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INTERVAL OSCILLATION CRITERIA FOR SECOND-ORDER
FORCED DELAY DIFFERENTIAL EQUATIONS UNDER
IMPULSE EFFECTS

QIAOLUAN LI, WING-SUM CHEUNG

ABSTRACT. We establish some oscillation criteria for a forced second-order
differential equation with impulses. These results extend some well-known
results for forced second-order impulsive differential equations with delay.

1. INTRODUCTION

In this article, we consider the second-order impulsive delay differential equation

()2’ (1)) + q®)x(t — 1) + Y ai(t)@a, (z(t — 7)) = €(t), > to, t # t,
i=1

(1.1)
z(t)) = apx(ty), ') =bpa'(tx), k=1,2,...,
where
z(ty) == lim z(¢), z(t)):= lim x(t),
t—t, t—t
Wit = tim DOER IO gy gy PO 200
D, (s) = s]71s, 0 < tg <ty < -+ <t <...,limg o tx = 00, the exponents of

the nonlinearities satisfy
a1>a2>~~~>am>1>am+1>~~>Ozn>0,

the functions p, q, ¢;, e are piecewise left continuous at each t, more precisely, they
belong to the set

PLC[tg,00) := {h: [tg,00) — R|, h is continuous on each interval (t,t5+1),
h(t) exists, and h(ty) = h(t; ) for all k € N},

and p > 0 is a nondecreasing function.

A function x € PLCtg, 00) is said to be a solution of if z(t) satisfies (L.1]),
and z(t) and z’(t) are left continuous at every tg, k € N.

In the past few decades, there has been a great deal of work on the oscillatory
behavior of the solutions of second order differential equations, see [2, [13] and the
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references cited therein. Impulsive differential equations are an effective tool for

the simulation of processes and phenomena observed in control theory, population

dynamics, economics, etc. Research in this direction was initiated by Gopalsamy

and Zhang in [6]. Since then there has been an increasing interest in finding the

oscillation criteria for such equations, see [Tl 3, 4], 8, @} 10, [T1] their references.
Liu and Xu [§], obtained several oscillation theorems for the equation

(r@®)2' (@) +p@)|z@)|* ta(t) = qt), t>to, t # ty,
o(tf) = axa(ts), o'(ty) =bea'(ts), @(tg) ==, 2'(tg) = =g,
which is a special case of (1.1)).
More recently, Guvenilir [7] established interval criteria for the oscillation of

second-order functional differential equations with oscillatory potentials for the
equation

(k()2'(£))" + p(H)z(g(t)) + a()|z(9() " a(g(t)) = e(t), t>0. (1.3)
We note that when g(t) =t — 7, this equation is included in (L.T)).

In this article, some new sufficient conditions for the oscillation of solutions of
(1.1) are presented, and illustrated by an example. It should be noted that the
derivation in this work adopts new estimates which are not a routine extension of
the existing techniques used for the non-delay case.

As is customary, a solution of is said to be oscillatory if it has arbitrarily
large zeros; otherwise the solution is said to be non-oscillatory.

(1.2)

2. MAIN RESULTS

We will assume the following three conditions throughout this article.

(H1) 7 >0, bg,ar, > 0, tgy1 —tp >7, k=12,...; 01 > > >ay,>1>
Qmy1 > > >0, (n>m >1).

(H2) p,q,q,e € PLC[ty, o).

(H3) For any T > 0, there exist intervals [c1,d;] and [cz, d2] contained in [T, 00)
such that ¢ < dy < di1+7< e < dg, Cj,dj ¢ {tk}, _] = 1,2, k= 1,2,...
and

q(t) >0, q(t)>0 forteeg —7,d1]U[ca—T7,d2], i=1,2,...,m;
e(t) <0 forté€ ey — T, di;
e(t) >0 forté€[ca—T, do.
Denote
I(s) :=max{i:tg <t; <s}; f;:=max{p(t):telc,d;|}, =12
Q:={we Cejd;] i w(t) 20, wlcj) =w(dj) =0, j=1,2};
I':={GeC¢;,dj] : G >0, G#0, G(c;) = G(d;) =0,
G'(t) =29(t)\V/G(b), j =1,2}.
Before giving the main results, we introduce the following Lemma.

