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EXISTENCE AND STABILITY OF SOLUTIONS TO NEUTRAL
EQUATIONS WITH INFINITE DELAY

XIANLONG FU

ABSTRACT. In this article, by using a fixed point theorem, we study the exis-
tence and regularity of mild solutions for a class of abstract neutral functional
differential equations with infinite delay. The fraction power theory and a-
norm is used to discuss the problem so that the obtained results can be ap-
plied to equations with terms involving spatial derivatives. A stability result
for the autonomous case is also established. We conclude with an example
that illustrates the applications of the results obtained.

1. INTRODUCTION

In this article, we study the existence, regularity and stability of mild solutions
for the following abstract neutral functional evolution equation with infinite delay:

i[x(t) + F(t,zy)] + Az(t) = G(t,x¢), 0<t<a,

dt (1.1)
o= ¢ € B,

where z(-) takes values in a subspace of Banach space X, the operator —A : D(A) —
X generates an analytic semigroup (S(t))i>0, and F,G : [0,a] x B, — X are
appropriate functions, £, C 4, and & is the phase space to be specified later.
Since many practical functional differential models can be studied by rewritten
to abstract equation , in these years there has been an increasing interest in
the study of semilinear evolution equations of form , such as existence and
asymptotic behavior of solutions (mild solutions, strong solutions and classical so-
lutions), and existence of (almost) periodic solutions, etc. Here we mention the
work of Travis and Webb [25], Rankin IIT [21], Batkail and Piazzera [4] for the
case of finite delay, and Henriquez [12], Adimy et al [1]-[3], Liu [19], Diagana and
Herndndez[6], Herndndez et al [15, [16] [17] and Ye [28] for the case of infinite delay.
In [13] and [14] Herndndez and Henriquez have extended the problem studied in
[12] to neutral equations and established the corresponding existence results of so-
lutions and periodic solutions. In their work, the operator A generates an analytic
semigroup so that the theory of fractional power has been used effectively there
to obtain the existence of mild solutions, strong solutions and periodic solutions
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for . In the subsequent years, various similar results have been established
by many mathematicians. In paper [I]-[3] Adimy et al have discussed this topic
for the equations where the linear parts are non-densely defined and have also
achieved some similar results. Particularly, in paper [2] the authors have discussed
the following functional differential system with infinite delay:

d

%[x(t) + F(t,zy)] = Alz(t) + F(t,z)] + G(t, 7)), 0<t<a,

1‘0:@56:@,

(1.2)

where A is non-densely defined Hille-Yosida operator and generates an integrated
semigroup. The authors have proved there the existence, uniqueness and the regu-
larity of integral solutions, and have investigated the stability near an equilibrium
associated to the autonomous case of .

The purpose of this article is to extend the work in [I3] and [2] so that the
corresponding results can be applied to the system

0 0 0? 0
E[U(t, l‘) + f(t, u('w%')? %U(J CE))] + @u(tﬂ”) = g(t7u(~,x), %u(wr))a

2(t) = 2(t,7) = 0, (1.3)
z(0,2) = ¢(0,2),0 <0, 0<z<m.

Evidently, this system can be treated as the abstract equation 7 however, the
results established in [I3] become invalid for this situation, since the functions
f, gin involve spatial derivatives. As one will see in Section 5, if take X =
L2([0, 7)), then the third variables of f and g are defined on X 1 and so the solutions
can not be discussed on X like in [I3]. In this paper, inspired by the work in [26], [27]
and [§], we shall discuss this problem by using fractional power operators theory
and a—norm, that is, we shall restrict this equation in a Banach space X,(C X)
and investigate the existence and regularity of mild solutions for , as well as
the stability for the autonomous equation via || - ||o. We mention here that, for the
regularity of mild solutions, other than paper [13], we obtain the existence of strict
solutions (not strong solutions) for Eq. under Holder continuous conditions,
see Section 3.2.

This article is organized as follows: we firstly introduce some preliminaries about
analytic semigroup and phase space for infinite delay in Section 2, particularly, to
make them to be still valid in our situation, we have restated the axioms of phase
space on the space X,. The existence and uniqueness results of mild solutions
are discussed in Section 3 by applying fixed point theorem. In this section we also
provide some sufficient conditions to guarantee the regularity of mild solutions, that
is, we obtain the existence of strict solutions. In section 4, we are concerned with
the stability of mild solutions. As in [2], we state in this part some properties of the
solution operator associated to the autonomous case of . Also, we investigate
here the stability near an equilibrium for this situation by using linearized technique.
Finally, an example is presented in Section 5 to show the applications of the results
obtained.
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2. PRELIMINARIES

Throughout this paper X is a Banach space with norm ||-||. And, —A: D(—A4) —
X is the infinitesimal generator of a compact analytic semigroup (S(t))¢>o of uni-
formly bounded linear operators. Let 0 € p(A). Then it is possible to define the
fractional power A% , for 0 < a < 1, as a closed linear operator on its domain
D(A®) . Furthermore, the subspace D(A?%) is dense in X and the expression

[zlla = [[A%2]|, 2 € D(A®),

defines a norm on D(A®). Hereafter we denote by X, the Banach space D(A%)
normed with ||z||o. Then for each @ > 0, X, is a Banach space, and X, — Xg for
0 < B < « and the imbedding is compact whenever the resolvent operator of A is
compact.

