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EXISTENCE AND STABILITY OF MILD SOLUTIONS TO
IMPULSIVE STOCHASTIC NEUTRAL PARTIAL FUNCTIONAL
DIFFERENTIAL EQUATIONS

DANHUA HE, LIGUANG XU

ABSTRACT. In this article, we study a class of impulsive stochastic neutral
partial functional differential equations in a real separable Hilbert space. By
using Banach fixed point theorem, we give sufficient conditions for the existence
and uniqueness of a mild solution. Also the exponential p-stability of a mild
solution and its sample paths are obtained.

1. INTRODUCTION

Since deterministic neutral functional differential equations were originally pro-
posed by Hale and Meyer [3], many researchers including Hale and Verduyn Lunel
[], Kolmanovskii and Nosov [6] have done extensive works on this subject and
their applications. However, a system is usually affected by external perturbations
which in many cases are of great random uncertainties such as stochastic forces
on the physical systems and noisy measurements caused by environmental uncer-
tainties [I7, [I8] 19], a stochastic neutral functional differential equations should
be produced instead of a deterministic one. Correspondingly, a number of inter-
esting results on the stochastic neutral functional differential equations have been
reported [Il [B [7, @ 10, 12]. Sakthivel, Ren and Kim [I6] studied the existence
and asymptotic stability in pth moment of mild solutions to second-order nonlinear
neutral stochastic differential equations. Ren and Sakthivel [I3] studied the exis-
tence, uniqueness, and stability of mild solutions for second-order neutral stochastic
evolution equations with infinite delay and Poisson jumps. More recently, the ex-
istence, uniqueness and exponential stability of a mild solution of the stochastic
neutral partial functional differential equations have been considered by Luo [§].

However, in addition to stochastic effects, impulsive effects exist in many evo-
lution processes in which states are changed abruptly at certain moments of time,
involved in such fields as medicine and biology, economics, mechanics, electronics.
Impulsive effects often make the system properties decline or even cause insta-
bility. Therefore, impulsive effects should be taken into account in researching
the exponential stability of the stochastic systems. Some significant progress has
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been made in the techniques and methods of studying the existence and stability
for impulsive stochastic difference equations, impulsive stochastic differential equa-
tions with delays and impulsive stochastic partial functional differential equations
[T4, 15 20, 21, 22| 23], 24]. However, so far no work has been reported on the cor-
responding problems for impulsive stochastic neutral partial functional differential
equations and the aim of this paper is to close this gap.

Motivated by the above discussions, we will study the existence, uniqueness and
exponential p-stability of a mild solution of the impulsive stochastic neutral partial
functional differential equations. By using Banach fixed point theorem, we give
some sufficient conditions for the existence and uniqueness of a mild solution of
this class of equations. Also the exponential p-stability of a mild solution as well
as its sample paths are obtained.

2. PRELIMINARIES

Throughout this paper, unless otherwise specified, X and Y are two separable
Hilbert spaces. with norms || - ||x, || - ||y, respectively. Let £(Y, X) be the space of
all bounded linear operators from Y into X equipped with the usual norm || - ||.

Let (Q,F,{Fi}it>0, P) be a complete probability space with a filtration {F; }1>0
satisfying the usual conditions of complete sub-o-fields of F. Let w(t), ¢ > 0, be
a Y-valued, Q-Wiener process which is assumed to be adapted to {F;}+>0 and for
every t > s the increments w(¢) —w(s) are independent of 5. Hence, w(t),t > 0,is a
continuous martingale relative to {F;};>0 and we have the following representation
of w(t):

w(t) = i Ble;,
i=1

where {e;} is an orthonormal set of eigenvectors of Q, {B{}, t > 0, is a family of
mutually independent real Wiener processes with incremental covariance A; > 0,
Qe; = Nie; and tr@Q = Y2 N\ < 0o. Let h(t) be an L£(Y, X)-valued function and
A be an arbitrary sequence {A1, Az, ...} of positive numbers, we may often use the
following notation

ol = {3 |mh<t>en|2}” ’
n=1

whenever this series is convergent.