Lemma 2.1 ([12]). For any n-tuple (a1, ...,ay) satisfying ag > <+ > @y > 1 >
Qg1 > -+ > > 0, there exists an n-tuple (01, ...,n,) satisfying either (a)

n n
Zai’r/i:lv an<17 O<77i<17
i=1 i=1



EJDE-2013/43 INTERVAL OSCILLATION CRITERIA 3

or (b)
ZOLZ"I]Z':]., Z??Z:]., 0<7h‘<1.
i=1 1=1

Theorem 2.2. Assume that conditions (H1)—(H3) hold, and that there exists w €
such that

d; tr(ej)+1 )
[ e [ Qg st

’(d U d; , (2.1)
QORLO Bt — [ Q) (O ()t
e I(c Y42 th—1 tr(ay)
S L(w,cj,dj),
where L(w, ¢j,d;) =0 for I(c;) = I(d;), and
L(W,Cj,dj)
I(d;)
A(c;)+1 — bI cj)+1 ar — b
— ﬁj{WQ(tI(cj)—i-l)a ( g)‘?t ( ]ti_c,) wQ(tk) (tk - tk )}
I(Cj)+1 I(Cj)-‘rl ] k I(Cj)+2 k k—1
for I(c;) < I(d;), j =1,2,
Q(t) == 0" Hm T (B)le(®)]™,

t—t
QL(t) = ity tE etk +7),
tttf%:—v te [tk + T, tk+1];
k :I(CJ)7I(C]) + 1,7I(dj),
and n1,M2, . .., Ny, are positive constants satisfying part (a) of Lemma - Then all
solutions of (L.1) are oscillatory.

Proof. Suppose that x(t) is a non-oscillatory solution of (1.1). By re-defining ¢y
if necessary, without loss of generality, we may assume that z(t — 7) > 0 for all
t > tg > 0. Define the Riccati transformation

v(t) = M

x(t)
It follows from (1.1]) that v(t) satisfies
t -7)
V'(t) = —q(t qu Na(t

for all ¢ # t,t > to, and v(tﬁ) = Z—’;v(tk) for all k € N.

From the assumptions, we can choose ¢y, d; > to such that ¢(t) > 0 and ¢;(t) > 0
fort € [c; —7,d1],1=1,2,...,n,and e(t) <0 for ¢t € [¢c; — 7,d1]. By Lemma
there exist 7; > 0,4 =1,...,n, such that > .-, aym; =1 and >, n; < 1. Define
no:=1—>"n; and let

i—lx(t_T) e(t) %)

e(t)x(t—T)

ug =1y " T e (O
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t_
Ui 1= Uilql'(t)x(x(t)q—) et —7), i=1,2,...,n.

Then by the arithmetic-geometric mean inequality (see [5]), we have

n n
i
E niu; > H u;
i=0 i=0

and SO
e " Hm " WI(%_DW (t —7)le)|™
xm(t* ) zt—1) V() (2.3)
T(t)’ﬁ Mt —71)—q(t) B bt
Since
n i (t — 7') . 1-770+771+.,.+nn (t . 7-) B x(t B 7_)
g xi(t) T pmotmAteAn 0 = R
Hx(aﬂ)m a0t —7) =1,
we obtain
| S O —7) v ()
’ (t) - _q(t)i 770 an " z |€(t)|”0 _
ff ~7) 2(t) (t) p(t) 2.4
=—Q(1) () pt) t # t,.

Multiply both sides of (2.4) by w?(t), with w as prescribed in the hypothesis of the
theorem. Then integrate from c¢; to dy; using integration by parts on the left side,
we have

Iﬁ) P t0)o(t) — v(t)]
k=I(c1)+1
<2 /:1 w(t)w'(t)v(t)dt — /:1 WQ(t)Q(t)x(;(t)T) . /:1 Wdt
B /d A /:(W “"Z@Q(f)x(i(t;) dt (2.5)
G tk+1
! k= I%ﬂ/ x(i(_t;) dt
z(t—7)

To estimate = 7=, we first consider the situation where I(c1) < I(dy). In this

case, all the impulsive moments in [c1, d1] are t7(c,)41, tr(e,)+2:- -5 trdr)-
Case (1) te (tk,tk+1] C [Cl,dl].
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(i) If t € [tk + 7, tk41], then t — 7 € [tg, tg+1 — 7]. Since ty41 — tr > 7, there are
no impulsive moments in (¢t — 7,t). As in the proof of [I, Lemma 2.4], we have

z(t) > x(t) —z(t)) =2"(§)(t —tx), €€ (i, 1).
Since the function p(¢)z’(t) is nonincreasing,
x(t) > 2’ (E)(t —tr) >

