using (2.23)) and taking limit as £,, — oo, it is easy to show that
28
oo = _lim H(t)p(t)dt
tp—00 to

< H(to)u(to) — lim H(f,)u(f,)

t, —00

< H(to)u(to) — M1M2 < 00,

which is obviously a contradiction.
If lim sup,_, , u(t) = —oo, then lim;_, o, u(t) = —oo. From the definition of h(¢),

combining (2.24) and (2.27)), it follows that «’(¢) < 0 and
Tim (' (0)°72/ (1) £ (a(£))) = —oc.

which implies that lim; o ((—2'(t))*/f(x(t))) = oco. Owing to p(t) < 0, ¢(t) > 0,
or p(t) <0, ¢(t) < 0 and lim; o0 (p(t)/q(t)) = M > 0, using the similar method
of the proof of Case 2 in Theorem [2.2] we will derive a contradiction. The proof is
complete. O
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Theorem 2.5. Assume that (2.24]) holds, f'(x) > 0, fto (t))l/a = 00, and ([2.21))
or (2.22)) hold. Suppose further that there exists a functwn H(t) that satisfies (H1),

(H2), and such that
/ H(t)@(#)dt = oo, (2.30)
to

a(t) = v(t)(q(t) + p(®)A(t) + (r(t)h (1)), (2.31)
and v(t) is defined in , Then every solution of 18 oscillatory when
P(x(t)) = 1.

Proof. For the sake of contradiction, let ([1.1)) have a non-oscillatory solution. With-
out loss of generality, we may assume that (1.1)) has an eventually positive x(¢) > 0
for all t > ty. Define

|2/ (t)|* " 2! (t)

u(t) = v(t)r(t)( e C h(t)).
The rest of proof is similar to Theorem and is omitted. O

Theorem 2.6. Assume (2.24)), p(t) <0, q(¢t) > 0, f'(x) > 0 and fto (r(t))l/a = 0.

Suppose further that there exists a function H(t) that satisfies (H1), (H2), and such
that

where

/Oo H(t)o(t)dt = oo, (2.32)
where ’
o(t) = v(t)(=p(t)h(t) — (r()A(1))"), (2.33)

where v(t) is defined in (2.26)). Then every solution of is oscillatory when
Wla(t) = 1.

Proof. To the contrary, assume that ((1.1]) has a non-oscillatory solution x(t). With-
out loss of generality, we may assume that (1.1) has an eventually positive x(t) > 0
for all ¢ > ty. Define

T a—1 /
u(t) = v(t)r(t) (L ) (2.34)

$

We use (E1) and noting that zf(x) > 0 for = # 0, so fT > 0 for z # 0. Differen-
tiating , we obtain
h P(t, o'
(1) = (1& _ M Ju(t) +v(t)| - (Zé)u)) ~ Q(:é)(t))

r(t)  H(t)
(O’ (0]~ @' (1)? :
200 + (r(Oh(0)Y |
' a—=1./ T
< (B0 0y, ) 4o - LI _ s e10)

r(t)  H(t)

H(t)/)"

()l ()]~ (@' (1))? ,
- 20 +vmmm}
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Multiplying by H(t), it follows that
H@)6(t) < —H(E' (1) — h(t)u(t)

The rest of the proof is similar to Theorem and it is omitted. ([l
Theorem 2.7. Assume (2.24)), p(t) <0, q(¢t) >0, f'(z) > 0 and ftooo (T(tc)lﬁ = oo.

Suppose further that there exists a function H(t) satisfying (H1), (H2), and such
that

/ " H()B(t)dt = oo, (2.35)
where

B(t) = v(t)(p(t)h(t) + (r(t)A(1))), (2.36)
where v(t) is defined in . Then every solution of 18 oscillatory when
bla(t) = 1.

Proof. For the sake of contradiction, assume that (|1.1)) has a non-oscillatory so-
lution. Without loss of generality, we may assume that (1.1)) has an eventually
positive x(t) > 0 for all ¢ > to. Define

u(t) = v(t)r(t) (W ~ ().

The rest of the proof is similar to Theorem and it is omitted here. O
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