PC[J, X] = {w :J — X :4)(s) is continuous for all but at most countably

many points s € J and at these points ¢(s™) and 9(s™)
exist and ¢(s) = w(s+)},

where J C R is an interval, ¢)(s7) and 1 (s~) denote the right-hand and left-hand
limits of the function (s) at time s, respectively. Let PC := PC[[—7,0], X| with
the norm [|¢||pc = sup_, <p<o [|9(0) [ x. Let PCY% [[—7,0], X] be the Banach space
of all bounded .%-measurable, PC[[—7, 0], X]-valued random variables ¢, satisfying
SUp_,<g<o Bl 6(0)|% < oo for p > 0, where E denote the expectation of stochastic
process.
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Assume that {S(t),t > 0} is an analytic semigroup with its infinitesimal genera-
tor A, then it is possible under some circumstances (see [I1]) to define the fractional
power (—A)“ for any « € [0, 1] which is a closed linear operator with its domain
D((=A)%).

Consider the following impulsive stochastic neutral partial functional differential
equations

dlz(t) + G(t,z¢)] = [Ax(t) + f(t,xe)]dt + g(t, ze)dw(t), >0, tF#ty,

Ax(ty) = z(t)) —x(ty) = I(2(t;)), t=tg k=1,2,...,N, (2.1)
zi(t) = ¢i(t), —T7<t<0,
where z,(0) = z(t +6) for 6 € [-7,0], G, f : Rt x PC — X, and g : Ry x PC —

L(Y, X) are all Borel measurable. Ik shows the jump in the state z at time t, and
tr satisfies 0 < t1 < -+ <ty < limp_ o tp = 00.

Definition 2.1. A process {z(t),t € [0,T]}, 0 < T < o0, is called a mild solution
of @) if
(i) z(t) is Fr-adapted;
(ii) z(t) € X has cadlag paths on ¢t € [0,7] a.s and for each ¢ € [0,T], z(t)
satisfies the integral equation

£(t) = S[H(0) + G0, 8)] — Gt x,) — / AS(t — 5)G(s,x,)ds

+/0 S(t—S)f(s,mS)ds+/O S(t— 8)g(s,zs)dw(s) (2.2)
+ > S =tk (ty),
0<trp<t

for any ¢ € PCY% [[—7,0], X] almost surely.

3. MAIN RESULTS

We assume the following hyptheses:

(H1) A is the infinitesimal generator of an analytic semigroup of bounded linear
operators {S(t),t > 0} in X satisfying ||S(t)||x < ve*t, t > 0, for some
constants v > 1 and v € R.

(H2) There exist constants C; > 0 and « € [0, 1] such that for any =,y € PC
and t > 0, G(t,z) € D((—A)%),

I(=A)*G(t, z) = (=A)*G(t,y)lx < Cillz =yl pe-

(H3) The functions f and g satisfy the Lipschitz and linear growth conditions;
that is, there exist positive constants Cy, C3, Cy such that

[f(t,z) — f(t,9)llx < Callz —ylpe,
lg(t,z) — g, y)lIx < Csllz = yllpc,
1t 2)llx + [lg(t, 2)lIx < Ca(L+ [lz]pe),
for any x,y € PC, t > 0.
(H4) There exist nonnegative constants g such that for any z,y € PC,

Ik(z) — (W)l x < qkllz —yllpc, k=1,2,...,N. (3.1)
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Lemma 3.1 ([8, Lemma 2.1]). Suppose that the assumption (H1) holds, then for
any 3 2> 0,

(i) for each x € D((—A)P),
S()(—A)Px = (~A)PS ()
(ii) There exist constants Mg > 0 and v € R such that
[(—A)PS(t)||x < Mat™Pe’, t>0.

Theorem 3.2. Under assumptions (H1)-(H4), system (2.1) has a unique mild
solution x(t), 0 <t < T, if the following condition holds

