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STABILITY FOR TRAJECTORIES OF PERIODIC EVOLUTION
FAMILIES IN HILBERT SPACES

DOREL BARBU, JOËL BLOT, CONSTANTIN BUŞE, OLIVIA SAIERLI

Abstract. Let q be a positive real number and let A(·) be a q-periodic linear

operator valued function on a complex Hilbert space H, and let D be a dense
linear subspace of H. Let U = {U(t, s) : t ≥ s ≥ 0} be the evolution family

generated by the family {A(t)}. We prove that if the solution of the well-posed

inhomogeneous Cauchy Problem

u̇(t) = A(t)u(t) + eiµty, t > 0

u(0) = 0,

is bounded on R+, for every y ∈ D, and every µ ∈ R, by the positive constant
K‖y‖, K being an absolute constant, and if, in addition, for some x ∈ D, the

trajectory U(·, 0)x satisfies a Lipschitz condition on the interval (0, q), then

sup
z∈C,|z|=1

sup
n∈Z+

‖
nX
k=0

zkU(q, 0)kx‖ := N(x) <∞.

The latter discrete boundedness condition has a lot of consequences concern-
ing the stability of solutions of the abstract nonautonomous system u̇(t) =

A(t)u(t). To our knowledge, these results are new. In the special case, when
D = H and for every x ∈ H, the map U(·, 0)x satisfies a Lipschitz condition

on the interval (0, q), the evolution family U is uniformly exponentially stable.

In the autonomous case, (i.e. when U(t, s) = U(t − s, 0) for every pair (t, s)
with t ≥ s ≥ 0), the latter assumption is too restrictive. More exactly, in this

case, the semigroup T := {U(t, 0)}t≥0, is uniformly continuous.

1. Introduction

In his famous article [16], Prüss showed, concerning a strongly continuous semi-
group (etA)t≥0 acting on a Hilbert space H, that the following two statements are
equivalent:

(1) For every f ∈ L1([0, 1], H), the equation u̇(t) = Au(t) + f(t), has a unique
1-periodic mild solution.

(2) The resolvent set of A contains 2πiZ and

sup
n∈Z
‖R(2πin,A)‖ = M <∞.
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Earlier, such result has been obtained by Haraux ([10]), who additionally had to
assume that

sup
n∈Z
‖nR(2πin,A)‖ ≤ C <∞.

By contrast with the autonomous case, the spectral criterion does not work in the
nonautonomous one. See, for example, [17], for further details and counterexamples.

One typical assumption, concerning uniform exponential stability results (ex-
ponential stability results) for strongly continuous semigroups acting in Banach
spaces, is the existence of a bounded and holomorphic continuation of the resol-
vent (or of the local resolvent) to the right half-plane of the complex plane. See
[3, 4, 12, 20, 21, 22], and the references therein.

Going on the similar way, the boundedness assumption of our announced result,
may by written as:

sup
µ∈R

sup
t≥0

∥∥∫ t

0

eiµsU(t, s)xds
∥∥ := M(x) <∞, ∀x ∈ H. (1.1)

Boundedness conditions, like (1.1), with e(t−s)A instead of U(t, s), A being a
bounded linear operator acting on a Banach space X, seems to go back to the
work of Krein. A history of this problem may be followed in [6] or [5].

This paper is motivated by a recent result in [7], where the same assertion,
referred to uniformly bounded evolution families, is obtained under the following
stronger assumption,

sup
µ∈R

sup
t≥τ≥0

∥∥∫ t

τ

eiµsU(t, s)x ds
∥∥ := M(x) <∞, ∀x ∈ X,

where X is a complex Banach space.
It is interesting to compare the results from the present paper with those in [7].
First of all, the assertions in Theorem 2.1 and Corollary 2.4 below, refer only to

one trajectory, hence they have an individual character, while those in [7] have a
global character. Moreover, even Theorem 2.2 below could be stated as an individ-
ual result.

Mention that the state space in [7] is a Banach space, while in the present paper,
all results are formulated in the framework of Hilbert spaces. It seems that the
results in [7] could be applied to partial differential equations (cf. [7, Remark 5.2])
while the autonomous version of the Corollary 2.7 below, cannot be applied to such
equations (cf. Remark 2.8 below).

However, Corollaries 2.4, 2.5 and 2.6 below could be applied to evolution equa-
tions with (possible) unbounded coefficients.

Another difference is that the boundedness assumptions (2.3) and (2.6) are writ-
ten along the solutions u(·) satisfying the initial condition u(0) = 0, while in [7],
are considered all solutions which verify u(s) = 0 for every s ≥ 0.

