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EXISTENCE OF SOLUTIONS FOR ITERATIVE DIFFERENTIAL
EQUATIONS

PINGPING ZHANG, XIAOBING GONG

Abstract. The presence of self-mapping increases the difficulty in proving the

existence of solutions for general iterative differential equation. In this article
we provide conditions for the existence of solutions for the initial value problem,

in which the conditions are natural and easily verifiable. We generalize the

relevant results and point out the mistake in some references.

1. Introduction

Differential equations with state-dependent delays attract interests of specialists
since they widely arise from application models, such as two-body problem of classi-
cal electrodynamics [9, 10], position control [6, 7], mechanical models [15], infection
disease transmission [23], population models [3, 18], the dynamics of economical
systems [4], etc. As special type of state-dependent delay-differential equations,
iterative differential equations have distinctive characteristics and have been inves-
tigated in recent years, e.g. smoothness [8, 19], equivariance [25], analyticity [21],
[26]-[27], monotonicity [11, 22]), convexity [20] as well as numerical solution [17]. In
the theory of differential equations, one of the fundamental and important problems
is the initial value problem, there are many existence results [1, 2], [5], [11]-[16], [24]
on special iterative differential equations. In 1984 Eder [11] proved the existence of
the unique monotone solution for the 2-th iterative differential equation

x′(t) = x(x(t)) (1.1)

associated with x(t0) = t0 (t0 ∈ [−1, 1]) by Contraction Principle. Later, M. Fečkan
([12]) investigated the generally 2-th iterative differential equation

x′(t) = f(x(x(t))) (1.2)

with the initial value x(0) = 0 and obtained the local solution applying Contraction
Principle. By using Schauder’s fixed point theorem, Wang [24] obtained the strong
solutions of equation (1.2) associated with x(a) = a, where a is an endpoint of
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the well-defined interval. Consequently, Ge and Mo [13] provided the sufficient
conditions for the initial value problem of (1.2) associated with

x(t0) = x0 (1.3)

on a given compact interval, where the endpoints of the interval are two adjacent
null points of f . The 2-th nonautonomous equation

x′(t) = f(t, x(t), x(x(t))), (1.4)

together with initial value
x(0) = c (c > 0)

was investigated by P. Andrzej ([1]) using Picard’s successive approximation, where
0 is the left end point of the domain.

In 2010 Berinde [2] applied the nonexpansive operators to investigate (1.2) as-
sociated with (1.3) and extended the existence results in [5]. Subsequently, Lauran
investigated the nonautonomous equation (1.4) together with (1.3) in [16]. We see
that the existence of solutions for the general iterative differential equation

x′(t) = f(t, x[1](t), x[2](t), . . . , x[n](t)) (1.5)

associated with (1.3) is still open, x[i](t) := x(x[i−1](t)) indicates the i-th iterate
of self-mapping x, where i = 1, 2, . . . , n. In this paper we provide two existence
results for the initial value problem, in which the conditions are natural and easily
verifiable. We generalize the relevant results and point out the mistake in [2] and
[16]. As the application, we consider the smooth solutions of the equation discussed
in [19] by Theorem 2.2 and give an example to verify Theorem 2.3.

2. Main results

For the continuous function ϕ(x), we use the supremum norm

‖ϕ‖P = sup
x∈P⊂Rn

‖ϕ(x)‖

and need the following lemma (the statement is slightly different from the original
one presented in [28] but perfectly equivalent):

Lemma 2.1 ([28]). Let

ΦM = {x ∈ C0([t0 − h, t0 + h]) : |x(t)− x(s)| ≤M |t− s|,∀t, s ∈ [t0 − h, t0 + h]},

where M < 1. If f, g ∈ ΦM , then

‖f [j] − g[j]‖[t0−h,t0+h] ≤
1−M j

1−M
‖f − g‖[t0−h,t0+h], j = 1, 2, . . . . (2.1)

Theorem 2.2. Suppose that f : Rn+1 → R is continuous. If there exists a positive
r such that

(1−M1) r ≥ l0, (2.2)

where M1 = ‖f‖B̄(y0,r) ≤ 1 and l0 = |x0 − t0| and B̄(y0, r) denotes the closed ball
centered at y0 = (t0, x0, . . . , x0) with radius r. Then equation (1.5) associated with
(1.3) has a solution defined on [t0 − l, t0 + l] for any l ∈ [ l0/(1−M1), r].
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Proof. The existence of solutions of equation (1.5) associated with (1.3) is equiva-
lent to find a continuous solution of the integral equation

x(t) = x0 +
∫ t

t0

f(s, x[1](s), x[2](s), . . . , x[n](s))ds. (2.3)