Li= 5 [[[(—A) 2 |PCY + MY, 7 (1)~ 4 eI eyt

N
e e + NPLypepleIT (7 qz)} <1,
k=1

where Mi_o and v are the constants in Lemmal[3.1] (ii), and

T
p>2, 7(T)= / t= (=gt < oo,
0

Proof. Define a nonlinear operator ¥ : PC%, [[—7,0], X] — PC% [[-7,0], X] by
Va(t) = S()¢(0) + S(E)(=A4)"*(=A)*G(0,¢) — (=A)"*(=A)"G(t, z1)

t

/ (— )08 (t — s)(—A)*G(s,za)ds + / S(t — 5)f (s, x2)ds

0

/St—s (s,zs)dw(s) + > S(t—ti)Ik(z(ty)), 0<t<T.
0<ty<t
(3.2)
From Lemma [3.1] (H1), (H2) and (H4), we obtain that for any 0 <t < T,
(

lz(®)llx < e T6(0)]x +7e T Cl(=A) (L + lIg]lpe)
+ O+ [l o)

t
T / CMi_o(t — 5)" 179?91 + |2, | po)ds
0

+ / S(t — 5)f(s,za)ds]x + | / S(t — )g(s, 22)dw(s)]| x
St —tp) [ (x(t;,
+I3 5l tneli)lx -
< eI 6(0) [ x + 7€ TCI(—A) (1 + 6]l pe)
+ =)+l ) + CM-ar(TY(1+ s [ )

TS gl + | / S(t - ) f(s,2.)ds]|x

k=1

+ / S(t — 8)g(s, 22)dw(s)]x,
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where C' is a positive constant. Since

sup |[z¢]lpc < sup [lz(t)llx + ¢l pc,
0<t<T 0<t<T

using (3.3 we have

sup [|z(t)]|x
0<t<T

< 7el™)¢(0)x + e CI(=A) (1 + ||¢]l pc)
+OI(=A) "1+ sup [l=z(®t)]x + [I¢llpc)
0<t<T

N
+CMi_or(T)(1+ sup [z(t)llx + gllpc) + 7€' qr sup [la(t)llx
0<t<T oy 0<t<T

¢ t
+ sup || [ S(t—s)f(s,2s)dsl[x + sup | [ S(t—s)g(s,zs)dw(s)|x;

o<t<T Jo 0<t<T Jo
(3.4)
that is,
N
[1=Cll(=A)~| = CMi_ar(T) = 7e!'" Y "] sup [(t)]|x
= O<t<T
< el g(0)[lx + C(1 + [l pc) (v + D[I(=A) || + My _a7(T)]
t t
+ sup || [ S(t—s)f(s,@s)ds|[x + sup || [ S(t—s)g(s,xs)dw(s)]|x-
0<t<T Jo 0<t<T Jo
(3.5)

So, by the linear growth conditions in (H3), Holder’s inequality and Burkholder-
Davis-Gundy type of inequality for stochastic convolutions [2], for any p > 2, there
exist a number ¢(p, T") > 0 such that

sup B[ War(t) '
0<t<T
N
<3 Cl(=A) 7 = CMyo7(T) =€l i)™
k=1

x {(76‘”'T||¢>(0)||x + O+ [lg] pe)[(veT + D[ (=A) || + Mi—o7(T)])"

T
+ 29I 4 op. D)CY [0+ Bl fpe)ds)

(3.6)
This means that Wx(t) € PCY%, [[—7,0], X], if 2(t) € PCY% [[-7,0], X]. Further, for
x(t),y(t) € PC,0<t<T, we have
sup EfWx(t) — Uy (t)[%
t€[0,T)
< 5;0—1 sup E”G(tvxt) - G(ti%)”?(
t€[0,T]

t t
+ 5771 sup E| [ AS(t —s)G(s,x,)ds — / AS(t — s)G(s,ys)ds|%
t€[0,T] 0 0
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t

t
+5°71 sup E| [ S(t—s)f(s,xs)ds — / S(t—s)f(s,ys)ds|
t€[0,T) 0 0

t

t
+571 sup E|| [ S(t—s)g(s,xs)dw(s) — / S(t—s)g(s,ys)dw(s)|%
t€[0,7) 0 0

+577 sup Bl Y S(t—ti)In(a(t;)) = Y St (y(t))Ik
tel0.T]  gcp<t 0<t) <t
<A TPCY sup Ellxe — yellpe + 57 (MY_ 7P (T) TP
te[0,T)
t

p—2
T eE Sy
telo, 0

N
+ 5INPT sup ST BT (e(t) — Tn(y(t) 1%
tG[O,T] k=1
<5 (=A)NFCT sup Ellay — yillpe + 5 (MY 7 (T) T
t€[0,T]
t
i PypemeCng—l + 7pep\vchgg)’sz;z) sup E [z¢ — yellpods
t€[0,T 0
N