For the semigroup (S(t)):>0, the following properties will be used:

(a) There exist M > 1 and w € R such that
S| < Me“*, for all t > 0; (2.1)
(b) For any o > 0, there exists a constant C,, > 0 such that

Co
|A*S(t)]| < t—aewt, t > 0. (2.2)

(c) For every a > 0, there exists a constant C?, > 0 such that
I(S(t) — DA~ | <Cit*, 0<t<a. (2.3)

In the sequel, we will use directly the estimates ||S(¢)|] < M and ||A*S(t)| < %"
on finite intervals. For more details about the theory of operator semigroups and
fraction powers of operators, we refer to [7] and [22].

To study (I.1)), we assume that the histories z; : (—00,0] — X, z4(6) = z(t +6),
belong to some abstract phase space %, which is defined axiomatically. In this
article, we employ an axiomatic definition of the phase space & introduced by Hale
and Kato [I0] and follow the terminology used in [I8]. Thus, % will be a linear
space of functions mapping (—oo,0] into X endowed with a seminorm || - ||z. We
assume that & satisfies the following axioms:

(A1) f 2 : (—o0,0 +a) — X, a > 0, is continuous on [0,0 + a) and z, € A,

then for every t € [0, 0 + a) the following statements hold:

(i) @ is in %;

i) l2(t)] < Hllwills

(iil) ||z¢]|a < K(t — o) sup{||z(s)]| : 0 < s <t} + M(t — 0)||xs]||,. Here
H > 0 is a constant, K, M : [0,4+00) — [0,+00), K(-) is continuous
and M(-) is locally bounded, and H, K(-), M(-) are independent of
x(t).

(A2) For the function x(:) in (Al), z; is a %B-valued continuous function on

[, 0 + al.

(B1) The space £ is complete.

We denote by A, the set of all the elements in A that take values in space X;
that is,

B ={p € B:¢p(0) € X, for all 6 <0}.
Then%,, becomes a subspace of % endowed with the seminorm | - ||g, which is
induced by || - || through || - ||o. More precisely, for any ¢ € %,, the seminorm
I - ||, is defined by ||A%4(0)|], instead of ||¢(6)]|. For example, let the phase space
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B =0CpxLP(g:X), r>0,1<p< oo (cf. [I8]), which consists of all classes of
functions ¢ : (00,0] — X such that ¢ is continuous on [—r, 0], Lebesgue-measurable,
and g¢||¢(-)||P is Lebesgue integrable on (—oo, —r), where g : (—o0,—r) — Ris a
positive Lebesgue integrable function. The seminorm in &£ is defined by

-

Iollo = supfo0) <0 <0y + ([ g@oriras)"”

Then the seminorm in %, is defined by

—r

loll, = sup(la6@)] : —r <0 <0p+ ([ g@acs)pan) "

— o0
See also the space € 1 presented in Section 5. Hence, since X4, is still a Banach
space, we will assume that the subspace %, also satisfies the following conditions:

(A1) If 2 : (—o00,0 +a) — X,, a > 0, is continuous on [o,0 + a) (in a—norm)

and z, € By, then for every t € [0,0 + a) the followings hold:
(i) @ is in Ba;

i) l2(t) o < Hlle] .
(i) [lzcll, < K(t — o) sup{|a(s)lla : 0 < 5 < t} + M(t — 0) |z ..
Here H, K(-) and M(-) are as in (A)(iii) above.

(A2’) For the function z(-) in (A), x; is a HBy-valued continuous function on
[0,0 + al.

(B1’) The space 4, is complete.

Finally we conclude this section by stating the following two theorems, which
play an essential role for our proofs in the next section.

Theorem 2.1 ([24]). Let P be a condensing operator on a Banach space X ; i.e.,
P is continuous and takes bounded sets into bounded sets, and a(P(B)) < «a(B) for
every bounded set B of X with a(B) > 0. If P(H) C H for a convez, closed and
bounded set H of X, then P has a fized point in H (where a(-) denotes Kuratowski’s
measure of non-compactness).

Theorem 2.2 ([5]). Let (V(t))i>0 be a nonlinear strongly continuous semigroup on
subset Q of a Banach space X. Assume that xo € Q is an equilibrium of (V (t))i>0
and V (t) is Fréchet-differentiable at xo for t > 0, with W (t) the Fréchet derivative
at xg of V(t). Then (W (t))i>o0 is a strongly continuous semigroup of bounded linear
operators on X. Moreover, if the zero equilibrium of (W (t))i>0 is exponentially
stable, then xo is a locally exponentially stable equilibrium of (U(t))i>0.

3. EXISTENCE RESULTS
We devote this section to study the existence and regularity of mild solutions for

[TD).

3.1. Existence of mild solutions. A mild solution of (1.1)) is defined as follows.

Definition 3.1. A function z(-) : (—o00,b] — D(A%), b > 0, is a mild solution of
(1.1)), if xo = ¢, the restriction of z(+) to the interval [0, b] is continuous and for each
0 <t < b, the function AS(t — s)F(s,zs), s € [0,1) is integrable and the following
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integral equality is satisfied:

x(t) = S(t)[¢(0) + F(0,¢)] — F(t,z¢) + / AS(t — s)F(s,x5)ds

. 0 (3.1)

—I—/ S(t—s)G(s,x5)ds, 0<t<b.
0

The last two terms are integrals in sense of Bocher (see [20]).