From the fact that p(t) is nondecreasing, we have

PO _ P& _ 1)

x(t) t—ty t—ty
3;/(;) < ﬁ Upon integrating from t—7 to ¢, we obtain I(f(t;) > ttti"t;
(ii) If t € (tg,tp +7), then t — 7 € (¢, — 7, tx), and there is an impulsive moment
tr in (t — 7,t). Similar to (i), we obtain J;((S)) < 5=p5 for s € (ty — 7,4]. Upon

integrating from ¢—7 to tj, we obtain wf(ft T)) > e Since z(t) —a(t) < o/ (t))(t—

tr), we have

(1))
z(ty)

Using ((tt’“)) < L and x(t]) = arz(ty), this implies

bkx’(tk)

<1
+ akx(tk)

(tftk):].#* (tftk).

z(ty)

(,C(tk) T
x(t) ~ apT +bp(t —ty)

Therefore,
x(t—71) t—tg
> .
z(t) apT + by (t — tx)
Case (2). t € [c1,t1(¢;)+1]- We consider three sub-cases.
(i) Ift7ec,y > e1 =7, t € [tr(e,) + Ty t1(cy)+1), then there are no impulsive moments
n (¢t — 7,t). Making a similar analysis of case 1(i), we obtain (t(t;) > t;z;t(i(:)” .
(ii) If t7c,) > c1 =7, t € [e1,t1(c;) +7), then t — 7 € [e; — T, t1(,)) and there is
an impulsive moment Z7(., in (t — 7, t). Similar to case 1(ii), we have

l‘(t—T) t_tf(cl)
> .
‘T(t) aI(c1)T+bI(cl)(t_tI(01))
(iii) If t;(c,) < c1 — 7, then there are no impulsive moments in (¢t — 7,¢). So
x(t—71) N t—T—1t1(e) .
x(t) t—treey)

Case (3). t € (tr(a,), d1]. There are three sub-cases to consider:
(i) If treq,) + 7 < di,t € [t,) + 7,d1], then there are no impulsive moments in
(t — 7,t). Similar to case 2(i), we have

x(t—71) S t—T —trd,)
x(t) t—tra,)
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(ii) If tr(q,) + 7 < d1,t € [tr(a,), tr(a,) + 7), then there is an impulsive moment
t1(dy)- Similar to case 2(ii), we obtain

1‘(t—T) > t_tl(dl)
z(t) ara)T + brean)(t = tray))

(iii) If t;(q,) + 7 > di, then there is an impulsive moment t;(4,) in (t — 7, t).
Similar to case 3(ii), we obtain

x(t—7) - t—1tray)
a(t) " aray)T +bran (= tra,))

Combining all these cases, we have

: Qe (1), for t € [e1,tr(ey)l;
0 > ¢ QL(t), fort € (tk,tkﬂ] k=1I(c1)+1,...,1(dy) — 1,
Q}(dl)(t), for t € (t7(a,),d1]-

Hence by (2.5)), we have

I(dy)

S Rt —v(i)]

k=I(c1)+1
dy tr(cq)+1

<2 [Cuwomi- [ 000 0
I(d1)-1 tet1 d1

Y / OQU)QL(E)dE — / POQQY ) (1)t
k=I(cq)+1 "tk t1gdy)

B dy Ug(t)w2(t)
/cl o
treep+1 1 )

- / 0 () = oo
HA)=1 ey

S () = oo

k=I(cy)+1" tk

dq 1
- / b0 () — vl

1(dy) P(E
tr(eq)+1
+ / [p((8) — QE)QL o, (D ()]t

tk+1

4 Z / 1) — QQLBW ()]t

k=I(c1)+1

dy
+ / (1) — QUIQY ) () (1))t

tr(dy)
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Hence we have

I(d1)
>, Wbt - o)
k=I(c1)+1
triep)+1
< / p(E1(8) ~ Q)Q e () ()t
,(dl . (2.6)

[Pt (t) — Q(O)Qk (t)w? (1)]dt

k= Ic1+1 tk

d1
+ / p((0) = Q) Q} (N2 (O]dr
tr(ay)

for if not, we must have p(t)w’'(t) = v(t)w(t) or z(t)w'(t) = 2’ (t)w(t) on [c1,d1].
Upon integrating, x(t) will be a multiple of w(t), which contradicts the facts that
w vanishes at ¢; and dy while z(¢) does not.