+ 5P NPT eI (N P Py sup Ella(t) — y() |5
=1 te[0,T

< 57 (= A) " IPCY + MP_ 7 (T) TP 4 yPertTCyTe™!
—2 N
+ AT CRTHE NPT (ST g sup Blle — yillpe
=1 t€[0,T]

Hence, we obtain

sup E||Vz; — Uy |he < L sup Elze — yil'pe-
€[0T [0,7]

For L < 1, the mapping V¥ is a contraction mapping. By Banach fixed point
theorem, there exists a unique fixed point, which implies system (2.1]) has a unique
mild solution. The proof is complete. O

Theorem 3.3. Under assumptions (H1)—(H4), the mild solution of (2.1)) is expo-
nentially p-stable (p > 2) provided

||Ik($(t]:))”§( Sdk; dk 20, k:1,2,...,N,
and
[6P=1CPMP_ TP/ (qa — g+ 1)/rP*~1 4 6P~ LCEyP JrP~1 4 6P~ 1yPCE /r5—1]
(1—6r=1CT[[(—A)~>|P)

>0,

(3.7
where M1_o > 0, 7 = —v > 0 are the constants in Lemma (i) and T'(-) is the
gamma function.

Proof. Note that in this situation, for any 5 > 0, there exist constants Mg > 0 and
r > 0 such that

I(—A)PS@)|lx < Mat=Pe™, > 0.
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It is known that

z(t) = S(t)[p(0) + G(0,9)] — G(t,z;) — /O AS(t — s)G(s,zs)ds

—&—/0 S(t—s)f(s,xs)ds—l—/o S(t—s)g(s,zs)dw(s)
+ > S(t—te) (@ (ty))-
0<tr<t

By Lemma (H2), and the fact that f(¢,0) = 0 almost surely in ¢, we obtain
that for any t > 7, —7 < 0 <0,

[t +0)]|x
< ve”(t”)(llcﬁ( Ol + Cilli¢llpell(=A) ") + Coll(=A) " llz++oll pc

Ml aeir (t+0—s) +
/ o1 t+0—s0o ||965\|Pcds+\|/ S(t+6—s)f(s,zs)ds||x (3.8)

w1 [ ste 0 gt I + 3" 26 1 a0 .

k=1
Thus, for any ¢ > 7 and —7 < 6 < 0, we have
El|z(t+0)[% < 6" yPe P U0 (¢(0)]| + C1l|(—A) || gll pc)”
+ 677 1CY(—A) P E ||z erollpe

40 M, e~ r(t+0—s)
—x

6" 'E C slpeds)?
TR O g gy 1msleeds)

t+
+671E| / S(t+0 —5)f(s,x5)ds|x (3.9)
0
t+60
+ 6" 1B / S(t+6 —s)g(s, zs)dw(s)|x
0

N
+ 67T INP L N e P B 1 (a(8)) [ |-
k=1

By using Holder’s inequality and Burkholder-Davis-Gundy type of inequality, we
have that for any t > 7, —7 < 6 <0,

Mi_qe —r(t+0—s) P
/ e g~y 1o lreds)

t+6 M e (E p)r(t+07s) p
—E c, e Jlped )
(/0 TG asia  lzsleods

A e T
y E[(At+9(6_;(t+9_8)”xSHPC)pdS);}p

D 3P O e pla [0 —r(t+0—s) p
:Clleoc( o mdS) ) (& EHmSHPCd‘S
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t4+60
=CPMP_ TP/ (qa — g + 1) /1P /O e "= Bl|a |7, ds,
where p,q > 1, %—&-%: 1.
t+0 40
E||/ St +6 — 5)f(s,2,)ds|% < WPEH/ e (H0-9) (s 2 V|2
0 0
t+9 1 1
=Bl [ e s pasl
0

t4-6
< OBy o) / e~ T~ B ||B s,
0

(3.10)
and
t+60
Bl [ St+0— s)gls,zn)duw(s)%
0
t+60 »
— &) / S(t 46— )g(s, z.2)duw(s) %]
t+6 )
WE[/ eI g(s,z,) |3 ds] ® (3.11)
0

