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OPTIMAL CONTROL PROBLEMS FOR IMPULSIVE SYSTEMS
WITH INTEGRAL BOUNDARY CONDITIONS

ALLABEREN ASHYRALYEV, YAGUB A. SHARIFOV

Abstract. In this article, the optimal control problem is considered when the

state of the system is described by the impulsive differential equations with
integral boundary conditions. Applying the Banach contraction principle the

existence and uniqueness of the solution is proved for the corresponding bound-

ary problem by the fixed admissible control. The first and second variation of
the functional is calculated. Various necessary conditions of optimality of the

first and second order are obtained by the help of the variation of the controls.

1. Introduction

Impulsive differential equations have become important in recent years as math-
ematical models of phenomena in both the physical and social sciences. There has
been a significant development in impulsive theory especially in the area of im-
pulsive differential equations with fixed moments; see for instance the monographs
[3, 4, 13, 21] and the references therein.

Many of the physical systems can better be described by integral boundary
conditions. Integral boundary conditions are encountered in various applications
such as population dynamics, blood flow models, chemical engineering and cellular
systems. Moreover, boundary value problems with integral conditions constitute a
very interesting and important class of problems. They include two point, three
point, multi-point and nonlocal boundary value problems as special cases; see [1, 5,
7]. For boundary-value problems with nonlocal boundary conditions and comments
on their importance, we refer the reader to the papers [6, 8, 12] and the references
therein.

The optimal control problems with boundary conditions have been investigated
by several authors (see,e.g., [15, 22, 18, 19, 20]). Note that optimal control prob-
lems with integral boundary condition are considered in [16, 17] and the first-order
necessary conditions are obtained. In certain cases the first order optimality condi-
tions are “left degenerate”; i.e., they are fulfilled trivially on a series of admissible
controls. In this case it is necessary to obtain the second order optimality condi-
tions.
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In the present paper, we investigate an optimal control problem in which the
state of the system is described by differential equations with integral boundary
conditions. Note that this problem is a natural generalization of the Cauchy prob-
lem. The matters of existence and uniqueness of solutions of the boundary value
problem are investigated, first and second variations of the functional are calcu-
lated. Using the variations of the controls, various optimality conditions of the
second order are obtained.

Consider the following impulsive system of differential equations with integral
boundary condition

dx

dt
= f(t, x, u(t)), 0 < t < T, (1.1)

x(0) +
∫ T

0

m(t)x(t)dt = C, (1.2)

x(t+i )− x(ti) = Ii(x(ti)), i = 1, 2, . . . , p, 0 < t1 < t2 < · · · < tp < T, (1.3)

u(t) ∈ U, t ∈ [0, T ], (1.4)

where x(t) ∈ Rn; f(t, x, u) and Ii(x), i = 1, 2, . . . , p are n-dimensional continuous
vector functions. Suppose that f has the second order derivative with respect to
(x, u) and Ii has the second order derivative with respect to x. C ∈ Rn is a given
constant vector and m(t) is n×n matrix function; u is a control parameter; U ∈ Rr
is an open set.

It is required to minimize the functional

J(u) = ϕ(x(0), x(T )) +
∫ T

0

F (t, x, u)dt (1.5)

on the solutions of boundary value problem (1.1)–(1.4).
Here, it is assumed that the scalar functions ϕ(x, y) and F (t, x, u) are continu-

ous by their own arguments and have continuous and bounded partial derivatives
with respect to x, y and u up to second order, inclusively. Under the condition of
boundary value problem (1.1)–(1.3) corresponding to the fixed control parameter
u(·) ∈ U we have the function x(t) : [0, T ] → Rn that is absolutely continuous on
[0, T ], t 6= ti, i = 1, 2, . . . , p and continuous from left for t = ti, for which there
exists a finite right limit x(t+i ) for i = 1, 2, . . . , p. Denote the space of such func-
tions by PC([0, T ],Rn). It is obvious that such a space is Banach with the norm
‖x‖PC = vrai maxt∈[0,T ] |x(t)|, where | · | is the norm in space Rn.

