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CONSTANT SIGN SOLUTIONS FOR SECOND-ORDER m-POINT
BOUNDARY-VALUE PROBLEMS

JINGPING YANG

Abstract. We will study the existence of constant sign solutions for the

second-order m-point boundary-value problem

u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =

m−2X
i=1

αiu(ηi),

wherem ≥ 3, ηi ∈ (0, 1) and αi > 0 for i = 1, . . . ,m−2, with
Pm−2

i=1 αi < 1, we
obtain that there exist at least a positive and a negative solution for the above

problem. Our approach is based on unilateral global bifurcation theorem.

1. Introduction

In recent years, there has been considerable interests in the existence of nodal
solutions of second-order m-point boundary value problems (BVPs) of the form

u′′(t) + f(u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi),
(1.1)

see [1, 2, 6, 8, 9] and the references therein.
Ma and O’Regan [6] considered (1.1) under the assumption f ∈ C1(R,R) with

sf(s) > 0 for s 6= 0. They obtained the existence of nodal solutions for f0, f∞ ∈
(0,∞), where f0 = limu→0

f(u)
u , f∞ = limu→∞

f(u)
u .

In 2011, An [2] considered the problem

u′′(t) + λf(u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi)
(1.2)

under the assumption f ∈ C1(R\{0},R) ∩ C(R,R) with sf(s) > 0 for s 6= 0. She
investigated the global structure of nodal solutions of (1.2) in the case f0 = ∞,
f∞ ∈ [0,∞], by using Rabinowit’s global bifurcation theorem.

2000 Mathematics Subject Classification. 34B18, 34C25.

Key words and phrases. Constant sign solutions; eigenvalue; bifurcation methods.
c©2013 Texas State University - San Marcos.

Submitted November 8, 2012. Published March 5, 2013.

1



2 J. YANG EJDE-2013/65

From above results, we can see that the existence results are largely based on
the assumption that f0, f∞ are constants and nonlinearity term is autonomous. It
is interesting to know what will happen if f0, f∞ are functions and the nonlinear
term is non-autonomous?

The above results rely largely on the direct computation of eigenvalues and eigen-
functions of the linear problem associated with (1.2), hence, it can not be extended
to the more general problem. In view of the fact that the principle eigenvalue can be
easily obtained by Krein-Rutman Theorem, in this paper, we obtain the existence
of constant sign solution for

u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi)
(1.3)

by relating it to the principle eigenvalue of the associated linear problem. We make
the following assumptions:

(H1) λ1 ≤ a(t) ≡ lim|s|→+∞
f(t,s)
s uniformly on [0, 1], and the inequality is strict

on some subset of positive measure in (0, 1); where λ1 denotes the principle
eigenvalue of

ψ′′(t) + λψ(t) = 0, t ∈ (0, 1),

ψ(0) = 0, ψ(1) =
m−2∑
i=1

αiψ(ηi);
(1.4)

(H2) 0 ≤ lim|s|→0
f(t,s)
s ≡ c(t) ≤ λ1 uniformly on [0, 1], and all the inequalities

are strict on some subset of positive measure in (0, 1);
(H3) f(t, s)s > 0 for all t ∈ (0, 1) and s 6= 0.

By applying the bifurcation theorem of López-Gómez [4, Theorem 6.4.3], we will
establish the following results.

Theorem 1.1. Suppose that f(t, u) satisfies (H1)–(H3). Then (1.3) possesses at
least one positive and one negative solution.

Similar result is obtained under the following assumptions.

(H1’) λ1 ≥ a(t) ≡ lim|s|→+∞
f(t,s)
s ≥ 0 uniformly on [0, 1], and all the inequalities

are strict on some subset of positive measure in (0, 1), where λ1 denotes
the principle eigenvalue of (1.4);

(H2’) lim|s|→0
f(t,s)
s ≡ c(t) ≥ λ1 uniformly on [0, 1], and the inequality is strict

on some subset of positive measure in (0, 1).

Theorem 1.2. Suppose that f(t, u) satisfies (H1’), (H2’), (H3). Then (1.3) pos-
sesses at least one positive and one negative solution.