Define

ΦM1 =
{
x ∈ C0([t0 − l, t0 + l]) : x(t0) = x0, |x(t)− x(s)| ≤M1|t− s|,
∀t, s ∈ [t0 − l, t0 + l]

}
.

for any l ∈ [l0/(1−M1), r]. Then for x ∈ ΦM1 , we show that x[i](t) (i = 2, 3, . . . , n)
are well defined on [t0 − l, t0 + l]. It is suffices to prove

|x[i](t)− t0| ≤ l (2.4)

for i ∈ N by induction. In fact

|x(t)− t0| ≤ |x(t)− x(t0)|+ |x(t0)− t0|
≤M1l + |x0 − t0| ≤ l,

we assume that |x[i](t)− t0| ≤ l for positive integer i ≥ 1, then

|x[i+1](t)− t0| ≤ |x[i+1](t)− x(t0)|+ |x(t0)− t0|

≤M1|x[i](t)− t0|+ |x0 − t0|
≤M1l + |x0 − t0| ≤ l.

Hence it follows by induction that (2.4) holds and x[i]([t0− l, t0 + l]) are well defined
for any x ∈ ΦM1 .

In the sequel we apply the Schauder’s fixed point theorem to prove the existence
of the continuous solution of (2.3). To this end, we define the integral operator
G : ΦM1 → C0([t0 − l, t0 + l]) by

Gx(t) := x0 +
∫ t

t0

f(s, x[1](s), x[2](s), . . . , x[n](s))ds. (2.5)

Clearly

Gx(t0) = x0 +
∫ t0

t0

f(s, x[1](s), x[2](s), . . . , x[n](s))ds = x0 (2.6)

for any x ∈ ΦM1 . In view of

‖(t, x[1](t), x[2](t), . . . , x[n](t))− (t0, x0, x0, . . . , x0)‖

= max{|t− t0|, |x[1](t)− x0|, |x[2](t)− x0|, . . . , |x[n](t)− x0|}

≤ max{|t− t0|,M1|t− t0|,M1|x[1](t)− t0|, . . . ,M1|x[n−1](t)− t0|}
≤ max{l,M1l,M1l, . . . ,M1l}
≤ l ≤ r,

we get

|Gx(t1)− Gx(t2)| ≤ |
∫ t1

t2

|f(s, x[1](s), x[2](s), . . . , x[n](s))|ds|

≤M1|t1 − t2|
(2.7)

for any t1, t2 ∈ [t0 − l, t0 + l]. Thus (2.5), (2.6) and (2.7) yield Gx ∈ ΦM1 ; i.e., G is
a self-mapping operator.
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It remains to show that G is continuous. For this purpose, take any x1, x2 ∈ ΦM1 ,
we have

|Gx1(t)− Gx2(t)|

≤ |
∫ t

t0

|f(s, x[1]
1 (s), x[2]

1 (s), . . . , x[n]
1 (s))− f(s, x[1]

2 (s), x[2]
2 (s), . . . , x[n]

2 (s))|ds|.

By Lemma 2.1,

‖(s, x[1]
1 (s), x[2]

1 (s), . . . , x[n]
1 (s))− (s, x[1]

2 (s), x[2]
2 (s), . . . , x[n]

2 (s))‖

= max{|x[1]
1 (s)− x[1]

2 (s)|, |x[2]
1 (s)− x[2]

2 (s)|, . . . , |x[n]
1 (s)− x[n]

2 (s)|}

≤ max{‖x1 − x2‖[t0−l,t0+l],
1−M1

2

1−M1
‖x1 − x2‖[t0−l,t0+l],

. . . ,
1−M1

n

1−M1
‖x1 − x2‖[t0−l,t0+l]}

=
1−M1

n

1−M1
‖x1 − x2‖[t0−l,t0+l]

<
1

1−M1
‖x1 − x2‖[t0−l,t0+l].