The admissible process {u(t), x(t, u)} being the solution of problem (1.1)-(1.5);
i.e., delivering minimum to functional (1.5) under restrictions (1.1)-(1.4), is said to
be an optimal process, and u(t) is called an optimal control.

The organization of the present paper is as follows. First, we provide neces-
sary background. Second, theorems on existence and uniqueness of a solution of
problem (1.1)-(1.3) are established under some sufficient conditions on nonlinear
terms. Third, the functional increment formula is presented. Fourth, variations of
the functional are given. Fifth, Legendre-Klebsh conditions are obtained. Finally,
the conclusion is given.

2. Existence of solutions to (1.1)-(1.3)

We will use the following assumptions:

(H1) ‖B‖ < 1 for the matrix B defined by the formula B =
∫ T
0
m(t)dt.
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(H2) The functions f : [0, T ]× Rn × Rr → Rn and Ii : Rn → Rn, i = 1, 2, . . . , p
are continuous functions and there exist constants K ≥ 0 and li ≥ 0,
i = 1, 2, . . . , p, such that

|f(t, x, u)− f(t, y, u)| ≤ K|x− y|, t ∈ [0, T ], x, y ∈ Rn, u ∈ Rr,
|Ii(x)− Ii(y)| ≤ li|x− y|, x, y ∈ Rn.

(H3)

L = (1− ‖B‖)−1
[
KTN +

p∑
i=1

li
]
< 1,

where

N = max
0≤t,s≤T

‖N(t, s)‖, N(t, s) =

{
E +

∫ s
0
m(τ)dτ, 0 ≤ t ≤ s,

−
∫ T
s
m(τ)dτ, s ≤ t ≤ T.

Note that under condition (H1) the matrix E + B is invertible and the estimate
‖(E +B)−1‖ < (1− ‖B‖)−1 holds.

Theorem 2.1. Assume that condition (H1) is satisfied. Suppose that the functions
f : [0, T ] × Rn × Rr → Rn and Ii : Rn → Rn, i = 1, 2, . . . , p are continuous
functions. Then the function x(·) ∈ PC([0, T ],Rn) is an absolutely continuous
solution of boundary-value problem (1.1)-(1.3) if and only if it is a solution of the
integral equation

x(t) = (E+B)−1C+
∫ T

0

K(t, τ)f(τ, x(τ), u(τ))dτ+
∑

0<tk<T

Q(t, tk)Ik(x(tk)), (2.1)

where

K(t, τ) = (E +B)−1N(t, τ), Q(t, tk) =

{
(E +B)−1, 0 ≤ τk ≤ t,
−(E +B)−1B, t ≤ τk ≤ T.

Proof. Assume that x = x(t) is a solution of (1.1), then integrating this equation
for t ∈ (tj , tj+1), we obtain∫ t

0

f(s, x(s), u(s))ds

=
∫ t

0

x′(s)ds

= [x(t1)− x(0+)] + [x(t2)− x(t+1 )] + · · ·+ [x(t)− x(t+j )]

= −x(0)− [x(t+1 )− x(t1)]− [x(t+2 )− x(t2)]− · · · − [x(t+j )− x(tj)] + x(t).

From what it follows that

x(t) = x(0) +
∫ t

0

f(s, x(s), u(s))ds+
∑

0<tj<t

(x(t+j )− x(tj)), (2.2)

where x(0) is an arbitrary constant. Now, we obtain x(0). Applying equality (2.2)
and conditions (1.2)-(1.3), we obtain

(E +B)x(0) = C −
∫ T

0

m(t)
∫ t

0

f(τ, x(τ), u(τ))dτdt−B
∑

0<tk<T

Ik(x(tk)).
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Since det(E +B) 6= 0, we have

x(0) = (E +B)−1C − (E +B)−1

∫ T

0

m(t)
∫ t

0

f(τ, x(τ), u(τ))dτdt

− (E +B)−1B
∑

0<tk<T

Ik(x(tk)).
(2.3)

Applying formulas (2.2) and (2.3), we obtain the integral equation (2.1). By direct
verification we can show that the solution of integral equation (2.1) also satisfies
equation (1.1) and nonlocal boundary condition (1.2). Also, it is easy to verify that
it satisfies the condition (1.3). The proof is comlete. �

Define the operator P : PC([0, T ],Rn)→ PC([0, T ],Rn), by

(Px)(t) = (E +B)−1C +
∫ T

0

K(t, τ)f(τ, x(τ), u(τ))dτ +
∑

0<tk<T

Q(t, tk)Ik(x(tk)).