We now give the basic assumptions for in our discussion. Let Q C A, be
an open set.
(H1) F:[0,a] x Q — D(A**P) is a continuous function for some 3 € (0, 1) with
a+ [ <1, and there exists [ > 0 such that the function A?F satisfies:

|APF(s1,¢1) — APF (s, $2)lla < U|s1 — 52| + |61 — 2|2 (3:2)
for any 0 < 51,52 < a, ¢1, ¢2 € €1, and the inequality
MIK(0) <1 (3.3)

holds, where M; := [|[A=7].
(H2) The function G : [0, a] x  — X is continuous.

Theorem 3.2. Let ¢ € Q. If assumptions (H1), (H2) are satisfied, then (1.1)
admits at least one mild solution on (—oo,bg] for some by < a.

Proof. Let y(+) : (—o0,a] — X, be the function defined by

) S®)e(0), t=0,
y(t) := {(Z)(t), —0 <t <0,

then yo = ¢, y+ € B, for any ¢ € [0, a], and it is easy to prove that the map ¢ — y(t)
is continuous in a— norm on [0, a], hence ¢ — y; is continuous in seminorm || - ||z, .
We denote Ny := sup{||ys[|l, : 0 < t < a}. Since APF(-,-) satisfies Lipschitz
condition, G is continuous and (2 is open, there exists r > 0 such that B,.(¢) C Q
and [|APF(t,9)|| < Ny and ||G(¢,9)|| < N3 for constants Ny, N3 > 0 and all
(t,9) € [0,a] X Br(¢). In the sequel, we always denote
K, := sup K(s), M;:= sup M(s).

s€[0,t] s€[0,t]

As yo = ¢, we may choose 0 < by < a such that ||y —¢||z, < r/2forall 0 <t <by.
Let p = 57—, and define the set
S(p) :==A{z € C([0,bg]; Xa) : 2(0) = 0, [[z(D)[[a < p, 0 <t <y},

where by (< b1) will be determined below. Then S(p) is clearly a non-empty
bounded, closed and convex subset of C([0, bg]; Xo). For each z € S(p), we denote
by Z the function defined by

Z(t) :==

Obviously, if () satisfies (3.1), we can decompose it as x(t) = z(t) + y(¢), 0 <t <
by, which implies x; = Z; + y; for every 0 <t < b, and the function z(-) satisfies

2(t), 0<t< by,
0, —oco<t<O.

2(t) = S(t)F(0,¢) — F(t, 2 + y) + /O AS(t — s)F(s, Zs + ys)ds
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t
—|—/ S(t—35)G(s,Zs +ys)ds, 0<t < by.
0
Let P, P, P, be the operators on S(p) defined, respectively, by

(P2)(t) := S()F(0,¢) — F(t, 2 + y:) + /0 AS(t —s)F (s, 2o + ys)ds

t
+ / S(t— 8)G(s, zs + ys)ds,
0

(P12)(t) == St)F(0,9) — F(t,zs + y1) + ; AS(t — s)F (s, zs + ys)ds

and
(Py2)(t) 1= /0 S(t — $)G(s, 2, + ys)ds.

Then, the assertion that admits a mild solution is equivalent to P = P; + P;
has a fixed point. Next we prove that P has a fixed point by using Theorem[2.1] For
this purpose, we will show that P maps S(p) into itself and P; verifies a contraction
condition while P; is a completely continuous operator.

Initially, we see that if z(t) € S(p), then Z, + y; € B, (¢) for all 0 <t < by. In
fact, Axiom (A1’) of the phase space A, yields that

12t +y: — Bz, < z2tllz. + lye — ¢l .,
< K(t) sup |[[2(s)]la + [lyr — &l 2.
0<s<t

< Kp,p+ g <.
To show that P maps S(p) into S(p), let z € S(p). Then
(Pr2)(t) = S()A™P[AF(0,¢) — APF(t,y,)]
+(5@) = DF (¢, 1)
+ APIAPF (ty) — APF(t, 2 + )]

t
+ / AS(t — s)F (s, Zs + ys)ds,
0

then from assumption (H1), and it follows that
1(Pr2)(t)llo < ISOIATP A (AP F(0,¢) — APF(t,5.)|
+H[A%(S(t) = DATPAPF (8, 1)
+ [ AP A (AP (t,y0) — AF(t, 2+ y0))|

t
4 1A= AP (5,2 + ) ds
0

< MM(t+ ||y — dll.) + MiCyNot?
t
1
MK, Ci—gNs | ——=ds.
+ MylKy,p+Cip 2/0 t—sp""

for 0 <t < by. And we have also that

P20l =1 [ A7~ 5)G 0,2+ o)l < Cabs [ s
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Therefore, by (3.3) we may choose by, 0 < by < by such that
le,BN2tﬁ . CozNStl_a

