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OSCILLATION CRITERIA FOR SECOND-ORDER NONLINEAR
PERTURBED DIFFERENTIAL EQUATIONS

PAKIZE TEMTEK

Abstract. In this article, we study the oscillation of solutions to the nonlinear
second-order differential equation“

r(t)ψ(x(t))|x′(t)|α−1x′(t)
”′

+ P (t, x′(t))ψ(x(t)) +Q(t, x(t)) = 0.

We obtain sufficient conditions for the oscillation of all solutions to this equa-
tion.

1. Introduction

This article concerns the oscillation of solutions to the nonlinear second-order
differential equation(

r(t)ψ(x(t))|x′(t)|α−1x′(t)
)′

+ P (t, x′(t))ψ(x(t)) +Q(t, x(t)) = 0, t ≥ t0 (1.1)

where r ∈ C1(I,R+), P,Q ∈ C(I × R,R), ψ(x) ∈ C(R,R+), I = [T0,∞) ⊂ R,
0 < ψ(x) < γ and α is a positive constant. Throughout this article, we assume the
following conditions:

(E1) Q ∈ C(I × R,R) and there exist f ∈ C1(R,R) and a continuous function
q(t) such that

xf(x) > 0 and
Q(t, x)
f(x)

≥ q(t) for x 6= 0.

(E2) P ∈ C(I × R,R) and there exists a continuous function p(t) such that

P (t, x′(t))
|x′(t)|α−1x′(t)

≥ p(t) for x′ 6= 0.

We restrict our attention to solutions satisfying sup{|x(t)| : t ≥ T} > 0 for all
T ≥ T0.

A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros, and
otherwise it is said to be non-oscillatory. If all solutions of (1.1) are oscillatory,
(1.1) is called oscillatory.

The oscillatory behavior of solutions of second-order ordinary differential equa-
tions, including the existence of oscillatory and non-oscillatory solutions, has been
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the subject of intensive investigations; see for example [1]–[13]. Some criteria in-
volve the behavior of the integral of alternating coefficients. In this article, we give
general integral criteria for the oscillation of (1.1), which contain some of the results
in the references as particular cases.

2. Main results

Let h(·) and K(·, ·, ·) : R× R× R+ → R be continunous functions such that for
each fixed t, s, the function K(t, s, .) is nondecreasing. Then there exists a solution
to the integral equation

v(t) = h(t) +
∫ t

t0

K(t, s, v(s)) ds, t ≥ t0. (2.1)

Furthermore there exists a “minimal solution” v in the sense that any solution y of
this equation satisfies v(t) ≤ y(t) for all t ≥ t0. See [1, p. 322].

Lemma 2.1 (citew1). If v is the minimal solution of (2.1) and

u(t) ≥ h(t) +
∫ t

t0

K(t, s, u(s))ds, t ≥ t0,

then u(t) ≥ v(t) for all t ≥ t0.
Similarly for a maximal solution w(t) of (2.1): if u(t) ≤ h(t)+

∫ t
t0
K(t, s, u(s))ds,

then u(t) ≤ w(t) for all t ≥ t0.

Our main results reads as follows.

Theorem 2.2. Assume (E1), f ′(x) ≥ 0, p(t) ≤ 0, q(t) > 0 and
∫∞
t0

( 1
r1/α(t)

)dt =∞.
Also assume that there exists a positive function ρ(t) such that∫ ∞

t0

q(t)ρ(t)dt =∞, (2.2)

p(t)ρ(t) ≥ r(t)ρ′(t). (2.3)

Then every solution of (1.1) is oscillatory.

Proof. For the shake of contradiction, suppose that (1.1) has a non-oscillatory so-
lution x(t). Without loss of generality, suppose that it is an eventually positive so-
lution (if it is an eventually negative solution, the proof is similar), that is, x(t) > 0
for all t ≥ t0. We consider the following three cases.

Case 1. Suppose that x′(t) is oscillatory. Then there exists t1 ≥ t0 such that
x′(t1) = 0. From (1.1), we have[

r(t)ψ(x(t))|x′(t)|α−1x′(t) exp
(∫ t

t0

p(s)
r(s)

ds
)]′

= [r(t)ψ(x(t))|x′(t)|α−1x′(t)]′ exp
(∫ t

t0

p(s)
r(s)

ds
)

+ p(t)ψ(x(t))|x′(t)|α−1x′(t) exp
(∫ t

t0

p(s)
r(s)

ds
)

= (−P (t, x′(t))ψ(x(t))−Q(t, x(t))) exp
(∫ t

t0

p(s)
r(s)

ds
)
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+ p(t)ψ(x(t))|x′(t)|α−1x′(t) exp
(∫ t

t0

p(s)
r(s)

ds
)