(2.4)

Theorem 2.2. Assume that conditions (H1)–(H3) are satisfied. Then for any
C ∈ Rn and for each fixed admissible control, the boundary value problem (1.1)-
(1.3) has a unique solution that satisfies the integral equation (2.1).

Proof. Let C ∈ Rn and u(·) ∈ U be fixed, and let the mapping P : PC([0, T ],Rn)→
PC([0, T ],Rn) be defined by (2.4). Clearly, the fixed points of the operator P are
solution of the problem (1.1), (1.2) and (1.3). We will use the Banach contrac-
tion principle to prove that P has a fixed point. First, we will show that P is a
contraction.

Let v, w ∈ PC([0, T ],Rn). Then, for each t ∈ [0, T ] we have that

|(Pv)(t)− (Pw)(t)| ≤
∫ T

0

|K(t, s)||f(s, v(s), u(s))− f(s, w(s), u(s))|ds

+
p∑
i=1

|Q(t, ti)||Ii(v(ti))− Ii(w(ti))|

≤ (1− ‖B‖)−1[KN
∫ T

0

|v(s)− w(s)|ds+
p∑
i=1

li|v(ti)− w(ti)|]

≤ (1− ‖B‖)−1[KNT +
p∑
i=1

li]‖v(·)− w(·)‖PC .

Therefore,
‖Pv − Pw‖PC ≤ L‖v − w‖PC .

Consequently, by assumption (H3) operator P is a contraction. As a consequence
of Banach’s fixed point theorem, we deduce that operator P has a fixed point which
is a solution of problem (1.1)-(1.3). The proof is complete. �

The functional increment formula
Let {u, x = x(t, u)} and {ũ = u+ ∆u, x̃ = x+ ∆x = x(t, ũ)} be two admissible

processes. Applying (1.1)-(1.2), we obtain the boundary-value problem

∆ẋ = ∆f(t, x, u), t ∈ (0, T ), (2.5)
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∆x(0) +
∫ T

0

m(t)∆x(t)dt = 0, (2.6)

where ∆f(t, x, u) = f(t, x̃, ũ)−f(t, x, u) denotes t he total increment of the function
f(t, x, u). Then we can represent the increment of the functional in the form

∆J(u) = J(ũ)− J(u) = ∆ϕ(x(0), x(T )) +
∫ T

0

∆F (x, u, t)dt. (2.7)

Let us introduce some non-trivial vector-function ψ(t), ψ(t) ∈ Rn, and numerical
vector λ ∈ Rn. Then the increment of performance index (1.5) may be represented
as

∆J(u) = J(ũ)− J(u)

= ∆ϕ(x(0), x(T )) +
∫ T

0

∆F (x, u, t)dt+
∫ T

0

〈ψ(t),∆ẋ(t)−∆f(t, x, u)〉dt

+ 〈λ,∆x(0) +
∫ T

0

m(t)∆x(t)dt〉.