Because of the uniform continuity of f on B̄(y0, r), for any ε > 0 there exist
δ(ε) > 0, the inequality

‖Gx1 − Gx2‖ < εl

holds for ‖x1 − x2‖[t0−l,t0+l] < δ, which implies G is continuous.
ΦM1 is a convex, compact subset of Banach space C0([t0 − l, t0 + l]) and G is

a continuous operator, which satisfy all conditions of the Schauder’s fixed point
theorem, so G has a fixed point g ∈ ΦM1 and g is a solution for equation (1.5)
associated with (1.3) on the interval [t0 − l, t0 + l]. This completes the proof. �

Theorem 2.3. Suppose that f : Rn+1 → R is continuous and any compact interval
[a, b] includes t0 and x0. If

M2At0 ≤ Bx0 , (2.8)

where At0 = max{t0 − a, b− t0}, Bx0 = min{x0 − a, b− x0}, M2 = ‖f‖[a,b]n+1 and
[a, b]n+1 denotes the product of n+1 intervals [a, b]. Then equation (1.5) associated
with (1.3) has a solution defined on [a, b].

Proof. As in the proof of Theorem 2.2, we apply the Schauder fixed point theorem
to prove the result. Let

ΦM2 =
{
x ∈ C0([a, b], [a, b]) : x(t0) = x0,

|x(t)− x(s)| ≤M2|t− s|, ∀t, s ∈ [a, b]
}
,

(2.9)

then ΦM2 is a non-empty convex and compact subset of the Banach space C0([a, b]).
We consider the mapping T : ΦM2 → C0([a, b]) defined by

T x(t) := x0 +
∫ t

t0

f(s, x[1](s), x[2](s), . . . , x[n](s))ds. (2.10)



EJDE-2014/07 EXISTENCE OF SOLUTIONS 5

To prove T is a self-mapping, we note that

T x(t) ≤ x0 + |
∫ t

t0

f(s, x[1](s), x[2](s), . . . , x[n](s))ds|

≤ x0 +M2|t− t0|
≤ x0 +M2At0

≤ x0 +Bt0 ≤ b,

(2.11)

T x(t) ≥ x0 − |
∫ t

t0

f(s, x[1](s), x[2](s), . . . , x[n](s))ds|

≥ x0 −M2|t− t0|
≥ x0 −M2At0

≥ x0 −Bx0 ≥ a.

(2.12)

Clearly,
T x(t0) = x0. (2.13)

Moreover, for any t1, t2 ∈ [a, b], we have

|T x(t1)− T x(t2)| ≤ |
∫ t1

t2

|f(s, x[1]
1 (s), x[2]

1 (s), . . . , x[n]
1 (s))|ds|

≤M2|t1 − t2|.
(2.14)

Thus (2.11), (2.12), (2.13) and (2.14) imply that T maps ΦM2 into itself.
The definitions of At0 and Bx0 show that M2 ≤ 1, then for any x1, x2 ∈ ΦM2 ,

according to Lemma 2.1, we have

‖(s, x[1]
1 (s), x[2]

1 (s), . . . , x[n]
1 (s))− (s, x[1]

2 (s), x[2]
2 (s), . . . , x[n]

2 (s))‖

= max{|x[1]
1 (s)− x[1]

2 (s)|, |x[2]
1 (s)− x[2]

2 (s)|, . . . , |x[n]
1 (s)− x[n]

2 (s)|}

≤ max{‖x1 − x2‖[a,b],
1−M2

2

1−M2
‖x1 − x2‖[a,b], . . . ,

1−M2
n

1−M2
‖x1 − x2‖[a,b]}

=
1−M2

n

1−M2
‖x1 − x2‖[a,b]

<
1

1−M2
‖x1 − x2‖[a,b].

By the uniform continuity of f on [a, b]n+1, for any ε > 0 there exists δ(ε) > 0,
when ‖x1 − x2‖[a,b] < δ we have

|f(s, x[1]
1 (s), x[2]

1 (s), . . . , x[n]
1 (s))− f(s, x[1]

2 (s), x[2]
2 (s), . . . , x[n]

2 (s))| < ε.

Consequently,

|T x1(t)− T x2(t)|

≤ |
∫ t

t0

|f(s, x[1]
1 (s), x[2]

1 (s), . . . , x[n]
1 (s))− f(s, x[1]

2 (s), x[2]
2 (s), . . . , x[n]

2 (s))|ds|

< ε(b− a),

which means that T is a continuous operator.
It follows that ΦM2 is a convex, compact subset of Banach space C0([a, b]) and

T is a continuous operator. By the Schauder’s fixed point theorem, T has a fixed
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point h ∈ ΦM2 and h is a solution of equation (1.5) associated with (1.3) on the
interval [a, b]. This completes the proof. �

3. Examples and remarks

In this section our theorems are demonstrated by the following two examples.
Firstly, we prove the existence of smooth solutions of the equation, discussed in [19],
together with the general initial value (1.3) by using Theorem 2.2. Here, smooth
function g ∈ Cn means the function g has a number of continuous derivatives and
its n-th continuous derivative also is Lipschtzian. We need the following lemma
introduced in [19].