On the other hand, since (p(t):v/(t))/ < 0 for all t € (c1, tr(e,)41), p(t)2' (1) is
nonincreasing in (c1, t7(c,)41). Thus

t)x' (t
x(t) > z(t) —z(c1) = 2" (&)t — 1) > p(p)é)()(t —¢1), forsome € € (¢, 1),
and hence p(tm)(lt)(t) < p(g) - Letting t — 7y, we have
B

V(tr(ey+1) < (2.7)

T e+ — G
Making a similar analysis on (tx—1,tx], K = I(c1) + 2, ..., I(dy), it is not difficult
to see that
B
t —_—
olte) < tk - tk 1

Here we must point out that (2.7) and (2.8) play a key role in our method for
estimating v(t;), which is different from the usual techniques for the case without
impulses. From (2.7) and (2.8), and noting that ay < by, we have

(2.8)

I(d1)

b
S R ()t
ar
k:I(Cl)+1
I(dy1)
ay — by, 2 are)+1 = bren+1 o
= () + WP (tr(en) 1)
k—%;)m ap(ty —tp—1) ar(e)+1(tren+1 — 1) (e1)+
= L(w,c1,d1).
Since
I(d1) I(dy) — b
> Pt o)l = Y T W (t)o(ty) ,
k:I(C1)+1 k:I(C1)+1 k

by 7 we have
tr(eq)+1
L(w, e1,dy) < / (1) — QUQY o (w? (1)t

Cc1
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1(di)-1 tk+1

. / 1) — QUQLHW(H)dt

k= I(Cl)+1

dy
[ b0 - QOQk, P @),
tr(ay)
which contradicts (2.1).
If I(¢1) = I(dy), then L(w,c1,dy) = 0, and there are no impulsive moments in
[c1,d1]. Similar to the proof of (2.6)), we obtain

dy
| B0w20 - Q@1 (020t > 0. (29)
c1

This again contradicts our assumption. Finally, if z(¢) is eventually negative, we
can consider [ca,d3] and reach a similar contradiction. The proof of Theorem
is complete. [

Theorem 2.3. Assume conditions (H1)—(H3) hold, ar, < by and there exists a
G €T such that

dj tie;)+1 )
| plg e - / QOGHQ), ()t

3
I(d;)

tk+1 4 : 2.10
-y / aja- [ aucw@y,,wa
J
k=1I(c;) tr(d;)
< R(Ga% dj),
where R(G,c¢j,d;) :==0 for I(c;) =1(d;), j =1,2, and
R(G, cj, dj)
I(dy)
ar(e;)+1 = br(e;)+1 ap — by, B
= G(tre. 4 G(t
ar(e;)+1(tr(e,)+1 = €1) e a)?) kl(zc:)w ap  tp —tp—1 (t)
- J

for I(c;) < 1(d;), then all solutions of (1.1) are oscillatory.

Proof. Similar to the proof of Theorem suppose z(t —7) > 0 for ¢ > to. If
I(c1) < I(dy), multiplying G(t) throughout (2.4) and integrating over [c1,d:], we
obtain

I(dy)
Y Gt ()
k= I(cl)+1
- w(t—7)  [TOPBG() d
< A Q(t)G(t) @) dt / o0 dt+2/01 v(H)g(t)\/G(t)dt
- G(t) 2 dy )
<= [ (o - Votdio) a+ / p(1)g? (1)
_/1(u1)+1 Q(t)G(t)Q}(Cl)(t)dt_ k+1Q ()
“ k= I(c ty
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d;
— [ QWGHQ) (1)t
tr(ay)
dy tr(ey)+1
< / p(t)g?(t)dt / QWG MHQY ., (bt
Id)-1 4 d
S / QOGHQLMA — | QUGHQ} ., ()t .
k=I(cy)+17 bk trgay)

On the other hand, from the proof of Theorem we have

155
V(treey+1) < -

< — ) < ——mM, 2.11
tr(e)+1 — €1 T — tr—1 ( )

for kZI(Cl)—i—Q,,I(dl) So

I(dy) ar — b

ST EEG (e )u(t)
agk

k‘:I(Cl)+1

I(d1)

ar(c —b c ap —b
> _Men+1 = b1+ Gltrory )1 + Z r—br B G(te)
ar(e)+1(tr(e)+1 — ¢1) M PP

= R(G,Cl,dl) .