After some standard computations usually used in deriving optimality conditions
of the first and second orders for the increment of the functional, we obtain the
formula

∆J(u) = J(ũ)− J(u)

= −
∫ T

0

〈∂H(t, ψ, x, u)
∂u

,∆u(t)〉dt

−
∫ T

0

〈∂H(t, ψ, x, u)
∂x

+ n′(t)λ+ ψ̇(t),∆x(t)〉dt

+ 〈[ ∂ϕ

∂x(0)
− ψ(0) + λ],∆x(0)〉+ 〈[ ∂ϕ

∂x(T )
+ ψ(T )],∆x(T )〉

−
∫ T

0

〈∂
2H(t, ψ, x, u)

∂x∂u
∆u(t) +

1
2

∆x′(t)
∂2H(t, ψ, x, u)

∂x2
,∆x(t)〉dt

− 1
2

∫ T

0

〈∆u(t)′
∂2H(t, ψ, x, u)

∂u2
,∆u(t)〉dt

+
1
2
〈∆x(0)′

∂2ϕ

∂x(0)2
+ ∆x(T )′

∂2ϕ

∂x(0)∂x(T )
,∆x(0)〉

+
1
2
〈∆x(0)′

∂2ϕ

∂x(T )∂x(0)
+ ∆x(T )′

∂2ϕ

∂x(T )2
,∆x(T )〉

+
p∑
i=1

〈ψ(t+i )− ψ(ti) +
∂I ′i(x(ti))

∂x
[
∂I ′i(x(ti))

∂x
+ E]−1ψ(ti),∆x(ti)〉+ ηũ,

(2.8)
where

H(t, ψ, x, u) = 〈ψ, f(t, x, u)〉 − F (t, x, u),

ηũ = −
∫ T

0

oH(‖∆x(t)‖2 + ‖∆u(t)‖2)dt

+ oϕ(‖∆x(t0)‖2, ‖∆x(t1)‖2) +
p∑
i=1

oI(‖∆x(ti)‖2).
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Here, the vector function ψ(t) ∈ Rn and vector λ ∈ Rn is solution of the following
adjoint problem (the stationary condition of the Lagrangian function by state)

ψ̇(t) = −∂H(t, ψ, x, u)
∂x

−m′(t)λ, t ∈ (0, T ), (2.9)

ψ(t+i )− ψ(ti) = −I ′ix(x(ti))(I ′ix(x(ti)) + E)−1ψ(ti), i = 1, 2, . . . , p, (2.10)
∂ϕ

∂x(0)
− ψ(0) + λ = 0,

∂ϕ

∂x(T )
+ ψ(T ) = 0. (2.11)

From this and (2.8) it follows that

∆J(u) = −
∫ T

0

〈∂H(t, ψ, x, u)
∂u

,∆u(t)〉dt− 1
2

∫ T

0

〈∆u(t)′
∂2H(t, ψ, x, u)

∂u2
,∆u(t)〉dt

−
∫ T

0

〈∆u(t)′
∂H2(t, ψ, x, u)

∂x∂u
+

1
2

∆x′(t)
∂2H(t, ψ, x, u)

∂x2
,∆x(t)〉dt

+
1
2
〈∆x(0)′

∂2ϕ

∂x(0)2
+ ∆x(T )′

∂2ϕ

∂x(0)∂x(T )
,∆x(0)〉

+
1
2
〈∆x(0)′

∂2ϕ

∂x(T )∂x(0)
+ ∆x(T )′

∂2ϕ

∂x(T )2
,∆x(T )〉+ ηũ.

(2.12)

3. Variations of the functional

Let ∆u(t) = εδu(t), where ε > 0 is a rather small number and δu(t) is some
piecewise continuous function. Then the increment of the functional ∆J(u) =
J(ũ) − J(u) for the fixed functions u(t),∆u(t) is the function of the parameter ε.
If the representation

∆J(u) = εδJ(u) +
1
2
ε2δ2J(u) + o(ε2) (3.1)

is valid, then δJ(u) is called the first variation of the functional and δ2J(u) is called
the second variation of the functional. Further, we obtain an obvious expression
for the first and second variations. To achieve the object we have to select in ∆x(t)
the principal term with respect to ε.