MMyt + |lyr — ¢llz,) + MiChNot” +

B -« (3.4)
< (11— MlKy,,)p
for all 0 <t < by, and
b=h
I = UKy, (M + Cl,gl“’_—ﬁ) <1. (3.5)

Hence from (3.4)) we obtain that

[(P2)(O)]la < 1(Pr2)(0)lla + [[(P22)()]|a
< (1= MKy, )p+ MKy, p = p,

which shows P maps S(p) into itself.
Now we prove that P; is a contraction map. Take z1,29 € S(p), then for each
t € [0,by] and by Axiom (A1)(ii) and (3.2)), we have

[(Prz1)(t) = (Pr22)(t)]a
<|F(t,z10 +y1) — F(t, 220 + Yol

t
[ S = 9IF(s, 200+ 00) = s,z + )lds]
0

t
_ _ Cig . _
<Ml - zailla, + | D5l i, ds
o (t—s)P
pi=h
< UKy, (My + Cip=—2—) sup |l21(s) — 22(5)la
1 =B 0<s<b,
=1 sup |z(s) — 22(8)a,

0<s<by
where [* < 1 by (3.5). Thus
|Prz1 — Piza|la < 1*||21 — 22]|a,

and so P; is a contraction.

To prove that P» is a completely continuous operator, first we note that Ps is
obviously continuous on S(p). Then we prove that the family {Pyz : z € S(p)} is a
family of equi-continuous functions. To do this, let 0 < ¢ < by, h > 0 be sufficient
small, then

I(Paz)(t + 1) — (Poz) (1)
o z ' « — 5 S,z S
:”/0 A S<t+h—s>c<s,zs+ys)ds—/o A®S(t — 5)G(s, 7 + y2)ds|
< / JAS(S(t + h — 5) — S(t — )5, 2 + ys)ds
0

+ / |A(S(t+h— ) — S(t — )G (5. 7 + y.)||ds

—€

t+h
+/ |A“S(t+ h — 9)||G(s, Zs + ys)||ds.
t



8 XIANLONG FU EJDE—2013/55
t—e
< N3[S(h+ ) - 5(9)| / |A°S(t — 5 — o)l|ds
0

t

+ Ng/ JAS[S(t + b — 8) — S(t — 5)]||ds
t—e
t+h

+ Ns| / AT (t+ h — s)ds||

t

o Nyt~ S+ e) — S|

Ca

<
1

Ca

Niht—e.

+1 Na[h'™* — (h— )7 + 7] + :
The right-hand side tends to zero as h — 0 with ¢ sufficiently small, since S(t)
is strongly continuous, and the compactness of S(t), ¢ > 0, implies the continuity
in the uniform operator topology. Hence, P> maps S(p) into a family of equi-
continuous functions.

It remains to prove that V() = {(P2z)(t) : z € S(p)} is relatively compact in
X,. Obviously it is true in the case t = 0. Observe that for 0 < a < a1 <1, t >0,

1A% (Pyz)(t)]| = | / A (1 — $)C(s, 7 + ya)ds|

t 1
< Cy, N: / ——ds,
2o (t—s)m

which implies that A“!(Pyz)(¢) is bounded in X, Hence, by the compactness of
operator A= : X — X, (note the imbedding X_,, <— X, is compact), we infer
that the set V(¢) is relatively compact in X,,. Thus, by Arzela-Ascoli theorem Py
is a completely continuous operator. These arguments enable us to conclude that
P = P, + P, is a condensing map on S(p), and by Theorem there exists a fixed
point z(-) for P on S(p), which implies equation admits a mild solution on
(—00,by]. Then the proof is complete. O

We can easily prove the following result on uniqueness of solutions.

Theorem 3.3. Assume the condition (H1) of the preceding theorem holds. If there
exists I’ > 0 such that

|G(t, 1) — G(t, d2)|| < Ulp1 — 2|2z,

for all 0 <t < a, and ¢1,¢2 € Q. Then, for any ¢ € Q, the problem (1.1) has a
unique mild solution on (—oo,by] for some by € (0,a).

The extension of solutions to (|1.1)) can also be obtained by standard arguments.
Here we only state the result as a theorem, the proof is very similar to that in Paper
[12] and [26].

Theorem 3.4. Assume that the conditions of Theorem or Theorem are
satisfied. Then, for any ¢ € Q, the equation (1.1) has a solution x(t) on a mazimal
interval of existence (—00, bmax). And, if byax < 00, then lim, - ||z(t)|o = oco.

max

3.2. Existence of strict solutions. In this subsection, we discuss the regularity
of mild solutions for (1.1)); that is, we will provide conditions to allow the differ-
entiability of mild solutions of (L.1)). For this purpose we need some additional
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properties of the phase subspace %,,. Let BC, be the set of bounded and continu-
ous functions mapping (—o0, 0] into X, and Cyg its subset consisting of functions
with compact support. If %, also satisfies the additional axiom:

(C1) If a uniformly bounded sequence {¢™(6)} in Cpp converges to a function
@(0) uniformly on every compact set on (—oo, 0], then ¢ € A, and

lim {|¢" — [z, = 0.

n—-+4oo

Then BC, is continuously imbedded into %4,. Put

[8llcc = sup{[|¢(0)|a : 6 < 0},
for ¢ € BC,, then one has the following result.