The existence of constant sign solutions of (1.3) is related to the eigenvalue
problem

u′′(t) + µf(t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi),
(1.5)
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where µ > 0 is a parameter. Therefore, we will study the bifurcation phenomena for
(1.5) with crossing nonlinearity. Moreover, the bifurcation point of (1.5) is related
to the principle eigenvalues of the problem

u′′(t) + µc(t)u(t) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi),
(1.6)

it is well-known that there exists a principle eigenvalue µ1(c(t)) of (1.6) (see [10]).
The rest of the paper is organized as follows: in Section 2, we state some notations

and preliminary results. In Section 3, we prove the main results.

2. Notation and preliminary results

To show the constant sign solutions of (1.5), we consider the operator equation

u = µTu. (2.1)

This equations are usually called nonlinear eigenvalue problems. López-Gómez [4]
studied a nonlinear eigenvalue problem of the form

u = µTu+H(µ, u), (2.2)

where H(µ, u) = o(‖u‖) as ‖u‖ → 0 uniformly for µ on a bounded interval, and
T is a linear completely continuous operator on a Banach space X. A solution of
(2.2) is a pair (µ, u) ∈ R×X, which satisfies (2.2). The closure of the set nontrivial
solutions of (2.2) is denoted by C. Let Σ(T ) denote the set of eigenvalues of linear
operator T . López-Gómez [4] established the following results.

Lemma 2.1 ([4, Theorem 6.4.3]). Assume Σ(T ) is discrete. Let µ0 ∈ Σ(T ) such
that ind(I − µT, θ) changes sign as µ crosses µ0, then each of the components C
(denote the components of S emanating of (µ, θ) at (µ0, θ)), satisfies (µ0, θ) ∈ C,
and either

(i) C is unbounded in R×X;
(ii) there exist λ1 ∈ Σ(T ) \ {λ0} such that (λ1, θ) ∈ C; or

(iii) C contains a point

(ι, y) ∈ R× (V \{θ}),
where V is the complement of span{ϕµ0}, ϕµ0 denotes the eigenfunction
corresponding to eigenvalue µ0.

Lemma 2.2 ([4, Theorem 6.5.1]). Under the assumptions:
(A) X is an ordered Banach space, whose positive cone, denoted by P , is normal

and has a nonempty interior;
(B) The family Υ(µ) has the special form

Υ(µ) = IX − µT,
where T is a compact strongly positive operator, i.e., T (P\{θ}) ⊂int P;

(C) The solutions of u = µTu+H(µ, u) satisfy the strong maximum principle.
Then the following assertions are true:

(1) Spr(T ) is a simple eigenvalue of T , having a positive eigenfunction denoted
by ψ0 > 0, i.e., ψ0 ∈ intP , and there is no other eigenvalue of T with a
positive eigenfunction;
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(2) For every y ∈int P, the equation

u− µTu = y

has exactly one positive solution if µ < 1
Spr(T ) , whereas it does not admit a

positive solution if µ ≥ 1
Spr(T ) .

Lemma 2.3 (cite[Theorem 2.5]b1). Assume T : X → X is a linear completely
continuous operator, and 1 is not an eigenvalue of T , then

ind(I − T, θ) = (−1)β ,

where β is the sum of the algebraic multiplicities of the eigenvalues of T large than
1, and β = 0 if T has no eigenvalue of this kind.

Let Y be the space C[0, 1] with the norm ‖u‖∞ = maxt∈[0,1] |u(t)|. Let

E = {u ∈ C1[0, 1] : u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi)}

with the norm
‖u‖ = max

t∈[0,1]
|u(t)|+ max

t∈[0,1]
|u′(t)|.

Define L : D(L)→ Y by setting

Lu(t) := −u′′(t), t ∈ [0, 1], u ∈ D(L),

where

D(L) = {u ∈ C2[0, 1] : u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi)}.