The assertions of Corollaries 2.4, 2.5 and 2.6 below, are stated in terms of strong
stability. In the end of this paper we provide an example which shows that uniform
exponential stability of a strongly continuous and uniformly bounded semigroup
acting on a Hilbert space, is not a consequence of boundedness assumption (2.6)
below. A famous result, known as ABLV theorem, see [1, 13], provides a sufficient
condition for strong stability of semigroups (acting on Banach spaces) in terms of
countability of the boundary spectrum σ(A)∩iR. In particular, lack of the spectrum
of the infinitesimal generator of an uniformly bounded semigroup which acts on
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a Banach space on the imaginary axis implies the strong stability of semigroup.
However, it is not always easy to manipulate these criteria in specific examples,
while the assumption (2.6) can be checked easily, as shown by the two examples
presented in the last section of the article.

An interesting question may be risen when we connect the above nonautonomous
problem with the similar one in the semigroup case. This latter one, is completely
solved by van Neerven ([20]) and Vu Phong ([15]). In these papers, the assumption
refereing to Lipschitz condition did not appear explicitly, but, in this case, it is
automatically verified for all x in the domain of the infinitesimal generator. Then,
a natural question in the nonautonomous case is: can we replace in the Corollary
2.7 the assumption referred to the Lipschitz condition for every x ∈ H, with the
similar one, but only for x in a dense subset D, of H? We have not an answer to
this question yet.

The proof of the main result consists by an estimation of the integral in (1.1),
with x replaced by fx(s), fx being a H-valued and q-periodic function, which is
smooth in some sense. The proof of Corollary 2.7 is completed by using a well-
known discrete criterion for exponential stability of periodic evolution families.

2. Notations and statement of the result

Let H be a complex separable Hilbert space and let L(H) be the Banach algebra
of all bounded linear operators acting on H. The inner product in H is denoted by
〈·, ·〉, while the norms in H and in L(H) are denoted by the same symbol, namely
by ‖ · ‖. As usual, σ(T ) denotes the spectrum of a linear operator T . When T is
bounded its spectral radius, denoted by r(T ), is given by the Gelfand formula

r(T ) := sup{|z| : z ∈ σ(T )} = lim
n→∞

‖Tn‖1/n.

Recall that the set {uk}k∈Z+ , with uk ∈ H, is a basis in H if the linear span of
{uk : k ∈ Z+} is dense in H. Such basis is called orthogonal if 〈uk, uj〉 = 0, for every
pair (k, j) of different nonnegative integers. As is well-known, the orthonormal set
{uk}k∈Z+ is a basis in H if and only if for each f ∈ H one has

∑
k∈Z+

|〈f, uk〉|2 =
‖f‖2. In this case, every element f ∈ H may be represented as

f =
∑
k∈Z+

〈f, uk〉uk.

As usual, by L2([0, q],C), we denote the Hilbert space consisting of all C-valued
square integrable functions defined on the interval [0, q], endowed with the usual
inner product and norm. The set of functions

{
e2iπ(n/q)·
√
q

}
n∈Z is an orthonormal

basis in L2([0, q],C), so any function z ∈ L2([0, q],C), may be represented as:

z(t) =
1
q

∑
n∈Z

(∫ q

0

z(s)e−2inπs/qds
)
e2inπt/q, t ∈ [0, q]. (2.1)

By H := L2([0, q], H) we denote the set of all H-valued measurable functions f
defined on [0, q] satisfying the condition(∫ q

0

‖f(t)‖2dt
)1/2

:= ‖f‖2L2([0,q],H) <∞.

In H the functions equal almost everywhere are identified. Endowed with the
inner product 〈f, g〉H =

∫ q
0
〈f(t), g(t)〉dt, H becomes a Hilbert space. In as follows,



4 D. BARBU, J. BLOT, C. BUŞE, O. SAIERLI EJDE-2014/01

by ϕ ⊗ uk we denote the tensor product between the scalar-valued function ϕ
defined on [0, q] and the vector uk ∈ H, i.e. the map defined for t ∈ [0, q], by:
(ϕ⊗ uk)(t) = ϕ(t)uk. The system of vectors

B :=
{ 1
√
q
e2iπ(n/q)· ⊗ uk : n ∈ Z, k ∈ Z+

}
is an orthonormal basis in H. In fact, for k, p ∈ Z+ and m,n ∈ Z, one has:〈 1

√
q
e2inπ·/q ⊗ uk,

1
√
q
e2imπ·/q ⊗ up

〉
H =

1
q

∫ q

0

〈e2inπt/quk, e
2imπt/qup〉dt

=
δkp
q

∫ q

0

e2i(n−m)πt/qdt

=

{
1, k = p and n = m

0, k 6= p or n 6= m.