40
_ ,Y:DE[/ e~ (1= )r(t+0—5) ;= r(t+0—s) lg(s, )| 3ds] H
0

t+0
<yt [ e, s,
0
which immediately implies

E|lz(t +0)|% <6747 "0 (|g(0)] + Chll[ (= A) [l gl pc)?
+ 677 1CY[(—A) " IPE||zir0llpe
+ 6P Oy MY TP (qar — g + 1) /rP T 4 677 CRyP /o

t+6
co oy cy e [ e B s

N

+ 6p—1Np—17pe—pr(t+9) Z ePrte

k=1

(3.12)
that is,
Ellz(t +0)% < 67 '57e O [(|g(0)]| + Coll(=A) [ éllpc)? + d]

+ 6L OTI(=A) P Ellzisollpe
+ [6P7LCPMP_ TP 9(qac — q + 1) /1P~ 4 6P LCEAP /rP L

t+0
+ 67 1APC8 rE ] / e 0= B |2, || s,

(3.13)
where d = NP~1 Zszl ePrthdy.
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Therefore, for arbitrary 0 < € < r and T > 7 large enough, we have
T
/ e Blla(t + 0)|%dt
’ T
<6 Y[([6(0)] + Crl[(=A) =8l pc)? + d] / e Pt Otet gy
T
3.14
+ ORI [ Bl (314
+ [6P7CP MY Fp/q(qa — q 4+ 1)/rPe=t 4 6P=LCRAP frPt
+ 6P~ 1 pcp/TQ / / r(t+0— 9)+etE||ms|| ds dt.

On the other hand, note that for any —7 < 8 <0 and t > 7,

T t+60
/ / e rtHI=te gl g |17, ds dt
T+60
/ / r(t+60—s +€tE||{E ||pcdtd8

T+6
/ / e 0 1Py s (3.15)
T+ s—0

—+ o) T+6 o)
e Blla, P ds+—/ eI Bl |5 ~ds
7“—6/0 lzs|Ipe ey lzs|Ipe

1 T 1 T
< "D B2, |5 d +7/ GO E||xy||%d
< T_€/0 € [@s|[peds i € @[l peds

Therefore, substituting (3.15)) into (3.14]) yields

IN

T
/ e Blla(t + 0)|%dt
! T
< 6Py 1[(=A)™¢ PC e Pr €
< 6P P[(lp(0)[| + Cull(=A) [l #]l )p+d]/ prito)tet gy
T
L e (ORI L e P
+ [prleMf_an/q(qa —q+ 1)/7"100‘71 + 6p710§7p/rp71
1
e r*—l]i/ =0 Bl B ds
=g, ko
6P MY TP (ga — g+ 1)/ 4 61O o

1 T 0
(’I"*E) /(; 66(6_ )E”xS”ZI)DCdS

T

<677 [(16(0)]] +01||(—A)7O‘||||¢>||Pc)”+d]/ e Prlt=m)tet gy

T

+ 677 1yPCE /8

T
6T (— ) e / e E||za|Bods
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L EPLCP | (—A) e / ¢ Ejas|[ o ds
(67 CPMP TP/ (ger — g + 1)/ 4 601 CEP
1 T
e”/ e E|lzs||hods
0

r—o
[P OYMY TP (qar— g + 1)/ 4 6P O [P

+ 6P LyPCl e

— L 1 €T 4 €s
+ 6P yPCR frh 1](fe / e E||zs|bods;
T 6) 0

T T
/ e Bllz|Bodt < Ln(e) + La(e) / e B, [P, (3.16)
T 0

where
Ll(e)
=(1- ﬁp’lcfll(—A)’aII”e”)’l{6p’17p[(ll¢(0)\| + Cl[(=A) "¢l pc)” + d]

- T
></ e*W(t*THE’fdt—i—6p*1Cf\|(—A)7a||p€”/ e Ellzs|pods
i 0

6P OP MY TP9(ga — g+ 1)/ 4 6P 1CEy o
1 T
76”—/ eTSEHxSHf,Cds},

€) 0

+6p_17”0§’/r%_1]
(3.17)
La(e) = (1— 6”710]19”(*14)7“\\”6”)71{[prlchﬁan/q(qa —q+ 1)/t

2 1
+6p_1C§7p/7“p_1+6p_17p0§)/r§_1]( )}e“.
r—e

(3.18)
Hence, from (3.16)) we have

T
| et Blaltpod < o+ |

On the other hand, by virtue of (3.7), it is possible to choose a suitable 0 < € < r
small enough such that Ls(€) < 1, for such an € > 0, we may deduce that there
exists a real number L3(e) > 0 such that