Assume that
∆x(t) = εδx(t) + o(ε, t), (3.2)

where δx(t) is the variation of the trajectory. Such a representation exists and for
the function δx(t) one can obtain an equation in variations. Indeed, by definition
of ∆x(t), we have

∆x(t) = (E +B)−1C +
∫ T

0

K(t, τ)∆f(τ, x(τ), u(τ))dτ

+
∑

0<tk<T

Q(t, tk)∆Ik(x(tk)).
(3.3)

Applying the Taylor formula to the integrand expression, we obtain

εδx(t) + o(ε, t)

=
∫ T

0

K(t, τ)
{∂f(τ, x, u)

∂x
[εδx(τ) + o(ε, τ)] + ε

∂f(τ, x, u)
∂u

δu+ o1(ε, τ)
}
dτ
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+
p∑
i=1

Q(t, ti)
{∂Ii(x(ti))

∂x
[εδx(ti) + o(ε, ti)]

}
.

Since this formula is true for any ε,

δx(t) =
∫ T

0

K(t, τ){∂f(τ, x, u)
∂x

δx(t) +
∂f(τ, x, u)

∂u
δu(t)}dτ

+
p∑
i=1

Q(t, ti)
∂Ii(x(ti))

∂x
δx(ti).

(3.4)

Equation (3.4) is called the equation in variations. Obviously, integral equation
(3.4) is equivalent to the following nonlocal boundary-value problem

δẋ(t) =
∂f(t, x, u)

∂x
δx(t) +

∂f(t, x, u)
∂u

δu(t), (3.5)

δx(t+i )− δx(ti) = Iix(x(ti))δx(ti), i = 1, 2, . . . , p, (3.6)

δx(0) +
∫ T

0

m(t)δx(t)dt = 0. (3.7)

By [21, p.52], any solution of differential equation (3.5) may be represented in the
form

δx(t) = Φ(t)δx(0) + Φ(t)
∫ t

0

Φ−1(τ)
∂f(τ, x, u)

∂u
δu(τ)dτ, (3.8)

where Φ(t) is a solution of the differential equation

dΦ(t)
dt

=
∂f(t, x, u)

∂x
Φ(t), Φ(0) = E,

Φ(t+i )− Φ(ti) = Iix(x(ti))Φ(x(ti)).

Then for the solutions δx(t) of the boundary-value problem we obtain the explicit
formula

δx(t) =
∫ T

0

G(t, τ)
∂f(τ, x, u)

∂u
δ(τ)dτ, (3.9)

where

G(t, τ) =

{
Φ(t)(E +B1)−1[E +

∫ s
0
m(τ)Φ(τ)dτ ]Φ−1(τ), 0 ≤ τ ≤ t,

−Φ(t)(E +B1)−1
∫ T
s
m(τ)Φ(τ)dτΦ−1(τ), t ≤ τ ≤ T,

B1 =
∫ T

0

m(t)Φ(t)dt.

Now, using identity (3.2), formula (2.12) can be rewritten as

∆J(u) = −ε
∫ T

0

〈∂H(t, ψ, x, u)
∂u

, δu(t)〉dt− ε2

2

{∫ T

0

〈δx′(t)∂
2H(t, ψ, x, u)

∂x2
, δx(t)〉

+ 2〈δu′(t)∂
2H(t, ψ, x, u)

∂x∂u
, δx(t)〉+ 〈δu′(t)∂

2H(t, ψ, x, u)
∂u2

, δu(t)〉]dt

− 〈δx′(0)
∂2ϕ

∂x(0)2
+ ∆x′(T )

∂2ϕ

∂x(0)∂x(T )
, δx(0)〉

− 〈δx′(0)
∂2ϕ

∂x(T )∂x(0)
+ δx′(T )

∂2ϕ

∂x(T )2
, δx(T )〉}+ o(ε2).

(3.10)
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Applying (3.1), we obtain

δJ(u) = −
∫ T

0

〈∂H(t, ψ, x, u)
∂u

, δu(t)〉dt,

δ2J(u) = −
∫ T

0

[
〈δx′(t)∂

2H(t, ψ, x, u)
∂x2

, δx(t)〉

+ 2〈δu′(t)∂
2H(t, ψ, x, u)

∂x∂u
, δx(t)〉+ 〈δu′(t)∂

2H(t, ψ, x, u)
∂u2

, δu(t)〉
]
dt

+ 〈δx′(0)
∂2ϕ

∂x(0)2
+ ∆x′(T )

∂2ϕ

∂x(0)∂x(T )
, δx(0)〉

+ 〈δx′(0)
∂2ϕ

∂x(T )∂x(0)
+ δx′(T )

∂2ϕ

∂x(T )2
, δx(T )〉.