Lemma 3.1 ([19]). Let

Ω(N1, . . . , Nn+1; I) =
{
g ∈ Cn(I, I) : |g(i)(t)| ≤ Ni, i = 1, 2, . . . , n;

|g(n)(t)− g(n)(s)| ≤ Nn+1|t− s|, t, s ∈ I
}
.

For any x(t) ∈ Ω(N1, . . . , Nn+1; I), there is

x∗jk(t) = Pjk(x10(t), . . . , x1,j−1(t); . . . ;xk0(t), . . . , xk,j−1(t))

and exist positive constants N jk
uv such that

|Pjk(λ̄10, . . . , λ̄k,j−1)− Pjk(λ̃10, . . . , λ̃k,j−1)| ≤
k∑

u=1

j−1∑
v=0

N jk
uv |λ̄uv − λ̃uv|

for (λ̄10, . . . , λ̄k,j−1), (λ̃10, . . . , λ̃k,j−1) belong to compact set [0, N1]j×[0, N2]j×· · ·×
[0, Nk]j, where xij(t) = x(i)(x[j](t)), x∗jk(t) = (x[j](t))(k) and Pjk is a uniquely
defined multivariate polynomial with nonnegative coefficients and 1 ≤ u ≤ k, 0 ≤
v ≤ j − 1.

Example 3.2. Consider the equation

x′(t) =
m∑

j=1

aj(t)x[j](t) + F (t) (3.1)

associated with (1.3), where aj(t), F (t) ∈ Cn are given smooth functions.

For R > 0, by the smoothness of the given functions, we have positive Maj
and

MF such that

|aj(t)| ≤Maj
, |F (t)| ≤MF , t ∈ [t0 −R, t0 +R], j = 1, 2, . . . ,m.

Denote
Ma = max

1≤j≤m
{Maj

}, N1 = mMa(|t0|+R) +MF .

If (1−N1)R ≥ |x0 − t0|, the equation (3.1) associated with (1.3) has a solution in
the function set

ΦN1 =
{
x ∈ C0([t0 − l1, t0 + l1]) : x(t0) = x0,

|x(t)− x(s)| ≤ N1|t− s|, ∀t, s ∈ [t0 − l1, t0 + l1]
}

by Theorem 2.2, where arbitrary l1 ∈ [|x0 − t0|/(1 − N1), R]. In fact, for any
x ∈ ΦN1 , we see that the function

f(t, x[1](t), x[2](t), . . . , x[m](t)) =
m∑

j=1

aj(t)x[j](t) + F (t)
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is continuous on [t0 − l1, t0 + l1] and

|f(t, x[1](t), x[2](t), . . . , x[m](t))| = |
m∑

j=1

aj(t)x[j](t) + F (t)|

≤
m∑

j=1

Ma(|t0|+R) +MF

= mMa(|t0|+R) +MF = N1.

Since (1−N1)R ≥ |x0 − t0|, the condition of Theorem 2.2 is satisfied, there exists
a solution x = ϕ(t) of equation (3.1) together with (1.3) in the functional set ΦN1 .

The form of equation (3.1) and aj(t), F (t) ∈ Cn([t0 − l1, t0 + l1]) show that
ϕ(t) ∈ C(n+1)([t0− l1, t0 + l1]). In the sequel, we prove ϕ(n+1)(t) also is Lipschtzian
on the compact interval [t0 − l1, t0 + l1]. From Lemma 3.1, we have

x∗jk(t) = Pjk(x10(t), . . . , x1,j−1(t); . . . ;xk0(t), . . . , xk,j−1(t))

= Pjk(x′(t), x′(x1), . . . , x′(xj−1); . . . ;x(k)(t), x(k)(x1), . . . , x(k)(xj−1)),

where xm = x[m](t), m = 1, 2, . . . , j − 1. Denote

Hjk = Pjk(

j terms︷ ︸︸ ︷
N1, . . . , N1;

j terms︷ ︸︸ ︷
N2, . . . , N2; . . . ;

j terms︷ ︸︸ ︷
Nk, . . . , Nk),

aj(t) ∈ Ω(Lj1, . . . , Lj(n+1); [t0 − l1, t0 + l1]),

F (t) ∈ Ω(M1, . . . ,Mn+1; [t0 − l1, t0 + l1]).