T

T
eetE||xt||’;DCdt+L2(e)/ Bz Bt (3.19)
0

T

T
/ e E|ay|Bedt < (1 Lo(e)) " (La(e) + / e B|lay|[dt) = Ls(e) < oo,
0 0

(3.20)
From (3.13)), for any —7 < 6 <0, t > 7, we have
Elz(t+0)|%
<671 yPe PO (16(0)]| + Cull(=A) "Nl pe)? + dle T
+ 6P CT (= A) P Ellzetollpe (3.21)

+ [6P7TCP MP_ TP/ 9(goc — g + 1) /1Pt 4 6P~ LCRAP /rP
+ 67’_17”05/7“%_1]L3(e)e_e(t_7).
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Now, we proceed with our arguments by considering two possible situations for any
fixed ¢ > 0.

Firstly, suppose that sup_, c4<q El|zi10l'5c = Ell2|/b¢, then from (3.21) we
have

Bllaillf <6777 O (([p0)]) + Crll(~A) ¢l p)? + dle <
+ 67T (—A) P Ellailfho

6P P M TP (o — g + 1) /rPe1 1 621 AP P (3.22)
67190y frE Y Ly (e,
which immediately yields
Bl < (1= 671 CP[[(—=A)~[7) 7 67~ 1y7e (o)
< (16O + Cill (=) ¢l p)” + die™ -

O OPM T 9(g — g 1)/ 4 @ CE
+ 6p717p0§’/r%71]L3(e)e”]676t = Ly(e)e .

On the other hand, for this fixed t > 0, if sup_, <y Ellzirollpe = Ellzi—+ e

then from (3.21)) we have

Elz|pe < 6”’17’)6*”(”9)[(||¢>(0)|| + C1l(=A) 18]l pc)? + d]efe(tfr)
+ 67T (=A) Pl b

L L L L (3.24)
(67 CPMP_ TP/ (g — g 4+ 1) /17 4 67 Oy r
+ 6”717]”05/1"%71]L3(e)676(t77).
Hence, in this situation we have
Ellzlpe < Ls(e)e™ + Lo() Ellz—r [ e (3.25)

where
Ls(€) = 6°~ 1P PO [([|g(0)]| + Cull(—=A) [l gl pc)? + dle
6L TP (g — g+ 1)/ 4 60T 0 (3.26)
+ 6071y CE Jra T Ly (e)e T,

and
Lg(e) = 6°71CT [ (= A) | (3:27)
Combining ({3.23)) with (3.25)), for any ¢ > 7, we have
Bl < max{La(e)e™, Ly(e)e= + Lo(e)Ellz_hc}.  (3.28)

In other words, for any t > 27, we have

Bllzrr e < max{La(©)e "7, Ls()e™ " 4+ Lo() Bller_ar e} (3:29)
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In view of (3.28)) and (3.29)), we obtain that for any ¢ > 27,
Ellxthc

< max {L4(e)e—€t, [Ls(e) + Le(e) La(e)e e,
S (Ls (L (eI )e ! + LA Ellanar e | (3:30)

i=1
2

= max{La(e)e™, Y (Ls(e)Lg (€)™ VT)e + Li(e)Ellwi—ar e ),

where
Ly(e) = max{Ly(e), Ls(e) + Lg(€) La(e)e " }.

By induction, there exists a positive number Ly, (¢) such that for any ¢ > 7,
EthH%C

N s ) ) 3.31
< max {Lm(e)e_“, Z(L5(6)Lé_1(6)66(1_1)7—)6_“ + Lg”(e)Eth_mTH’;,C}, ( )

i=1
where m is the positive integer such that 0 <t —m7 < 7. Obviously, to obtain the
desired exponential stability of (2.1]), we need to consider only the term

El|lzellpe < Y (Ls()Lg H(@)e™D)e™ + L () Ellze—me - (3.32)

i=1

In fact, choose a suitable € > 0 small enough such that Lg(€)e®” < 1, then we may

deduce from that
Ellz¢|lpe
< (£6(0) LG QeI e + L OI91 + Blleelho)
< (La(e) o (Lg (e 7T) )™ o L (e (La(e)e™ + (14 Lo(0) [ 4]pc)
< (Lole) Yo (L5 @) e (Lo()e ™ + (1+ La(Dl|6lpe) (La(0)*”
< (Ls(0) Do (LGOI ) e 4 (Ls(e)e ™ + (1 + Lo()) 91l ) (Lo (€)'
i=1
- 1—LL(<> + (L()e™ + (14 Lo()9l5) (Lo ()"
- 1LL(<)> + (Ls(€)e™ + (1+ Lo() 6l )e ™",
(3.33)
where 0 < ¢; = —In Lg(€) /7.