≤ (−p(t)|x′(t)|α−1x′(t)ψ(x(t))− q(t)f(x(t))) exp
(∫ t

t0

p(s)
r(s)

ds
)

+ p(t)ψ(x(t))|x′(t)|α−1x′(t) exp
(∫ t

t0

p(s)
r(s)

ds
)

= −q(t)f(x(t)) exp
(∫ t

t0

p(s)
r(s)

ds
)
< 0

which implies that

r(t)ψ(x(t))|x′(t)|α−1x′(t) exp
(∫ t

t0

p(s)
r(s)

ds
)

< r(t1)ψ(x(t1))|x′(t1)|α−1x′(t1) exp
(∫ t1

t0

p(s)
r(s)

ds
)

= 0, ∀t ≥ t1 .

it follows that x′(t) < 0 for all t > t1, which contradicts to the assumption that
x′(t) is oscillatory.

Case 2. Assume that x′(t) < 0. From (1.1), we obtain

−[r(t)ψ(x(t))|x′(t)|α−1x′(t)]′ = [r(t)ψ(x(t))(−x′(t))α]′

= P (t, x′(t))ψ(x(t)) +Q(t, x(t))

≥ p(t)|x′(t)|α−1x′(t)ψ(x(t)) + q(t)f(x(t))

= −p(t)(−x′(t))αψ(x(t)) + q(t)f(x(t)) ≥ 0

then there exists an M > 0 and a t1 ≥ t0, such that

r(t)ψ(x(t))(−x′(t))α ≥M, ∀t ≥ t1. (2.4)

It follows that

γ(−x′(t))α ≥ M

r(t)
,

x(t) ≤ −
∫ ∞
t1

(M
γ

)1/α 1
r1/α(t)

dt, ∀t ≥ t1

which implies limt→∞ x(t) = −∞; this contradicts the assumption that x(t) > 0.
Case 3. Suppose that x′(t) > 0. Define w(t) = ρ(t)r(t)ψ(x(t))(x′(t))α. Differ-

entiating w(t) and using (1.1),

w′(t) = [r(t)ψ(x(t))(x′(t))α]′ρ(t) + r(t)ψ(x(t))(x′(t))αρ′(t), ∀t ≥ t0. (2.5)

Then we obtain
w′(t)
f(x(t))

= −P (t, x′(t))ψ(x(t))ρ(t)
f(x(t))

− Q(t, x(t))ρ(t)
f(x(t))

+
ρ′(t)r(t)ψ(x(t))(x′(t))α

f(x(t))
, ∀t ≥ t0 .

Noticing that( w(t)
f(x(t))

)′
=
w′(t)f(x(t))− w(t)f ′(x(t))x′(t)

f2(x(t))
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= −P (t, x′(t))ψ(x(t))ρ(t)
f(x(t))

− Q(t, x(t))ρ(t)
f(x(t))

+
ρ′(t)r(t)ψ(x(t))(x′(t))α

f(x(t))
− w(t)f ′(x(t))x′(t)

f2(x(t))
, ∀t ≥ t0 .

Integrating the above from t0 to t, we obtain

w(t)
f(x(t))

=
w(t0)
f(x(t0))

−
∫ t

t0

[
P (s, x′(s))ψ(x(s))ρ(s)

f(x(s))
+
Q(s, x(s))ρ(s)

f(x(s))

− ρ′(s)r(s)ψ(x(s))(x′(s))α

f(x(s))
+
w(s)f ′(x(s))x′(s)

f2(x(s))
]ds,

w(t)
f(x(t))

≤ w(t0)
f(x(t0))

−
∫ t

t0

[q(s)ρ(s) +
(ρ(s)p(s)− ρ′(s)r(s))(x′(s))αψ(x(s))

f(x(s))

+
w(s)f ′(x(s))x′(s)

f2(x(s))
]ds.

Using (2.2), (2.3) and x′(t) > 0, we have

0 ≤ lim
t→∞

w(t)
f(x(t))

= −∞,

this is a contradiction. The proof is complete. �

Theorem 2.3. Assume that f ′(x) ≥ 0 and ψ(x(t)) ≡ 1. Also assume that

ρ0(t) = exp
(∫ t

t0

p(s)
r(s)

ds
)
, (2.6)∫ ∞

t0

dt

(ρ0(t)r(t))1/α
=∞, (2.7)

and ρ0(t) satisfies (2.2). Then every solution of (1.1) is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of (1.1). Without loss of generality, we
assume that x(t) is eventually positive. Let w(t) = ρ0(t)r(t)|x′(t)|α−1x′(t). Then

w(t)x′(t) = ρ0(t)r(t)|x′(t)|α−1(x′(t))2 ≥ 0 for t ≥ t0
and

w′(t) = (r(t)|x′(t)|α−1x′(t))′ρ0(t) + r(t)|x′(t)|α−1x′(t)ρ′0(t) ∀t ≥ t0 . (2.8)