Moreover,

‖f‖2H =
∫ q

0

〈 ∑
k∈Z+

〈f(t), uk〉uk,
∑
p∈Z+

〈f(t), up〉up
〉
dt

=
∑

k,p∈Z+

∫ q

0

〈f(t), uk〉〈f(t), up〉〈uk, up〉dt

=
∑
k∈Z+

∫ q

0

〈f(t), uk〉〈f(t), uk〉dt.

In view of (2.1), for z(t) = 〈f(t), uk〉, obtain

‖f‖2H =
1
q2

∑
k∈Z+

[ ∑
n,m∈Z

(∫ q

0

〈f(s), uk〉e−2inπs/qds
)

×
(∫ q

0

〈f(s), uk〉e−2imπs/qds
)∫ q

0

e2i(n−m)πt/qdt
]

=
1
q

∑
(k,n)∈Z+×Z

∫ q

0

〈f(s), e2inπs/quk〉ds
∫ q

0

〈f(s), e2inπs/quk〉ds

=
1
q

∑
(k,n)∈Z+×Z

∣∣∣ ∫ q

0

〈f(t), e2inπt/quk〉dt
∣∣∣2

=
∑

(k,n)∈Z+×Z

∣∣∣〈f, 1
√
q
e2iπ(n/q)· ⊗ uk〉H

∣∣∣2.
As a consequence, every function f ∈ H may be represented as

f(·) =
1
q

∑
n∈Z

e2inπ·/qcn(f),

where cn(f) ∈ H, the nth Fourier coefficient associated to f , is given by

cn(f) =
∑
k∈Z+

(∫ q

0

〈f(s), e2inπs/quk〉ds
)
uk. (2.2)
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A family U = {U(t, s) : t ≥ s ≥ 0} ⊂ L(H) is called evolution family on H if
U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r ≥ 0 and U(t, t) = I for t ≥ 0. Here I
is the identity operator of L(H). An evolution family U on H is called strongly
continuous if for each x ∈ H, the map

(t, s) 7→ U(t, s)x : {(t, s) ∈ R2 : t ≥ s ≥ 0} → X

is continuous. We say that the evolution family U has exponential growth or that
it is exponentially bounded if there exist the constants M ≥ 1 and ω > 0 such that
‖U(t, s)‖ ≤ Meω(t−s), for all t ≥ s. The evolution family U is q-periodic, for some
positive q, if U(t + q, s + q) = U(t, s) for all pairs (t, s) with t ≥ s ≥ 0. Every
strongly continuous and q-periodic evolution family acting on a Banach space has
an exponential growth, [8]. Let x ∈ H be fixed.

The following assumptions, concerning the evolution family, and the trajectory
U(·, 0)x, are referred to several times. For this reason, we state them separately.

(A1) The map t 7→ ux(t) := U(t, 0)x satisfies a Lipschitz condition on the interval
(0, q).

The main result of this article reads as follows.

Theorem 2.1. Let D be a dense linear subspace of H, and let U = {U(t, s)}t≥s≥0

be a strongly continuous and q-periodic evolution family of bounded linear operators
acting on H. If

sup
µ∈R

sup
t≥0
‖
∫ t

0

eiµsU(t, s)y ds‖ ≤ K‖y‖ <∞, ∀y ∈ D, (2.3)

where K is a positive absolute constant, and if, in addition, for a given x ∈ D, the
assumption (A1) is fulfilled, then

sup
z∈C,|z|=1

sup
n∈Z+

‖
n∑
k=0

zkU(q, 0)kx‖ := N(x) <∞. (2.4)

In view of the denseness of D in H and by using the Dominated Convergence
Theorem, the condition (2.3) is equivalent with the same one, but with H instead
of D.

Recall that if A is an infinitesimal generator of a strongly continuous semigroup
acting on a Hilbert space H the its maximal domain D(A) becomes a Hilbert space
when endow it with the norm

‖x‖D(A) :=
√
‖x‖2H + ‖Ax‖2H , x ∈ D(A).