Lemma 3.5 ([10]). If the phase space B, satisfies the axiom (C1), then BC, C By,
and there exists a constant J > 0 such that ||¢|la, < J||¢lleo for all ¢ € BC,

Definition 3.6. A function z(:) : (—o0,b] — X,, b > 0, is said to be a strict
solution of problem (1.1)), if
(1) (t) + F(t,2) € C([0,b]; Xa) N CH((0,0]; X);
(2) z(-) € D(A) satisfies
d
D e(t) + (2] + Axlt) = G(t,2,),
on [0,b] and
To= ¢ € B,.
Theorem 3.7. Let the phase space B, satisfies the axiom (C1) additionally. Sup-
pose that condition (H1) and (H2) are satisfied. Also the following conditions hold:

(H1") Let z: (—00,a] — X, be a function such that z, € Q fort € [0,a] and z(-)
is continuous on [0,a], then the map t — APF(t,x;) is Holder continuous
in a—mnorm with exponent 0 < 61 < 1 satisfying 61 > 1 —a — 3.

(H2") Function G(-,-) is locally Hélder continuous; i.e., for each (t°, ¢°) € [0, a] x
Q, there exists a neighborhood W of (t°,¢°), and constants ly > 0, 0 <
0> < 1, such that

IG (52, ¢2) = G(s1. 1)l < laflsz — 511" + | d2 — dn %]

fmn (sia¢i) eWwcC ([O,G] X Q)7 i=1,2;
(H3) The initial function ¢ € 2 is Holder continuous, and ¢(0)+F (0, ¢) € D(A).
Then the equation (1.1)) has a strict solution on (—oo,by| for some by > 0.

Proof. By Theorem [3.2] we see that (L.1)) has a mild solution z(-) on (—o0, bg]. For
this z(-), let

)[6(0) + F(0,9)],

/ AS(t — s)F(s,zs)ds,

£ = / S(t — $)G(s,2.)ds.

It follows from (22.1)) and ( . ) that
[m(t + h) = m(t)]la = [ISE)(S(h) — T) A== 4" [6(0) + F(0, )]
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< MCLR™ ~*[¢(0) + F(0, )lar
where o’ > 0 is a constant chosen to satisfy a < o/ < a + 8,

[p(t+h) —p(t)[|a
t t+h
< / AS(t —s)[S(h) — INF(s,25)ds||o + || / AS(t+h —s)F(s,x5)ds| o
0 t
t
< H/ A=) 54— §)[S(h) — []A~(+-0) A9 4P (5. 2. )ds|
0
t+h
+ ||/ AVt 4+ h— ) A APF (s, 2.)ds|
t

t
S L/O Ol_(a/_a)C:l-i-ﬂ—o/ (t _ S)(a,*a)flhohkﬁfa'ds
t+h

[ Cuplt = sy has] max | APF (s, )l

Cr_(a/—a)C" ,
S[ 1—( )Y at+B—o

’r_ s Cl*
el et U] max ([ APF(5,,)o

and

lat +h) — a(®)]la

t t+h
<| / S(t - 8)[S(h) — 1)G(s,x)ds]la + | / S(t+h — $)G(s,2.)ds]|a
<I [ Al = )80 ~ 114 Gls. )]

t+h
+ ||/ A“S(t+ h — 8)G(s,xs)ds]|
t

t o t+h
< {/0 CoCli_((t—8)"*h™ " “ds + / Co(t+h— s)_o‘ds] max ||G(s, )|
t

0<5<by
CouC/ —af — o C.
CorCf ol 0 poatpa’-a g Lo pive) yax | G(s, 24l

<] ;
11—« 11—« 0<s<bg

from which we see that m(t), p(t) and ¢(t) are all Holder continuous on [0, bgs].
So combined condition (Hj) it is easy to deduce that z(-) is Holder continuous
on [0,by]. Since ¢ is Holder continuous on (—oo,0] we infer that x(-) is Holder
continuous on (—oo,be]. Thus, by Lemma the map t — x4(-, ¢) is also Holder

continuous on [0, by]. Hence the map

s — G(s,xs)

is Hélder continuous on [0, by]. Therefore, from the proof of [22, Corollary 4.3.3] it
is not difficult to see that ¢(t) € D(A), and

q'(t)=G(t,x) — A/o S(t — s)G(s,xs)ds.
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On the other hand, we can also show p(t) has the similar property as ¢(t). Indeed,
let t € [0,by) and h > 0, then
S(h)p(t) — p(t)
h
t t
h)/ AS(t —s)F(s,xs)ds — / AS(t — s)F(s,xs)ds] (3.6)
0 0

t+h
(p(t + ) — p(t)) — % /t AS(t+ h— 8)F(s,2.)ds,

= e

and

1 h
”E/ AS(t+ h — $)F(s,2.)ds — AF(t 1)
t

t+h
< |;[+ AS(t+ h — s)[F(s,zs) — F(t,2)]ds]| (3.7)

t+h
+ ||%/ AS(t+h—s)F(t,z;)ds — AF(t,z¢)|| — 0, ash— 0.
¢

Let
p(t) = pa(t) + pa(t)