In view of (1.1) and (2.6), we obtain

w′(t) = (−P (t, x′(t))−Q(t, x(t)))ρ0(t) + |x′(t)|α−1x′(t)p(t)ρ0(t),

w′(t) ≤ (−p(t)|x′(t)|α−1x′(t)− q(t)f(x(t)))ρ0(t) + |x′(t)|α−1x′(t)p(t)ρ0(t),

w′(t)
f(x(t))

≤ −q(t)ρ0(t) ∀t ≥ t0 .
(2.9)

Since ( w(t)
f(x(t))

)′
=
w′(t)f(x(t))− w(t)f ′(x(t))x′(t)

f2(x(t))

≤ −q(t)ρ0(t)− w(t)f ′(x(t))x′(t)
f2(x(t))

∀t ≥ t0,
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integrating from t0 to t, we have

− w(t)
f(x(t))

≥ − w(t0)
f(x(t0))

+
∫ t

t0

q(s)ρ0(s)ds+
∫ t

t0

w(s)f ′(x(s))x′(s)
f2(x(s))

ds, ∀t ≥ t0.

By using (2.2), there exists a constant m > 0 and t1 ≥ t0 such that

− w(t0)
f(x(t0))

+
∫ t

t0

q(s)ρ0(s)ds+
∫ t1

t0

w(s)f ′(x(s))x′(s)
f2(x(s))

ds ≥ m ∀t ≥ t0 (2.10)

which means that

− w(t)
f(x(t))

≥ m+
∫ t

t1

w(s)f ′(x(s))x′(s)
f2(x(s))

ds. (2.11)

Because that x(t) is positive, (2.11) implies −w(t) > 0, or equivalently x′(t) < 0.
Let

u(t) = −w(t) = −ρ0(t)r(t)|x′(t)|α−1x′(t) = ρ0(t)r(t)(−x′(t))α, (2.12)

thus (2.11) can be written as

u(t) ≥ mf(x(t)) +
∫ t

t1

f(x(t))f ′(x(s))(−x′(s))
f2(x(s))

u(s)ds. (2.13)

Define

K(t, s, u) =
f(x(t))f ′(x(s))(−x′(s))

f2(x(s))
u. (2.14)

Then, for any fixed t and s, K(t, s, u) is nondecreasing in u. Let v(t) be the minimal
solution of the equation

v(t) = mf(x(t)) +
∫ t

t1

f(x(t))f ′(x(s))(−x′(s))
f2(x(s))

v(s)ds. (2.15)

Applying Lemma 2.1, we obtain

u(t) ≥ v(t) ∀t ≥ t0. (2.16)

Dividing both sides of (2.15) by f(x(t)) and deriving both sides of (2.15),( v(t)
f(x(t))

)′
=
(
m+

∫ t

t1

f ′(x(s))(−x′(s))
f2(x(s))

v(s)ds
)′

=
f ′(x(t))(−x′(t))

f2(x(t))
v(t). (2.17)

On the other hand( v(t)
f(x(t))

)′
=

v′(t)
f(x(t))

+
f ′(x(t))(−x′(t))

f2(x(t))
v(t). (2.18)

Combining (2.17) and (2.18), it follows that

v′(t) ≡ 0. (2.19)

So v(t) = v(t1) = mf(x(t1)), t ≥ t0. From (2.16), we obtain

− x′(t) ≥ (mf(x(t1)))1/α 1
(ρ0(t)r(t))1/α

, ∀t ≥ t1. (2.20)

Integrating both sides of this inequality above from t1 to t, we have

−x(t) + x(t1) ≥ (mf(x(t1)))1/α

∫ t

t1

ds

(ρ0(s)r(s))1/α
.

Letting t → ∞, and using (2.7), it follows that limt→∞ x(t) ≤ −∞, which contra-
dicts to that x(t) is eventually positive. The proof is complete. �
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In what follows, we always assume that H(t) ∈ C2(R; R) and it satisfies the
following two conditions:

(H1) H(t) > 0 for all t ≥ t0, H(t) is a bounded;
(H2) H ′(t) = h(t) is a bounded.