In the framework of semigroups, the assumptions of the previous theorem may be
relaxed as follows:

Theorem 2.2. Let T = {T (t)}t≥0 be a strongly continuous semigroup of bounded
linear operators acting on H, and let (A,D(A)) be its infinitesimal generator. If
there exists a positive absolute constant R1 such that

sup
µ∈R

sup
t≥0
‖
∫ t

0

eiµsT (t− s)y ds‖ := R(y) ≤ R1‖y‖D(A) <∞, ∀y ∈ D(A),

then, for every x ∈ D := D(A2), one has:

sup
z∈C,|z|=1

sup
n∈Z+

‖
n∑
k=0

zkT (q)kx‖ := N(x) <∞.
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To present some consequences of Theorem 2.1, we state and prove the following
useful Lemma.

Lemma 2.3. Let T be a bounded linear operator acting on H and let M ≥ 1 and
ω ∈ R such that ‖Tn‖ ≤Meωn for all n ∈ Z+. If for some x ∈ H, one has

sup
z∈C,|z|=1

sup
n∈Z+

‖
n∑
k=0

T kx

zk+1
‖ := N(x) <∞, (2.5)

then limk→∞ T kx = 0.

Proof. The proof is modeled after [20, Theorem 4]. Obviously, the map z 7→
Rn,x(z) :=

∑n
k=0

Tkx
zk+1 is holomorphic on C \ {0}. Let z0 ∈ C such that |z0| = eω.

By assumption, the sequence of functions (Rn,x(·)), is uniformly bounded on the
unit circle. On the other hand, for |z| ≥ |z0|+ 1 we have

‖Rn,x(z)‖ ≤
n∑
k=0

M |z0|k‖x‖
(|z0|+ 1)k+1

≤M(1 + |z0|)‖x‖.

Thus, by the Phragmen-Lindelöf theorem, the sequence (Rn,x(·)), is uniformly
bounded on the circular crown 1 ≤ |z| ≤ |z0|+ 1, and then it is uniformly bounded
on the set {z ∈ C : |z| ≥ 1}, as well.

Since, for |z| > |z0|, one have that Rn,x(z) → R(z, T )x, as n → ∞, the Vitali
theorem [11, Theorem 3.14.1] assures us that the limit limn→∞Rn,x(z), exists for
all z in the circular crown 1 ≤ |z| ≤ |z0|+ 1. This yields, limk→∞ T kx = 0. �

Corollary 2.4. Let U be a strongly continuous and q-periodic evolution family
acting on H, such that all assumptions in Theorem 2.1 are fulfilled. Then the
trajectory U(·, 0)x is strongly stable, i.e., limt→∞ U(t, 0)x = 0.

Proof. Let t > 0 and k be the integer part of tq , and let ρ ∈ [0, q] such that t = kq+ρ.
Obviously, t → ∞ if and only if k → ∞. Since the family {U(t, s) : t ≥ s ≥ 0} is
exponentially bounded, this yields

‖U(t, 0)x‖ = ‖U(t, kq)U(kq, 0)x‖ ≤ ‖U(t, kq)‖ · ‖U(q, 0)kx‖

≤Meωq‖U(q, 0)kx‖ → 0,

where Lemma 2.3 with U(q, 0) instead of T was used. �

Corollary 2.5. Let U be a strongly continuous and q-periodic evolution family
acting on H. Assume the following:

(1) The condition (2.3) is fulfilled.
(2) The map U(·, 0)y satisfies a Lipschitz condition for every y ∈ D.
(3) The evolution family U acts properly on the linear subspace D, i.e.

U(t, s)(D) ⊂ D for every t ≥ s ≥ 0.

Under these assumptions, the trajectory t 7→ U(t, s)x : [s,∞) → H, is strongly
stable for every s ≥ 0 and every x ∈ D.

Proof. Let t ≥ s ≥ 0 and N be any positive integer such that t ≥ Nq ≥ s.
Such N exists for t large enough. Then U(t, s)x = U(t − Nq, 0)U(Nq, s)x. Since
ys := U(Nq, s)x ∈ D, we may apply the previous Corollary to finish the proof. �
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Corollary 2.6. Let T = {T (t)}t≥0 be a uniformly bounded and strongly continuous
semigroup acting on a Hilbert space H, and let D(A) the maximal domain of its
infinitesimal generator. If there exists a positive constant K1 such that

sup
µ∈R

sup
t≥0
‖
∫ t

0

eiµsT (t− s)y ds‖ := K(y) ≤ K1‖y‖D(A) <∞, ∀y ∈ D(A), (2.6)

then, the semigroup T is strongly stable.