Then for any t1, t2 ∈ [t0 − l1, t0 + l1], we get

|ϕ(n+1)(t1)− ϕ(n+1)(t2)|

≤
m∑

j=1

n∑
s=0

Cs
n|a

(n−s)
j (t1)(ϕ[j](t1))(s) − a(n−s)

j (t2)(ϕ[j](t2))(s)|

+ |F (n)(t1)− F (n)(t2)|

≤
m∑

j=1

{|a(n)
j (t1)− a(n)

j (t2)| · |ϕ[j](t1)|+ |a(n)
j (t2)| · |ϕ[j](t1)− ϕ[j](t2)|}

+
m∑

j=1

n∑
s=1

Cs
n(|a(n−s)

j (t1)− a(n−s)
j (t2)| · |(ϕ[j](t1))(s)|

+ |a(n−s)
j (t2)| · |pjs(ϕ10(t1), . . . , ϕs,j−1(t1))− pjs(ϕ10(t2), . . . , ϕs,j−1(t2))|)

+Mn+1|t1 − t2|

≤
m∑

j=1

(Lj(n+1)(|t0|+ l1) + LjnN1
j)|t1 − t2|

+
m∑

j=1

n∑
s=1

Cs
n(Lj(n+1−s)Hjs|t1 − t2|+ Lj(n−s)

s∑
u=1

j−1∑
v=0

N js
uv|ϕuv(t1)− ϕuv(t2)|)

+Mn+1|t1 − t2|.
Since

|ϕuv(t1)− ϕuv(t2)| ≤ Nu+1|ϕ[v](t1)− ϕ[v](t2)| ≤ Nu+1N1
v|t1 − t2|,
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we have

|ϕ(n+1)(t1)− ϕ(n+1)(t2)|

≤
m∑

j=1

(Lj(n+1)(|t0|+ l1) + LjnN1
j)|t1 − t2|

+
m∑

j=1

n∑
s=1

Cs
n(Lj(n+1−s)Hjs|t1 − t2|+ Lj(n−s)

s∑
u=1

j−1∑
v=0

N js
uv|ϕuv(t1)− ϕuv(t2)|)

+Mn+1|t1 − t2|

= {(
m∑

j=1

Lj(n+1)(|t0|+ l1) + LjnN1
j)

+ (
m∑

j=1

n∑
s=1

Cs
n(Lj(n+1−s)Hjs + Lj(n−s)

s∑
u=1

j−1∑
v=0

N js
uvNu+1N1

v)) +Mn+1}|t1 − t2|.

That is, ϕ(n+1)(t) is Lipschtzian.

Remark 3.3. The existence and uniqueness of smooth solutions through (t0, t0),
with |t0| < 1, for (3.1) was studied in [19]. According to Theorem 2.2, we have the
similar conclusion for (3.1) through general point (t0, x0) even for |t0| ≥ 1 provided
Ma and MF are small enough, which generalizes the results in [19]. The similar
discussion can be applied for the equation in [8].

Example 3.4. Consider the equation

x′(t) =
1
5
x(x(t))− 1

4
(3.2)

associated with
x(−1) = −1

2
. (3.3)

For the compact interval [−1, 0] including t0 = −1 and x0 = −1/2, it is clear
that M2 = 1/5 + 1/4 = 9/20, At0 = 1, Bx0 = 1/2, which satisfy the conditions of
Theorem 2.3. Then the equation (3.2) associated with (3.3) has a solution.

Remark 3.5. In the proof of invariant set in [2] and [16], they require the inequal-
ities

|(Fy)(t)| ≤ |y0|+ |
∫ t

x0

f(s, y(s), y(y(s)))ds| ≤ |y0|+M · |t− x0| ≤ b, (3.4)

|(Fy)(t)| ≥ |y0| − |
∫ t

x0

f(s, y(s), y(y(s)))ds| ≥ y0 − Cy0 ≥ a. (3.5)

The right-most inequality of (3.5) contradicts the definition of Cy0 . We overcome
this difficulty by defining Bx0 . Furthermore, (3.4) implies that b is a nonnegative
number, which is given up in Theorem 2.3 such as Example 3.4.
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