Hence, from ({3.31]) and (3.33)), ones may deduce that there exist numbers C(¢) >
0 and € > 0 such that

Ella(t; o)l < Ellzlpe < C(@)e™,  for any t > .
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The proof is complete. O

4. AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate the obtained result. Let X = L?([0,7]) and A be de-
fined as Af = f” with domain D(A) = {f(:) € L*([0,n]) : f"" € L3([0,]), f(0) =
f(m) =0},

It is well known that the analytic semigroup S(t)(¢ > 0), generated by the
operator A on X which is a separable Hilbert spaces. Furthermore, A has a discrete
spectrum with eigenvalues of the form —n?,n € N, and corresponding normalized
eigenfunctions given by e, (€) := (2/m)"/? sin(nf).

In addition to the above, the following conditions hold:

(a) {en :n € N} is an orthonormal basis of X.

(b) If f € X, then S(t)f =37, e‘”2t<f, en)en and Af = =5 n%(f, ey)en
for every f € D(A).

(c) For f € X, (=A) = = 3200, {f enen
(d) The operator (—A)*/?: D((—=A)'/?) € X — X is given by

(_A)I/Zf = Zn<f7 en)en, VfE D((_A)1/2)>

n=1

where D((—A)/2) = {f(-) € X : 320  n(f,en)e, € X}
Consider the stochastic neutral partial functional differential equation

%{I“’g) + /OT /OW b(s,n, &)zt + s,n)dnds}
2 0

552 (t, &) +po(&x(t, &) + [Tp(s)x(t +5,&)ds + py cosx(t — 7,£)dBy,
t+t,, E€l=10,7], (4.1)
Ax(ty) = z(th) —x(ty) = I(2(ty)), t=tg k=1,2,...,N,
x(t,0) =x(t,m) =0, teR,
$(S,§) = ¢(S’£)v d)(ag) € PCE%H_T’ O]7RL ¢(87 ) € Lz([oaﬂ-])a

where B; is the standard one-dimensional Wiener process, the functions pg, p are
continuous, p; > 0. And Ik( (tr)) = e *x(tx). We also assume that

(i) The function b(-) is (Lebesgue) measurable and

//_T/ b%(0,7m,€) dnd dé < .

(ii) The function a—éib(G, n,&), i = 1,2, are measurable, b(,7,0) = (6,n,7) =0
for every (6,7) and

L= max{/OW/_OT/Ow(aa;b(e,n,g))andef:izO,l,Q} < o0

Define G, f : C([—T,0]; X) by setting

G(t,2)(€) = / /b8n§ 2(s,m) dn ds,
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F(t,2)(€) = po(€)x(t,€) + / p(3)2(s, £)ds.

From (i), it is clear that B is a bounded linear operator on X. Furthermore, from
the definition of B and (ii), we obtain

e = [ [ [ vonetsmins] Eresmos a2

_1 2 1/2/ / —b(s,n,&)x(s, n)dnds, cos(ng)) (4.3)

1 2
= —(5)"*(Bi(x), cos(n¢)), (4.4)
new
where By (x f fﬂ 9 b(s,n,€)x(s,n)dnds. By using (ii) again, we obtain that

B : X — X is a bounded linear operator with || B1|| < Ly, so ||(—A)Y2B(z)| =
| Bi(z)||. Hence B(zx) € D[(—A)Y?], and ||(—A)'/2B|| < L;. Similarly, we can
prove that f is a bounded linear operator on X,

teR.

I[f(&, )l < sup [Ipo(t)]| +
teR

By simple parameters computation, we can easily verify that all conditions of The-
orems and are satisfied. Therefore, (4.1) has a unique mild solution, which
is exponential p-stable.
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