Proof. Since, for every x ∈ D(A), the map T (·)x is differentiable, it satisfies a
Lipschitz condition on (0, q). Then, by applying the above Theorem 2.2 it follows
that T (·)x is strongly stable for every x ∈ D(A). Let now, y ∈ H and xn ∈ D(A)
such that xn → y, as n→∞, in the norm of H. Then,

‖T (t)y‖ ≤ ‖T (t)(y − xn)‖+ ‖T (t)xn‖
≤ sup{‖T (t)‖ : t ≥ 0}‖y − xn‖+ ‖T (t)xn‖ → 0, as t, n→∞.

�

Corollary 2.7. If an evolution family U = {U(t, s)}t≥s≥0, as in Theorem 2.1,
verify (2.3) for every y ∈ H, and also (A1) with v instead of x, for every v ∈ H,
then it is uniformly exponentially stable, i.e. there are two positive constants N
and ν such that

‖U(t, s)‖ ≤ Ne−ν(t−s), for all t ≥ s ≥ 0.

The proof of the above corollary follows by applying Theorem 2.1 and Lemma
2.11, below.

Remark 2.8. The assumption that (A1), with v instead of x, is satisfied for every
v ∈ H, is too restrictive. For example, in the particular case when U(t, s) = T (t−s)
for every t ≥ s ≥ 0, where {T (t)}t≥0 is a strongly continuous semigroup acting on
H, the family U verify the above Lipschitz assumption if and only if the semigroup
is uniformly continuous, i.e. if and only if there exists a bounded linear operator
acting on H such that T (t) = etA for all t ≥ 0.

Proof. Indeed, under assumption (A1), the map t 7→ ux(t) := T (t)x belongs to
W 1,∞((0, q), H), therefore ux(·) is differentiable a.e. on (0, q), ‖u′x(t)‖ ≤ Lx (Lx
being the constant of Lipschtitz of ux(·)) and ux(t) belongs in the domain D(A)
of the infinitesimal generator a.e. on (0, q). Then, there exists a sequence (tn) of
positive real numbers, with tn → 0 as n → ∞ such that ux(tn) ∈ D(A), ux(tn) =
T (tn)x→ x, as n→∞ and the sequence (u′x(tn)) = (AT (tn)) converges in the weak
topology of H. This latter fact is an obvious consequence of the Banach-Steinhaus
theorem by using the classical fact that the adjoint A∗, of A, is the infinitesimal
generator of the semigroup {T (t)∗}t≥0. Since, A is closed in the weak topology of
H, it follows x ∈ D(A). Then D(A) = X and A is bounded. �

The following lemmas are useful in the proof of Theorem 2.1.

Lemma 2.9 ([2, Lemma 2.2]). Let us consider the functions h1, h2 : [0, q] → C,
defined by:

h1(s) =

{
s, s ∈ [0, q/2)
q − s, s ∈ [q/2, q]

and h2(s) = s(q − s), s ∈ [0, q].
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Denote

H1(µ) :=
∫ q

0

h1(s)eiµsds, H2(µ) :=
∫ q

0

h2(s)eiµsds.

Then, |H1(µ)|+ |H2(µ)| 6= 0 for all µ ∈ R.

The continuation by periodicity on the real axis of the function hj , for j ∈ {1, 2},
will be denoted by the same symbol.

Lemma 2.10. Let x ∈ X such that the map s 7→ U(s, 0)x satisfies a Lipschitz
condition on (0, q). For each j ∈ {1, 2}, let consider the q-periodic function fj :
R→ H, given on [0, q], by:

fj(t) := hj(t)U(t, 0)x.

Then the following two statements hold:
(1) Each function fj satisfies a Lipschitz condition on R.
(2) The Fourier series associated to fj is absolutely and uniformly convergent

on R.

Lemma 2.11 ([6, Lemma 1]). If

sup
n≥1
‖

n∑
k=0

e−iµkU(q, 0)k‖ := M(µ) <∞ (2.7)

then eiµ belongs to the resolvent set of U(q, 0). Moreover, if (2.7) holds for every
µ ∈ R, then r(U(q, 0)) < 1, i.e. the family U is uniformly exponentially stable.

3. Proof of Theorem 2.1

Proof of Lemma 2.10. (1) Let x ∈ H, Kx := sups∈[0,q] ||U(s, 0)x|| and Lx > 0 such
that ‖U(t, 0)x− U(s, 0)x‖ ≤ Lx|t− s| for all t, s ∈ (0, q). One has

‖fj(t)− fj(s)‖ = ‖hj(t)U(t, 0)x− hj(s)U(s, 0)x‖
≤ |hj(t)|‖U(t, 0)x− U(s, 0)x‖+ |hj(t)− hj(s)|‖U(s, 0)x‖

≤ (max{q
2
,
q2

4
}Lx +Kx ·max{1, q})|t− s|.