This contradicts (2.10)). If I(c;) = I(dy), the proof is similar to that of Theorem
and so it is omitted here. The proof of Theorem is complete. O

Next, let D = {(t,s) : tg < s <t}. A function H € C(D,R) is said to belong to
the class § if

(A1) H(t,t) =0, H(t,s) > 0 for t > s; and

(A2) H has partial derivatives 22 and 22 on D such that

H H
aa—t = 2hq(t,s)\/ H(t,s), aa— = —2ho(t,s)\/H(t,s).
s
Similar to [8, Theorem 2.3], we have the following Theorem.

Theorem 2.4. Assume the conditions (H1)—(H3) hold. Suppose that there are
0; € (¢j,d;), j=1,2, and H € $ such that

H(dj,%)[/: Q(s)Q;(s)H (dj;,s)ds — /:’ p(s)hg(dj,s)ds}
5 5,
+H(5jcj)[/ Q(s)Qj(s)H(smj)ds_/cj p(s)hg(s,cj)ds] (2.12)

> P(H,Cj,dj),
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where P(H,cj,d;) == 0 for I(c;) = I(d;), and

/6.
P(H, Cj,dj) = 7H(dj 5) (H(dj,t[((;j)_,_l)
VRG]

I(d;) b
s
Z H(d t: #)
+‘ (d;: z)ai(ti —ti—1)
Z:I(5J)+2

B;
H((SJ,CJ) ( (tl(cj)+l7c_7)

bl(aj)+1 —ar(s;)+1
ar;)+1(tr(s;)+1 — 05)

2.13
bl(cj)+1 — A1(cj)+1 ( )

_|_
ar(c;)+1(tr(e)+1 = ¢5)

1(85) b
o
Hiti,c; #)
* , Z ( Cj)ai(ti —ti-1)
i=I(c;)+2
for I(c;) < I(dj), j =1,2. Then all solutions of (L.1)) are oscillatory.

Example 2.5. Consider the impulsive differential equation

7T 3
t— —

2" (t) + mcos(t/2)z( 8) + 8cos(t/2)|x(t — g)ﬁx(t -

|3

)
t T, _1 U t U
32 — =)z — =) =sin= — 2.14
+ cos 2|x(t 8)| 2t 8) sin 5, t7é2k7r:|:4, (2.14)

2(tf) = awe(te), @'(5) = anal(t), b = 2km = 7.

In this equation, 7 = 7/8, tg41 — tp > 7/2 > 7/8, oy = 5/2, ag = 1/2, and
m is a positive constant. For any 7' > 0, we can choose k large enough such that
T < ¢y =4kn— 5 < dy = 4km and co = 4km + § < dy = 4k7 + § satisfy (H3), then
there is an impulsive moment ¢, = 4km — 7 in [c1,d1] and an impulsive moment
thy1 = 4km + 7§ in [co, do]. Let w(t) = sin(8t) € Qu(cj,d;), j = 1,2, we have

dl dl
/ (W' (1))%dt = 32/ (cos 16t + 1)dt = 16, (2.15)

c1 C1
tr(ey) = 4km — %77, tr(dy) = 4km — F. Choose g = n1 =12 = 1/3. Then

1

Q(t) = mcos(t/2) + [(g)_1/3]3(8 cos(t/Q))1/3 cos(t/2) } sin%’l/3

= cos(%)(m — 3sin'/?¢) (2.16)

> mcos(t/2).

Hence

4k7\'7% t— s —t c
/ Q(t)%m sin?(8¢)dt
4kn—% “—U(er)

[T s
dkm—T ar(ay(t+§ = tra))

Ak t— 3% —trd,) .
+/ Q) —3—"" sin?(8t)dt
dkr—% t—1tr(dy)
9 4km—%

> —m cos(t/2) sin®(8t)dt > 167
10 dkm—%

(2.17)
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for m large enough. On the other hand, note that ai, = by, > 0, so that L(w, ¢;,d;) =
0. It follows from Theorem that all the solutions of ([2.14)) are oscillatory.
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