Theorem 2.4. Assume that f ′(x) ≥ 0,
∫∞
t0

dt
(r(t))1/α

=∞, ψ(x(t)) ≡ 1, and

p(t) ≤ 0, q(t) > 0, (2.21)

or

p(t) ≤ 0, q(t) ≤ 0, lim
t→∞

p(t)
q(t)

= M > 0. (2.22)

Suppose further that there exists a function H(t) that satisfies (H1), (H2), and such
that ∫ ∞

t0

H(t)ϕ(t)dt =∞, (2.23)

lim sup
t→∞

v(t)r(t) <∞, (2.24)

where

ϕ(t) = v(t)(q(t)− p(t)h(t)− (r(t)h(t))′), (2.25)

v(t) = exp
(∫ t

t0

(p(s)
r(s)

− h(s)
H(s)

)
ds
)
. (2.26)

Then every solution of (1.1) is oscillatory.

Proof. Assume to the contrary that (1.1) has a non-oscillatory solution x(t). With-
out loss of generality, we may assume that x(t) > 0 for all t ≥ t0. Define

u(t) = v(t)r(t)
( |x′(t)|α−1x′(t)

f(x(t))
+ h(t)

)
. (2.27)

Differentiating, we obtain

u′(t) =
(p(t)
r(t)
− h(t)
H(t)

)
u(t) + v(t)

[
− P (t, x′(t))

f(x(t))

− Q(t, x(t))
f(x(t))

− r(t)|x′(t)|α−1(x′(t))2f ′(x(t))
f2(x(t))

+ (r(t)h(t))′
]
,

u′(t) ≤
(p(t)
r(t)
− h(t)
H(t)

)
u(t) + v(t)

[
− p(t)|x′(t)|α−1x′(t)

f(x(t))
− q(t)

− r(t)|x′(t)|α−1(x′(t))2f ′(x(t))
f2(x(t))

+ (r(t)h(t))′
]

≤ p(t)v(t)h(t)− h(t)
H(t)

u(t)− q(t)v(t) + v(t)(r(t)h(t))′

= − h(t)
H(t)

u(t)− v(t)[q(t)− p(t)h(t)− (r(t)h(t))′]

u′(t) ≤ − h(t)
H(t)

u(t)− ϕ(t).

Multiplying by H(t), it follows that

ϕ(t)H(t) ≤ −H(t)u′(t)− h(t)u(t). (2.28)
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We consider the following three cases.

Case 1. u(t) is oscillatory. Then there exists a sequence {tn}, (n = 1, 2, . . . ),
tn → ∞ as n → ∞ and such that u(tn) = 0 (n = 1, 2, . . . ). Integrating both sides
of (2.28) from t0 to tn, we obtain∫ tn

t0

H(t)ϕ(t)dt ≤ −
∫ tn

t0

H(t)u′(t)dt−
∫ tn

t0

h(t)u(t)dt

= −H(t)u(t) |tnt0 −
∫ tn

t0

(−H ′(t)u(t) + h(t)u(t))dt

= H(t0)u(t0)−H(tn)u(tn) = H(t0)u(t0);

that is,

lim
tn→∞

∫ tn

t0

H(t)ϕ(t)dt ≤ H(t0)u(t0),

which contradicts (2.23).

Case 2. u(t) is eventually positive. Integrating both sides of (2.28) from t0 to
∞, we obtain∫ ∞

t0

H(t)ϕ(t)dt ≤ H(t0)u(t0)− lim
t→∞

H(t)u(t) ≤ H(t0)u(t0),

which also contradicts(2.23).

Case 3. u(t) is eventually negative. If lim supt→∞ u(t) > −∞, then there
exists a sequence {t̄n}, (n=1,2,. . . ), that satisfies {t̄n} → ∞ as n → ∞ and such
that limt̄n→∞ u(t̄n) = lim supt→∞ u(t) = M1 > −∞. Because H(t) is a bounded
function, then there exists a M2 > 0 such that H(t̄n) ≤M2, (n=1,2,. . . ). According
to (2.28), we obtain∫ t̄n

t0

H(t)ϕ(t)dt ≤ H(t0)u(t0)−H(t̄n)u(t̄n) ≤ H(t0)u(t0)−M2u(t̄n). (2.29)

Using (2.23) and taking limit as t̄n →∞, it is easy to show that

∞ = lim
t̄n→∞

∫ t̄n

t0

H(t)ϕ(t)dt

≤ H(t0)u(t0)− lim
t̄n→∞

H(t̄n)u(t̄n)