Using the continuity of the map U(·, 0)x, the previous inequality may be extended
first for t, s ∈ [0, q] and then, by using the periodicity of the map fj , to the entire
axis.

(2) An argument of this type for scalar valued functions may be found in [18,
Exercise 16, pp. 92-93]. For sake of completeness we present the details. For each
t ∈ R and each positive number ρ, which will be chosen later, denote gj(t) :=
fj(t+ ρ)− fj(t− ρ). Using (2.2), we obtain

cn(gj) =
∑
k∈Z+

(∫ q

0

〈gj(s), e2inπs/quk〉ds
)
uk

=
∑
k∈Z+

(∫ q

0

〈fj(s+ ρ), e2iπns/quk〉ds−
∫ q

0

〈fj(s− ρ), e2iπns/quk〉ds
)
uk

=
∑
k∈Z+

(∫ q+ρ

ρ

〈fj(τ), e2iπn(τ−ρ)/quk〉dτ −
∫ q−ρ

−ρ
〈fj(τ), e2iπn(τ+ρ)/quk〉dτ

)
uk
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=
∑
k∈Z+

[ ∫ q

0

(
e2πinρ/q − e−2iπnρ/q

)
〈fj(τ), e2iπnτ/quk〉dτ

]
uk

=
∑
k∈Z+

(∫ q

0

2i sin(2nπρ/q)〈fj(τ), e2iπnτ/quk〉dτ
)
uk

= 2i sin(2nπρ/q)cn(fj).

In view of the Bessel inequality and taking into account that the function fj
satisfies a Lipschitz condition on R with a constant L(x), follows

4qρ2L2(x) ≥
∫ q

0

‖gj(t)‖2dt ≥
∑
n∈Z
‖cn(gj)‖2 =

∑
n∈Z

4‖cn(fj)‖2| sin(2nπρ/q)|2.

Let p be a positive integer and ρ := q
2p+2 . Set Ap := {n ∈ Z|2p−1 < |n| ≤ 2p}.

Obviously, |Ap| = 2p and
√

2
2 < | sin(2nπρ/q)| for each n ∈ Ap. Furthermore,

∪p≥1Ap = Z \ {−1, 0, 1}. Using the Schwartz inequality, we obtain( ∑
n∈Ap

‖cn(fj)‖
)2

≤ 2p
∑
n∈Ap

‖cn(fj)‖2

< 2p+1
∑
n∈Ap

‖cn(fj)‖2 sin2(2nπρ/q)

≤ q3L2(x)
2p+3

,

and ∑
n∈Z\{−1,0,1}

‖cn(fj)‖ ≤ (
√

2 + 1)
q
√
qL(x)

23/2
:= L1(x).

The restriction of fj to the interval [0, q] belongs to L2([0, q], H) and, in addition,
fj = (1/q)

∑
n∈Z e

2inπ·/qcn(fj). Set

sN,j(t) :=
N∑

n=−N
e2intπ/qcn(fj).

Clearly, (
∫ q

0
‖fj(t)−sN,j(t)‖2dt)

1
2 ), decays to 0 when N →∞. As is already shown,

the series (
∑
n∈Z e

2inπt/qcn(fj)), is uniformly convergent on R, hence there exists
a continuous function sj : R→ H, such that

sup
t∈R
‖sj(t)− sN,j(t)‖ → 0 as N →∞.

Since
‖sN,j − sj‖L2([0,q],H) ≤

√
q‖sN,j − sj‖∞ → 0,

sj = fj in L2([0, q], H). The functions sj and fj are continuous and equal almost
everywhere on [0, q], so fj(t) = sj(t) for each t ∈ [0, q]. Taking into account that
both functions are q-periodic, they are equal on R. To conclude, the Fourier series
associated to fj , is absolutely and uniformly convergent on R to fj . �

Proof of Theorem 2.1. For every n ∈ Z+ and every x ∈ X, one has∫ nq

0

eiµsU(nq, s)fj(s)ds =
n−1∑
k=0

∫ (k+1)q

kq

eiµsU(nq, s)fj(s)ds
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=
n−1∑
k=0

∫ q

0

eiµ(kq+ρ)U(nq, kq + ρ)fj(kq + ρ)dρ

= Hj(µ)
n−1∑
k=0

eiµkqU((n− k)q, 0)x.