/ AS(t — s)[F(s,xs) —F(t,mt)]ds—i—/t AS(t — s)F(t,x¢)ds.
0

Then S(t)X C N2 D(A™) and A® is closed for any a > 0 imply that pa(t) € D(A).
Since

t )
Aps(t) = /6 A2S(t — $)F(t w0)ds + /0 A2S(t— $)F(tz)ds,  (3.8)

the first term on the right side of (3.8)) is clearly continuous and the second term
is O(9), this means Aps(t) is continuous. Set

t—e
Pre(t) = / AS(t — s)[F(s,xs) — F(t,x¢)]ds,
0
then condition (H1") yields
Apr( / A2S(t — §)[F(s,5) — F(t, 0)]ds
- / AP G(t — 5) AVP(F (s, ) — F(t,,))ds
0
t
— / A%S(t — 8)[F(s,xs) — F(t,x¢)]ds, ase— 0.
0
Hence from the closure of A it follows that p;(t) € D(A) and

Ap (t) / A%S(t — 8)[F(s,xs) — F(t,x;)]ds.

The continuity of Ap(t) can be shown as that of Aps(t). Hence we deduce that
p(t) € D(A) and Ap(t) is continuous. Thus, (3.6) and (3.7) indicate that p(t) is
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differentiable and
P () = Ap(t) + AF(t,,).
Therefore, z(t) + F(t, x;) is differentiable in ¢ on [0, bs] and satisfies that

CLe(t) + F(t.0)] = 5SO60) + FO,0)] +9/(0) +¢'()
= —A1)S®)[¢(0) + F(0,9)]
+A@)F(t,x) — A()p(t) + G(t, ) — At)q(t)
= —A(t)x(t) + G(t, xy).
This shows that z(-) is a strict solution of the Cauchy problem (L.I). Thus the
proof is complete. U

4. STABILITY OF MILD SOLUTIONS

In this section, we study the stability of mild solutions for with F' and G
autonomous; namely, we discuss the stability of the equilibrium of the autonomous
equation

d

Slalt) + F(ao)] + Ax(t) = Glz), 120,
To = ¢ € By,
In this equation F' and G satisfy the following conditions:
(H4) F,G satisty the Lipschitz condition; i.e,
IAPF(¢1) = APF(92)]la < ls]lé1 — d2l3...
1G(¢1) = G(D2) || < Lallr — @2l .,

for ¢1, 2 € B,
(H5) There holds

K(0)(Is| A7 4+ 13C1_sT(8) + 14Cal'(1 — a)) < 1, (4.2)

(4.1)

where I'(+) is the gamma function satisfying the formula f0+oo e Ptt—odt =
[(1—-a)B* ! for0<a<1andj>0.

First we consider the solution semigroup for (4.1). For each ¢ > 0, define the
nonlinear operator semigroup (U(t));>0 as

where z4(-,¢) denotes the unique mild solution of (4.1) through (0,¢). Then
(U(t))t>0 is a nonlinear strongly continuous semigroup on Z%,; that is,
(i) U(0) = I;
(i) Ut+s) =U@)U(s) for all ¢, s > 0;
(iii) For all ¢ € %, the map t — U(t)(¢) is continuous in H,,.
And it satisfies the translation property

(Ut +0)()(0), t+6=>0,

U©@)0) = {¢(t+9), o< t+0<,

for t > 0 and 6 € (—o0,0]. Moreover, we have the following result.
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Theorem 4.1. For the nonlinear semigroup (U(t))i>o, there exist a p € RT and
a function P(-, ) € L*((0,4+00); RT) such that, for ¢1,ds € Ba,

[T b1 — U(t)d2llz. < Pt p)e(l¢1 — 62| .-
Proof. Let tg > 0, Ky, = maxo<s<y, K(s), My, = supgcy<y, M(s), and z*(-)
x(-, 1), 22(-) = x(-, ¢p2). For t € [0,0], there holds
[U@)¢1 = U(t)d2]| 2.,
= |l — o¢l 2.

< K(1) S Iz (s) = 2*(s)lla + M ()| 61 — ¢2| 2.,

< Kiy sup {[15(5)[910) = 62(0) + Flén) = F(2)llle + 17 (z3) = F(a2)lla

oy TAS(s — )[F(at) - F(a2)dr]la

+ 1l /OS S(s— T)[G(x}r) — G(mz)}dTHa} + My, |61 — b2l .,

< Ky, sup (Me**H +13]|A7°|))|| 61 — 2| .,

0<s<t
LK [APls sup ||z} — 2,
0<s<t
S
+ Koyl sup | / Crp(s — )P 16D gl — 2| 5. dr
o<s<t Jo
S
+ Ky,ly sup / Co(s — 7)) |2t — 22| g, d7] + My, || b1 — b2l ..
0<s<t Jo

Choose 1 € RT such that w — u < —1, then the above estimate implies that
e ot = afllon, < €Ky, sup (M H + | A7) |61 = ball,
0<s<t

+ Ky ls|| AP lle™ sup |z} — 22|,
0<s<t

S
+ Ki,ls sup [/ Ci_p(s— T)ﬁ_le‘”(s_ﬂe_“tHxi — .T.?.”@QdT
0<s<t JO

S
Kl s [ Culs = 7)o a2, ]
0<s<tJO

+ Mye | p1 — 2| . -

Put W(s) := e #8||zl — 22|/ 5, , then

sup W(s)
0<s<t
< Ky sup (Me*H + 13| A7) |1 — dallz. + Kiols| A7) sup W(s)
0<s<t 0<s<t
+ Ky, l3 sup [/ C1_p(s — )P te@=WEDW (r)dr
0<s<t 0