≤ H(t0)u(t0)−M1M2 <∞,

which is obviously a contradiction.
If lim supt→∞ u(t) = −∞, then limt→∞ u(t) = −∞. From the definition of h(t),

combining (2.24) and (2.27), it follows that x′(t) < 0 and

lim
t→∞

(|x′(t)|α−1x′(t)/f(x(t))) = −∞,

which implies that limt→∞((−x′(t))α/f(x(t))) = ∞. Owing to p(t) ≤ 0, q(t) ≥ 0,
or p(t) ≤ 0, q(t) ≤ 0 and limt→∞(p(t)/q(t)) = M > 0, using the similar method
of the proof of Case 2 in Theorem 2.2, we will derive a contradiction. The proof is
complete. �
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Theorem 2.5. Assume that (2.24) holds, f ′(x) ≥ 0,
∫∞
t0

dt
(r(t))1/α

=∞, and (2.21)
or (2.22) hold. Suppose further that there exists a function H(t) that satisfies (H1),
(H2), and such that ∫ ∞

t0

H(t)ϕ̄(t)dt =∞, (2.30)

where
ϕ̄(t) = v(t)(q(t) + p(t)h(t) + (r(t)h(t))′), (2.31)

and v(t) is defined in (2.26). Then every solution of (1.1) is oscillatory when
ψ(x(t)) ≡ 1.

Proof. For the sake of contradiction, let (1.1) have a non-oscillatory solution. With-
out loss of generality, we may assume that (1.1) has an eventually positive x(t) > 0
for all t ≥ t0. Define

u(t) = v(t)r(t)
( |x′(t)|α−1x′(t)

f(x(t))
− h(t)

)
.

The rest of proof is similar to Theorem 2.4 and is omitted. �

Theorem 2.6. Assume (2.24), p(t) ≤ 0, q(t) > 0, f ′(x) ≥ 0 and
∫∞
t0

dt
(r(t))1/α

=∞.
Suppose further that there exists a function H(t) that satisfies (H1), (H2), and such
that ∫ ∞

t0

H(t)φ(t)dt =∞, (2.32)

where
φ(t) = v(t)(−p(t)h(t)− (r(t)h(t))′), (2.33)

where v(t) is defined in (2.26). Then every solution of (1.1) is oscillatory when
ψ(x(t)) ≡ 1.

Proof. To the contrary, assume that (1.1) has a non-oscillatory solution x(t). With-
out loss of generality, we may assume that (1.1) has an eventually positive x(t) > 0
for all t ≥ t0. Define

u(t) = v(t)r(t)
( |x′(t)|α−1x′(t)

x(t)
+ h(t)

)
. (2.34)

We use (E1) and noting that xf(x) ≥ 0 for x 6= 0, so f(x)
x ≥ 0 for x 6= 0. Differen-

tiating (2.34), we obtain

u′(t) =
(p(t)
r(t)
− h(t)
H(t)

)
u(t) + v(t)

[
− P (t, x′(t))

x(t)
− Q(t, x(t))

x(t)

− r(t)|x′(t)|α−1(x′(t))2

x2(t)
+ (r(t)h(t))′

]
≤
(p(t)
r(t)
− h(t)
H(t)

)
u(t) + v(t)

[
− p(t)|x′(t)|α−1x′(t)

x(t)
− q(t)f(x(t))

x(t)

− r(t)|x′(t)|α−1(x′(t))2

x2(t)
+ (r(t)h(t))′

]
≤ p(t)v(t)h(t)− h(t)

H(t)
u(t) + v(t)(r(t)h(t))′

= − h(t)
H(t)

u(t)− v(t)[−p(t)h(t)− (r(t)h(t))′]
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= − h(t)
H(t)

u(t)− φ(t).

Multiplying by H(t), it follows that

H(t)φ(t) ≤ −H(t)u′(t)− h(t)u(t).

The rest of the proof is similar to Theorem 2.4, and it is omitted. �

Theorem 2.7. Assume (2.24), p(t) ≤ 0, q(t) > 0, f ′(x) ≥ 0 and
∫∞
t0

dt
(r(t))1/α

=∞.
Suppose further that there exists a function H(t) satisfying (H1), (H2), and such
that ∫ ∞

t0

H(t)φ(t)dt =∞, (2.35)

where
φ(t) = v(t)(p(t)h(t) + (r(t)h(t))′), (2.36)

where v(t) is defined in (2.26). Then every solution of (1.1) is oscillatory when
ψ(x(t)) ≡ 1.

Proof. For the sake of contradiction, assume that (1.1) has a non-oscillatory so-
lution. Without loss of generality, we may assume that (1.1) has an eventually
positive x(t) > 0 for all t ≥ t0. Define

u(t) = v(t)r(t)
( |x′(t)|α−1x′(t)

x(t)
− h(t)

)
.

The rest of the proof is similar to Theorem 2.4, and it is omitted here. �
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