Let A be the set of all real µ for which H1(µ) = 0. In view of Lemma 2.9, we obtain

‖
n−1∑
k=0

eiµkqU(q, 0)n−kx‖ =

{
1

|H1(µ)|‖
∫ nq

0
eiµsU(nq, s)f1(s)ds‖, µ /∈ A

1
|H2(µ)|‖

∫ nq
0
eiµsU(nq, s)f2(s)ds‖, µ ∈ A.

On the other hand

‖
∫ nq

0

eiµsU(nq, s)fj(s)ds‖ = ‖1
q

∑
k∈Z

∫ nq

0

ei(µ+2πk/q)sU(nq, s)ck(fj)‖

≤ K

q

∑
k∈Z
‖ck(fj)‖

≤ K

q

(
L1(x) +

∑
k∈{−1,0,1}

‖ck(fj)‖
)
.

�

Proof of Theorem 2.2. Let x ∈ D(A2) be fixed. Obviously, the Fourier coefficients
ck(fj), k ∈ Z, j ∈ {1, 2}, belong to D(A2). On the other hand

sup
µ∈R

sup
t≥0
‖
∫ t

0

eiµsT (t− s)Ay ds‖ ≤ R1‖Ay‖D(A) <∞, ∀y ∈ D(A2),

and then

sup
µ∈R

sup
t≥0
‖
∫ t

0

eiµsT (t− s)y ds‖D(A) ≤ R1‖y‖D(A) <∞, ∀y ∈ D(A2).

Now, we can apply Theorem 2.1, for H = (D(A), ‖ · ‖D(A)), D = D(A2) and
U(t, s) = T (t− s) for t ≥ s. �

4. Examples

Example 4.1. Let H := L2([0, π],C) be endowed with the usual norm and let
{T (t)}t≥0 be the semigroup defined on H, by(

T (t)x
)
(ξ) =

2
π

∞∑
n=1

e−tn
2

sin(nξ)
(∫ π

0

x(s) sin(ns)ds
)
, ξ ∈ [0, π], t ≥ 0,

having A as infinitesimal generator. Further details about this semigroup and its
infinitesimal generator may be find, for example, in [23, pp. 179, 199]. We recall
that the domain of A consists by all absolutely continuous functions x(·) such that
x′(·) is absolutely continuous, x′′(·) ∈ H and x(0) = x(π) = 0.

Also, consider the map a : R+ → (0,∞) verifying the following conditions:
(i) a(·) is a π-periodic map,

(ii) a(t) ≥ 1 for every t ≥ 0,
(iii) there exist α ∈ (0, 1] and c > 0 such that |a(t) − a(s)| ≤ c|t − s|α, for all

t, s ≥ 0.



EJDE-2014/01 STABILITY FOR TRAJECTORIES 11

Set A(t) = a(t)A, t ≥ 0. The family {A(t)}t≥0 is well-posed (i.e. there exists a
strongly continuous and periodic evolution family U = {U(t, s)}t≥s≥0 such that
any solution u(·) of the system ẋ(t) = A(t)x(t), verifies u(t) = U(t, s)u(s) for all
t ≥ s ≥ 0). See, [19, 17, 14], for further details concerning well-posedness. In this
case, the evolution family is given by, [9, Example 2.9b],

U(t, s)x = T
(∫ t

s

a(r)dr
)
x, ∀x ∈ H, t ≥ s ≥ 0.

Obviously, every continuous function f ∈ H verifies the inequality ‖f‖L2([0,π],C) ≤√
π‖f‖∞. Set x(·) ∈ H. Taking into account that x̂n :=

∫ π
0
x(s) sinnsds satisfies

the estimation ‖x̂n‖ ≤
√
π‖x‖2, and denoting by F (·) a primitive function of a(·),

we obtain

‖
∫ t

0

eiµτT
(∫ t

τ

a(r)dr
)
x(ξ)dτ‖ =

2
π

∥∥∫ t

0

eiµτ
( ∞∑
n=1

e−n
2 R t
τ
a(r)dr sin(nξ)

)
x̂ndτ

∥∥
≤ 2√

π
‖x‖2

∞∑
n=1

∫ t

0

e−n
2 R t
τ
a(r)drdτ

≤ 2‖x‖∞
∞∑
n=1

e−n
2F (t)

∫ t

0

a(τ)en
2F (τ)dτ

≤ 2√
π
‖x‖2

∞∑
n=1

1
n2

(
1− en

2(F (0)−F (t))
)

≤ 2√
π
‖x‖2

∞∑
n=1

1
n2

<∞.