(3.11)

4. Derivation of the Legendre-Klebsh Conditions

Applying (3.1), we obtain the following conditions

δJ(u0) = 0, δ2J(u0) ≥ 0 (4.1)

on the optimal control u0(t). From the first condition of (4.1) it follows that∫ T

0

〈∂H(t, ψ0, x0, u0)
∂u

, δu(t)〉dt = 0. (4.2)

Hence, we can prove that

∂H(t, ψ0, x0, u0)
∂u

= 0, t ∈ (0, T ) (4.3)

is satisfied along the optimal control (see [11, p. 54]). Equation (4.3) is called the
Euler equation. From the second condition of (4.1) it follows that the following
inequality

δ2J(u) = −
∫ T

0

[
〈δx′(t)∂

2H(t, ψ, x, u)
∂x2

, δx(t)〉

+ 2〈δu′(t)∂
2H(t, ψ, x, u)

∂x∂u
, δx(t)〉+ 〈δu′(t)∂

2H(t, ψ, x, u)
∂u2

, δu(t)〉
]
dt

+ 〈δx′(0)
∂2ϕ

∂x(0)2
+ ∆x′(T )

∂2ϕ

∂x(0)∂x(T )
, δx(0)〉

+ 〈δx′(0)
∂2ϕ

∂x(T )∂x(0)
+ δx′(T )

∂2ϕ

∂x(T )2
, δx(T )〉 ≥ 0

(4.4)
holds along the optimal control. The inequality (4.4) is an implicit necessary op-
timality condition of first order. However, the practical value of conditions (4.4)
in such a form is not applicable, since it requires bulky calculations. For obtaining
effectively verifiable optimality conditions of second order, following [14, p. 16], we
take into account (3.9) in (4.4) and introduce the matrix function

R(τ, s) = −G′(0, τ)
∂2ϕ

∂x(0)2
G(0, s)−G′(T, τ)

∂2ϕ

∂x(T )∂x(0)
G(0, s)
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−G′(0, τ)
∂2ϕ

∂x(0)∂x(T )
G(T, s)−G′(T, τ)

∂2ϕ

∂x(T )2
G(T, s)

+
∫ T

0

G′(t, τ)
∂2H

∂x2
G(t, s)dt.

Then for the second variation of the functional, we obtain the final formula

δ2J(u) = −
{∫ T

0

∫ T

0

〈δ′u(τ)
∂′f(τ, x, u)

∂u
R(τ, s)

∂f(s, x, u)
∂u

, δu(s)〉 dt ds

+
∫ T

0

〈δ′u(τ)
∂2H(t, ψ, x, u)

∂u2
, δu(t)〉dt

+ 2
∫ T

0

∫ T

0

〈δu′(t)∂
2H(t, ψ, x, u)

∂x∂u
G(t, s)

∂f(s, x, u)
∂u

, δu(s)〉 dt ds
}
.

(4.5)

Theorem 4.1. If the admissible control u(t) satisfies condition (4.3), then for its
optimality in problem 1.1–(1.4), the inequality

δ2J(u) = −
{∫ T

0

∫ T

0

〈δ′u(τ)
∂′f(τ, x, u)

∂u
R(τ, s)

∂f(s, x, u)
∂u

, δu(s)〉dτ ds

+
∫ T

0

〈δ′u(τ)
∂2H(t, ψ, x, u)

∂u2
, δu(t)〉dt

+ 2
∫ T

0

∫ T

0

〈δu′(t)∂
2H(t, ψ, x, u)

∂x∂u
G(t, s)

∂f(s, x, u)
∂u

, δu(s)〉 dt ds
}
≥ 0

(4.6)
is satisfied for all δu(t) ∈ L∞[0, T ].