Then L−1 : Y → E is compact.
Let E = R × E under the product topology. As in [7], we add the point

{(µ,∞)| µ ∈ R} to our space E. For any u ∈ C1[0, 1], if u(x0) = 0, then x0 is
a simple zero of u if u′(x0) 6= 0. For ν ∈ {+,−}, define:

• Sν1 is the set of functions such that
(i) u(0) = 0, νu′(0) > 0;

(ii) u has constant sign in (0, 1).
• T ν1 is the set of functions such that

(i) u(0) = 0, νu′(0) > 0 and u′(1) 6= 0;
(ii) u′ has exactly one simple zero point in (0, 1);
(iii) u has a zero strictly between each two consecutive zeros of u′.

Obviously, if u ∈ T ν1 , then u ∈ Sν1 . The sets T ν1 are disjoint and open in E, (see [8,
Remark 2.2]). Finally, let φν1 = R× T ν1 .

Furthermore, let ζ ∈ C([0, 1]× R) be such that f(t, u) = c(t)u+ ζ(t, u) with

lim
|u|→0

ζ(t, u)
u

= 0 uniformly on [0, 1].

Let
ζ̄(t, u) = max

0≤|s|≤u
|ζ(t, s)| for t ∈ [0, 1].

Then ζ̄ is nondecreasing with respect to u and

lim
u→0+

ζ̄(t, u)
u

= 0. (2.3)
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From this equality, it follows that

ζ(t, u)
‖u‖

≤ ζ̄(t, |u|)
‖u‖

≤ ζ̄(t, ‖u‖∞)
‖u‖

≤ ζ̄(t, ‖u‖)
‖u‖

→ 0, as ‖u‖ → 0

uniformly for t ∈ [0, 1].
Let us study

Lu− µc(t)u = µζ(t, u) (2.4)

as a bifurcation problem from the trivial solution u ≡ 0. Equation (2.4) can be
converted to the equivalent equation

u(t) =
∫ 1

0

G(t, s)[µc(s)u(s) + µζ(s, u(s))]ds

:= µL−1[c(t)u(t)] + µL−1[ζ(t, u(t))],

where G(t, s) denotes the Green’s function of Lu = 0.
We note that ‖L−1[ζ(t, u(t))]‖ = o(‖u‖) for u near 0 in E. Since

‖L−1[ζ(t, u(t))]‖ = max
t∈[0,1]

|
∫ 1

0

G(t, s)ζ(s, u(s))ds|+ max
t∈[0,1]

|
∫ 1

0

Gt(t, s)ζ(s, u(s))ds|

≤ C‖ζ(t, u(t))‖∞.

Lemma 2.4 ([8, Proposition 4.1]). If (µ, u) ∈ E is a non-trivial solution of (2.4),
then u ∈ T ν1 for ν ∈ {+,−}.

Lemma 2.5. For ν ∈ {+,−}, there exists a continuum Cν1 ⊂ E of solutions of
(2.4) with the properties:

(i) (µ1(c(t)), θ) ∈ Cν1 ;
(ii) Cν1 \{(µ1(c(t)), θ)} ⊂ R× T ν1 ;

(iii) Cν1 is unbounded in E, where µ1(c(t)) denotes the principle eigenvalue of
(1.6).

Proof. From above, we know that problem (2.4) is of the form considered in [4],
and satisfies the general hypotheses imposed in that paper.

From [10], we know that the principle eigenvalues of (1.6) is simple. So for
ν ∈ {+,−}, combining Lemma 2.1 with Lemma 2.3, we know that there exists a
continuum, Cν1 ⊂ E, of solutions of (2.4) such that:

(a) Cν1 is unbounded and (µ1(c(t)), θ) ∈ Cν1 , Cν1 \{(µ1(c(t)), θ)} ⊂ E, or
(b) (µj(c(t)), θ) ∈ Cν1 , where j ∈ N, µj(c(t)) is another eigenvalue of (1.6) if

possible, or
(c) Cν1 contains a point

(ι, y) ∈ R× (V \{θ}),

where V is the complement of span{ϕ1}, ϕ1 denotes the eigenfunction cor-
responding to principle eigenvalue µ1(c(t)).