+ Ky,ly sup / Co(s — T)*aeW*w(S*T)W(T)dT] + My, ||p1 — ¢2| .,
0<s<t Jo
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< Ky sup (Me“*H + 15| A7) [[é1 — 2|2,
0<s<t

+ K, l3]|A7P|| sup W(s) 4+ K4, 13C1_sT(B) (1 — w) P sup W(s)
0<s<t 0<s<t
+ Ky laCal'(1 = a) (= w)* ™ sup W(s) + My, [[é1 — 2| 2.
0<s<t
So, by ([#2) we may take t, > 0 sufficiently small such that 1 — Ky, (I3]|A="| +
1301_sT(B) (1 — w) P + 1,0, (1 — a)(p — w)®~ 1) > 0, then
sup W (s)

0<s<t

< (i sup (Me“*H + 15| A7) + M, )61 = 622,
0<s<t

= (1= Koy (5] A7) + 1561 T (B) (1 — )7 + 1iCal (1 = @) (u — w)* )
= P(t,p)||o1 — 2|l 2.,
or

ot — il @, < Pt p)e (o1 — ¢zl 2., (4.3)

for all ¢ € [0, o]. For any ¢ > t¢, find an n € N such that ¢ € (ntg, (n + 1)to], then
we may repeat the above computation for n times and obtain that (4.3) holds for
t > tg. Thus we complete the proof of the assertion. ([

In what follows, we investigate the stability of an equilibrium of . For each
u € X,, the corresponding constant function 4 € B, is defined by 4(f) = u,
6 € (=0, 0]. Here by an equilibrium of we mean a constant function @ € %,
satisfying
u€ D(A) and — Au+G(a)=0.
If @ is an equilibrium of 7 then it is trivial to verify that 0 is the equilibrium
solution of the equation

d
2 [2() + Fu(w)] + Az(t) = Ga(ze),
where Fy(¢) = F(¢ + @) — F(a), G1(¢) = G(¢ + 1) — G(@). Accordingly, without
loss of generality we may assume that & = 0 and G(0) = F'(0) = 0. Moreover, we
suppose that

(H6) APF is Fréchet-differentiable at 0 in space X,, G is Fréchet-differentiable

at 0in X.

Let L; = A=B(APF)'(0), Ly = G'(0). Then the linearized equation of Equation
(4.1) around the equilibrium 0 is

d

J— = >
g [x(t) + Lyize] + Ax(t) = Loz, >0, (4.4)
Tog=¢ E B

Denote by (T'(t))¢>0 the linear solution semigroup associated to (4.4). Then we
have the following result.

Theorem 4.2. Suppose that conditions (H4)—(H6) are satisfied. Then, fort >0,
the Fréchet derivative of U(t) at zero is T(t).
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Proof. 1t suffices to prove that for any ¢ € AB,, t > 0 and € > 0, there exists a
6 > 0 such that

[U#)¢ =T ()¢, <ellollz., for |z, <0 (4.5)
In fact, we have
|U(t)¢ —T(t)¢l .,
<K(®) swp [(U()()(0) = (T(3)(@)O0)]o

< K swp {[|S()F ()~ Li(@)]la

0<s<t

FIF(U()6) — F(T(5)6) + F(T(5)6) — L1 (T(5)6)]l
oy / AS(s — ) [F(U(r)) — F(T(r)) + F(T(r)é) — Ly(T(r)$)ldr |,

+ [ 86 - nIGwmne) - o) + G - L)), )

Take to > 0 such that 1 — Ky, (I3]]A=?|| +13C1_sT(B) (1 — w) P + 14CaT(1 — ) (u —
w)*~1) > 0, and by virtue of the continuous differentiability of A°F and G at 0
and from Theorem we infer that, for any € > 0, there is a §g > 0 such that, for
each 0 < t <ty and any ||¢|| =, < do,

IS(s)[F(¢) = L1()]lla < €lldll 2.
|F(T(s)¢) — Li(T()9)| . < €lldll 2.,

| [ 48 = nIF) - (T, < ol

H/O S(s = 1)[G(T()¢)) — La((1))]dr| , < €ll9] ., -
Hence,
e MUt — T ()¢ .
< 4eKy |||, + Kil| AP ||lze™H sup [U(s)p —T(5)9l .

s xils sup [ [ C1as = 1) e MU ()0 - T(r)lm, dr
0

0<s<t
+ Kyly sup / Ca(s — 1) e U (1) ¢ — T(T)muggam]
0<s<t Jo

< 46Ky||6]1, + Kilg| A7) sup e U (5)0 —T(s)6]|,
<s<t

+ K l3CrpT(B)(n—w) ™7 sup e #*|[U(s)¢ — T(s)¢| 2,

0<s<t
+ KilyCol(1 = a)(p —w)* ! sup e *[|U(T)¢ — T(7)4)| .,
0<s<t
So, using (4.2) again we obtain that (4.5)) is true for all 0 < ¢ < ¢y, and then as in
the Proof of Theorem we can conclude that (4.5)) holds for all ¢ > 0. d

As a consequence of the above two results we obtain the following theorem.