The analogous to the Legandre-Klebsh condition for the considered problem
follows from condition (4.6).

Theorem 4.2. Along the optimal process (u(t), x(t)) for all ν ∈ Rr and θ ∈ [0, T ]

ν′
∂2H(θ, ψ(θ), x(θ), u(θ))

∂u2
ν ≤ 0. (4.7)

Proof. For the proof of estimate (4.7), we will construct the variation of the control
by

δu(t) =

{
v t ∈ [θ, θ + ε) ,
0 t /∈ [θ, θ + ε),

(4.8)

where ε > 0, v is some r-dimensional vector.
By (3.9) the corresponding variation of the trajectory is

δx(t) = a(t)ε+ o(ε, t), t ∈ (0, T ), (4.9)

where a(t) is a continuous bounded function.
Substitute variation (4.8) in to (4.6) and select the principal term with respect

to ε. Then

δ2J(u) = −
∫ θ+ε

θ

v′
∂2H(t, ψ(t), x(t), u(t))

∂u2
vdt+ o(ε)

= −εv′ ∂
2H(θ, ψ(θ), x(θ), u(θ))

∂u2
v + o1(ε).

Thus, considering the second condition of (4.1), we obtain the Legandre-Klebsh
criterion (4.7). The proof is complete. �
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The condition (4.7) is the second-order optimality condition. It is obvious that
when the right-hand side of system (1.1) and function F (t, x, u) are linear with
respect to control parameters, condition (4.7) also degenerates; i.e., it is fulfilled
trivially. Following [11, p. 27] and [14, p. 40], if for all θ ∈ (0, T ), ν ∈ Rr,

∂H(θ, ψ(θ), x(θ), u(θ))
∂u

= 0, ν′
∂2H(θ, ψ(θ), x(θ), u(θ))

∂u2
ν = 0,

then the admissible control u(t) is said be a singular control in the classical sense.

Theorem 4.3. For optimality of the singular control u(t) in the classical sense,

ν′
{∫ T

0

∫ T

0

〈∂f(t, x, u)
∂u

R(t, s),
∂f(s, x, u)

∂u
〉 dt ds

+ 2
∫ T

0

∫ T

0

〈∂
2H(t, ψ, x, u)

∂x∂u
G(t, s),

∂f(s, x, u)
∂u

〉 dt ds
}
ν ≤ 0

(4.10)

is satisfied for all ν ∈ Rr.

Condition (4.10) is a necessary condition of optimality of an integral type for
singular controls in the classical sense. Choosing special variation in different way
in formula (4.9), we can get various necessary optimality conditions.

Conclusion. In this work, the optimal control problem is considered when the
state of the system is described by the impulsive differential equations with integral
boundary conditions. Applying the Banach contraction principle the existence and
uniqueness of the solution is proved for the corresponding boundary problem by
the fixed admissible control. The first and second variation of the functional is
calculated. Various necessary conditions of optimality of the first and second order
are obtained by the help of the variation of the controls. These statements are
formulated in [2] without proof. Of course, such type of existence and uniqueness
results hold under the same sufficient conditions on nonlinear terms for the system
of nonlinear impulsive differential equations (1.1), subject to multi-point nonlocal
and integral boundary conditions

Ex(0) +
∫ T

0

m(t)x(t)dt+
J∑
j=1

Bjx(λj) =
∫ T

0

g(s, x(s))ds, (4.11)

and impulsive conditions

x(t+i )− x(ti) = Ii(x(ti)), i = 1, 2, . . . , p, 0 < t1 < t2 < · · · < tp < T, (4.12)

where Bj ∈ Rn×n are given matrices and

‖
∫ T

0

m(t)dt‖+
J∑
j=1

‖Bj‖ < 1.

Here, 0 < λ1 < · · · < λJ ≤ T . Moreover, method in monographs [9, 10] and the
method present paper permit us investigate optimal control problem for infinite
dimensional impulsive systems with integral boundary conditions.
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