We finally prove that the first choice (a) is the only possibility. In fact, all
functions belong to the continuum set Cν1 are constant sign, this implies that it
is impossible to exist (µj(c(t)), θ) ∈ Cν1 , j ∈ N, j 6= 1, where µj(c(t)) is another
eigenvalue of (1.6) if possible. If this happened, it will be contracted with the
definition of Sν1 .
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Next, we will prove (c) is impossible, suppose (c) occurs, without loss of gener-
ality, suppose there exists a point (ι, y) ∈ R× (V \{θ}) ∩ C+1 . Define

P = {u ∈ C1[0, 1] : u(t) ≥ 0, t ∈ [0, 1]},

then P is a normal cone and has a nonempty interior, and C+1 \{(µ1(c(t)), θ)} ⊂
intP .

Note that as the complement V of Span{ϕ1} in E, we can take

V := R[c(t)IE −
1

µ1(c(t))
L].

Thus, for this choice of V , if the component C+1 contains a point

(ι, y) ∈ R× (V \{θ}) ∩ C+1 .

Then there exists u ∈ E for which

c(t)u− 1
µ1(c(t))

Lu = y > 0, in (0, 1).

Thus, for each sufficiently large η > 0, we have that c(t)u+ηϕ1(t) > 0 in (0, 1) and

c(t)u+ ηc(t)ϕ1(t)− 1
µ1(c(t))

L(u+ ηϕ1) = y > 0 in (0, 1).

Hence, by Lemma 2.2, we have

Spr(
1

µ1(c(t))
L) < 1,

which is impossible. since Spr(L) = µ1(c(t)). �

3. Proof of main results

Proof of Theorem 1.1. Theorem 1.2 is proved in similar manner. It is clear that
any solution of (2.4) of the form (1, u) yields a solution u of (1.3). We will show
Cν1 crosses the hyperplane {1} × E in R× E.

By µ1(c(t)) being strict decreasing with respect to c(t) (see [5]), where µ1(c(t))
is the principle eigenvalue of (1.6), we have µ1(c(t)) > µ1(λ1) = 1.

Let (µn, un) ∈ Cν1 with un 6≡ 0 satisfies

µn + ‖un‖ → +∞.

We note that µn > 0 for all n ∈ N, since (0, θ) is the only solution of (2.4) for µ = 0
and Cν1 ∩ ({0} × E) = ∅.

Step 1: We show that if there exists a constant M > 0, such that µn ⊂ (0,M ]
for n ∈ N large enough, then Cν1 crosses the hyperplane {1} × E in R× E. In this
case it follows that ‖un‖ → ∞.

Let ξ ∈ C([0, 1]× R) be such that

f(t, u) = a(t)u+ ξ(t, u)

with

lim
|u|→+∞

ξ(t, u)
u

= 0 uniformly on [0, 1]. (3.1)

We divide the equation

Lun − µna(t)un = µnξ(t, un) (3.2)
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by ‖un‖ and set ūn = un

‖un‖ . Since ūn is bounded in C2[0, 1], after taking a subse-
quence if necessary, we have that ūn → ū for some ū ∈ E with ‖ū‖ = 1. By (3.1),
using the similar proof of (2.3), we have that

lim
n→+∞

ξ(t, un(t))
‖un‖

= 0 inY.

Thus, we obtain
−ū′′ − µ(a(t))a(t)ū = 0,

where µ(a(t)) = lim
n→+∞

µn.

It is clear that u ∈ Cν1 ⊆ Cν1 , since Cν1 is closed in R × E. Therefore, µ(a(t)) is
the principle eigenvalue of (1.6) corresponding to weight function a(t).

By the strict decreasing of µ(a(t)) with respect to a(t) (see [5]), we have µ(a(t)) <
µ(λ1) = 1. Therefore, Cν1 crosses the hyperplane {1} × E in R× E.

Step 2: We show that there exists a constant M such that µn ∈ (0,M ] for
n ∈ N large enough. On the contrary, we suppose that limn→+∞ µn = +∞. On
the other hand, we note that

−u′′n = µn
f(t, un)
un

un.

We have µn
f(t,un)
un

> λ1 for n large enough and all t ∈ (0, 1]. We get un must
change its sign in (0, 1) for n large enough, which contradicts the fact that un ∈ T ν1 .
Therefore,

µn ≤M
for some constant positive M and n ∈ N sufficiently large. �
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