Thus, for each x = x(·) ∈ H, have

‖
∫ t

0

eiµτT
(∫ t

τ

a(r)dr
)
x dτ‖L2([0,π],C) ≤ 2‖x‖2

∞∑
n=1

1
n2

<∞.

On the other hand, the map

t 7→ U(t, 0)x = T
(∫ t

0

a(s)ds
)
x

is differentiable for all x ∈ D(A), and its derivative is bounded by |a(·)|∞ × ‖Ax‖.
Then, it satisfies a Lipschitz condition on the interval (0, q), and the Corollaries 2.4
and 2.5 above can be applied in this particular case.

Mention that Corollary 2.7 above cannot be applied to the evolution family in
this example, because, in the special case when a(t) = 1 for every t ≥ 0, there exists
at least one x(·) such that the trajectory U(·, 0)x does not satisfy any Lipschitz
condition on the interval (0, q). Thus, our theoretical results allow us to establish
the strong stability of the periodic evolution family {U(t, s)}t≥s≥0 rather than its
uniform exponential stability. As is well-known, the semigroup {T (t)} is uniformly
exponentially stable. Combining this with the inequality

∫ t
s
a(τ)dτ ≥ (t − s) for

t ≥ s, is easily to see that the evolution family {T (
∫ t
s
a(τ)dτ)}t≥s≥0 is uniformly

exponentially stable as well.
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The next example shows that the boundedness integral conditions (1.1) and (2.6)
are not equivalent. More exactly, there exist semigroups which verify (2.6) and does
not verify (1.1).

Example 4.2. Let Z+ the set of all nonnegative integers and let H := l2(Z+,C)
endowed with the usual norm denoted by ‖ · ‖2. Let αn := − 1

n + in, n ∈ Z+,
x = (xn)n∈Z+ be a sequence in H and let T (t)x := (eαntxn). Obviously, the one
parameter family T = {T (t)}t≥0 is a strongly continuous and uniformly bounded
semigroup having as infinitesimal generator the “diagonal” operator defined by
((Ax)n) := (αnxn). The maximal domain of A consists by all sequences (xn) ∈ H
which verify the condition

∑∞
n=0 |αnxn|2 < ∞. Obviously, the semigroup T is

not uniformly exponentially stable. Indeed, supposing the contrary, there are two
positive constants K and ν such that

e
−2
N t|xN |2 ≤ K2e−2νt‖x‖22

holds for every t ≥ 0, N ∈ Z+ and x ∈ H. This provides a contradiction when N
is large enough and xN 6= 0. Then (1.1) is not fulfilled (cf. [15]).

In the following we prove that (2.6) is fulfilled. Let x = (xn) in D(A) and µ be
any real number. Then(∫ t

0

eiµse(t−s)Axds
)

(n) =
eiµt − e− 1

n+int

1
n + i(µ− n)

xn.

Therefore,

‖
∫ t

0

eiµse(t−s)Ax‖22 ≤ 2
∞∑
n=1

n2|xn|2 < 2‖Ax‖2 ≤ 2‖x‖2D(A) <∞,

i.e. (2.6) holds.
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[7] C. Buşe, D. Lassoued, Nguyen Thanh Lan, O. Saierli; Exponential stability and uni-
form boundedness of solutions for non-autonomous abstract Cauchy problems. An evolu-

tion semigroup approach, Integral Equations Operator Theory, 74 (2012), 345-362 DOI
10.1007/s00020-012-1993-5.



EJDE-2014/01 STABILITY FOR TRAJECTORIES 13

[8] C. Buse, A. Pogan; Individual Exponential Stability for Evolution Families of Bounded and

Linear Operators, New Zealand Journal of Mathematics, Vol. 30(2001), 15-24.

[9] Daniel Daners, Pablo Koch Medina; Abstract evolution equations, periodic problems and
applications, Pitman Research Notes in Mathematics Series 279, Longman Scientific & Tech-

nical, 1992.

[10] A. Haraux; Nonlinear evolution equations , Lectures Notes in Math., Vol. 841, Springer-
Verlag, Heidelberg, 1981.

[11] E. Hille, R. S. Philips; Functional Analysis and Semi-Groups, Coll. Publ. Am. Math. Soc.

XXXI, Providence, R.I., 1957.
[12] S. Z. Huang, J. M. A. M. van Neerven; B-convexity, the analytic radon-Nycodim property,

and individual stability of C0 semigroups J. Math. Anal. Appl. 231(1999), 1-20.
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