16 XIANLONG FU EJDE-2013/55

Theorem 4.3. Under the assumptions of Theorems[{.1] and[{-3, if the zero equi-
librium of (T'(t))i>0 is exponentially stable, then the zero equilibrium of (U(t))i>0
is locally exponentially stable in the sense that there exist p,p >0 and k > 1 such
that, for t > 0 and any ¢ € B, with ||P||lz, < w1,

U)ol 2. < ke 6|, -

Proof. Based on Theorems and this theorem can be proved by using the
similar method as that in [I1] and [3], and we omit the proof here. O

5. AN EXAMPLE

To apply Theorems [3.2] and [3-7] we consider the system

8t 2(t, ) / / —t, 2,y [ (s,y) + %z(s,y)} dyds}

2882 (tmc)—l—h( (-, ),gz(-,x)), 0<t<a, 0<z<m, (5.1)
x x
z(t,0) = z(t,m) =0,
z(0,2) = ¢(0,2), 0<0, 0<zx<m,

where the functions b and h will be described below.
Let X = L?([0,7]) and operator A be defined by

Af=~f"

with the domain

D(A) = Hy([0,7]) = {f(-) e X : [, [" € X, [(0) = f(x) = 0}.
then —A generates a strongly continuous semigroup (S(-))¢>o which is analytic,
compact and self-adjoint. Furthermore, — A has a discrete spectrum, the eigenvalues
are —n?, € N, with the corresponding normalized eigenvectors z,(z) = \/g sin(nx).
Then the following properties hold:
(a) If f € D(A), then

Af = inQ(f,znﬂ

n=1
(b) For every f € X,
S(t)f = Z 67n2t<f; Zn>zna
n=1
ATVRF = Z (f, 2n)2

In particular, ||S(t)|| < et ||[A=Y2?|| = 1.
(¢) The operator A2 is given by

A1/2f = in(f,zn)z

n=1

on the space D(AY2) = {f(-) € X, Y00, n(f, zn)zn € X}.
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Here we take a = § = 1/2 and the phase space # = €,, where the space €, is
defined as: let g be a continuous function on (—oo, 0] with g(0) = 1, limg_,_~, g(0) =
00, and g is decreasing on (—oo, 0], then

) sup JEE

€, = eC _O0,0 Ay,
g {Cb (( <0 g(S) }
and the norm is defined by, for ¢ € %,
[o(s)l
¢lg = sup :
o =327 0)

It is known that €, satisfies the axioms (A1), (A2), and (B1), see [I8]. Further, the
subspace ¢, 1 is defined by

[EREOI
€ 1={¢p€C((—00,0]; X1): — = < o0},
0.1 = {0 € C((—00,0; Xy) SUP T 9) }
endowed with the norm |¢’|g,% = Sup,< HA?(‘Z(S Clearly, €, 1 satisfies correspond-

ingly the axioms (A1’),(A2’), and (B1’), and we may choose a proper g such that
H,K(-),M(-) <1 (also see [9]).
We assume that the following conditions hold:
(i) The function b(-,-,-) € C? with b(-,-,0) = b(-,-,7) = 0, and

™ 0 ™ 2
cim ([ 1] a0 (Grabe. )y a0y < .

(ii) The function h: R x R — R is continuous in the two variables.
(iii) The function ¢ defined by ¢(6)(x) = ¢(0,x) belongs to € 1.

Now define the abstract functions F,G : 6 1= X 1 by

0 s
= [ soslo)m) + 000) ) ay o

= h(o() (@), 8()' ().

Then the system is rewritten as the abstract form (1.1]), and condition (i)
implies that R(F') C D , since

(F(8), o) = = / [ 3005261+ 606 )y 2, 2))
= Z 02060 + 000 @lanit, ),
where 7, () = /2 cos(nz), n = 1,2, ..... Observe that, for any 0 € (00,0},
162(6)() ~ 61 (6) ()| = i (62— 61,20’
< in% — 61, )”

< d2(0) (@) — ¢1(0) ()13,
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and
o

628 () — $1(0) (2) ]| = Z<¢2 &, zn)’

Z<¢2—¢1, 4%

2 — $1,2n) (P2 — D1, Zm) (— 20, 20y )

Il

3
]
©

we see that
[92(-) = @1()lg < [d2(-) — d1()lg, 1,
[62() = 61()'lg < 62() — 1)l

Thus, conditions (i) and (ii) ensure that Az F(-) satisfies the Lipschitz continuous

on €, 1, I and G verify assumptlon (H1) and (H2 ) respectively. Consequently, by

Theorem - the system (5.1]) has a mild solution on (—oo, by] for some by > 0.
Furthermore, if take 33 ‘5 10 where

O
2 ()
so that Axiom (C1) is satisfied (see [I8]) and assume that h is Holder continuous
in two variables, then condition (H1’) and (H2’) are satisfied. Therefore, if ¢(-, z)
is uniformly Holder continuous and ¢(0,z) € D(A), then the system has a
strict solution on (—oo, by].
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