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POSITIVE BLOWUP SOLUTIONS FOR SOME FRACTIONAL
SYSTEMS IN BOUNDED DOMAINS

RAMZI ALSAEDI

Abstract. Using some potential theory tools and the Schauder fixed point

theorem, we prove the existence of a positive continuous weak solution for the
fractional system

(−∆)α/2u+ p(x)uσvr = 0, (−∆)α/2v + q(x)usvβ = 0

in a bounded C1,1-domain D in Rn (n ≥ 3), subject to Dirichlet conditions,
where 0 < α < 2, σ, β ≥ 1, s, r ≥ 0. The potential functions p, q are nonneg-

ative and required to satisfy some adequate hypotheses related to the Kato

class Kα(D). We also investigate the global behavior of such solution.

1. Introduction and statement of main results

Let D be a bounded C1,1-domain in Rn, (n ≥ 3) and 0 < α < 2. This paper is
devoted to the study of the following system involving the fractional Laplacian

(−∆)α/2u+ p(x)uσvr = 0 in D,

(−∆)α/2v + q(x)usvβ = 0 in D,

lim
x→z∈∂D

u(x)
Mα
D1(x)

= ϕ(z),

lim
x→z∈∂D

v(x)
Mα
D1(x)

= ψ(z),

(1.1)

where σ, β ≥ 1, r, s ≥ 0 , the functions ϕ and ψ are positive continuous on ∂D
and the nonnegative potential functions p, q are required to satisfy some adequate
hypotheses related to the Kato class Kα(D) (see Definition 1.1 below). The function
Mα
D1(x) is defined on D by

Mα
D1(x) =

∫
∂D

Mα
D(x, z)ν(dz). (1.2)

Here, ν is an appropriate measure on ∂D which will be defined later in (1.7) and
Mα
D(x, z) is the Martin kernel of the killed symmetric α-stable process XD =

(XD
t )t>0 in D associated to (−∆)α/2.
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For the reader convenience, we recall the definition of the fractional Laplacian
−(−∆)α/2 which is a nonlocal operator and can be defined by the formula

−(−∆)α/2u(x) = cn , α lim
ε↘0

∫
(|x−y|>ε)

u(y)− u(x)
|x− y|n+α

,

where cn,α is a dimensional constant that depends on n and α (see [5, 4, 14] for
more details).

Fractional Laplacian is of interest in many branches of sciences such as physics,
biologists, queuing theory, operation research, mathematical finance and risk esti-
mation. The fractional powers of the Laplacian in all of Rn are useful to describe
anomalous diffusions in plasmas, flames propagation and chemical reactions in liq-
uids, population dynamics, geophysical fluid dynamics, and American options in
finance, see [3, 18, 19].

In the classical case (i.e. α = 2), there is a large amount of literature dealing
with the existence, nonexistence and qualitative analysis of positive solutions for
problems related to (1.1); see for example, the papers of Cirstea and Radulescu
[13], Ghanmi et al [16], Ghergu and Radulescu [17], Lair and Wood [20], [21], Mu
et al [24] and references therein. In these works various existence results of positive
bounded solutions or positive blow-up solutions (called also large solutions) have
been established and a precise global behavior is given. We note also that several
methods have been used to treat these systems such as sub and super-solutions
method, variational method and topological methods. These results have been
extended recently by Alsaedi et al in [2] for n ≥ 3 and by Alsaedi in [1] for n = 2, in
the case α = 2, σ, β ≥ 1, s > 0, r > 0, where the authors established the existence
of a positive continuous bounded solution for (1.1) in the case n ≥ 3 and positive
continuous solution having logarithm growth at infinity in an exterior domain of
R2. Recently, there has been intensive interest in studying the fractional Laplacian
(−∆)α/2, the development of its potential theory and the global behavior of its
Green function GαD, see [8, 9, 10, 11].

In this article, we will exploit these potential theory tools and the properties of
the Kato class Kα(D), defined and studied in [7], to study the existence of positive
continuous solutions (in the sense of distributions) for (1.1). More precisely, we aim
first at proving the existence and uniqueness of a positive continuous solution (in
the sense of distributions) for the scalar equation

(−∆)α/2u+ p0(x)uγ = 0 in D,

u > 0 in D,

lim
x→z∈∂D

u(x)
Mα
D1(x)

= ϕ(z),

(1.3)

where γ ≥ 1 and p0 is a nonnegative Borel measurable function in D satisfying the
condition

(H1) The function x→ (δ(x))(
α
2−1)(γ−1)p0(x) ∈ Kα(D),

where δ(x) denotes the Euclidian distance from x to the boundary of D and the
class Kα(D) is defined by means of the Green’s function GαD of (−∆)α/2 as follows.
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Definition 1.1 ([7]). A Borel measurable function ϕ in D belongs to the Kato
class Kα(D) if

lim
r→0

(
sup
x∈D

∫
(|x−y|≤r)∩D

( δ(y)
δ(x)

)α/2
GαD(x, y)|ϕ(y)|dy

)
= 0.

It has been shown in [7], that the function

x→ (δ(x))−λ belongs Kα(D) if and only if λ < α. (1.4)

For more examples of functions belonging to Kα(D), we refer to [7]. Note that for
the classical case (i.e. α = 2), the class K2(D) was introduced and studied in [23].

Using (1.4), hypothesis (H1) is satisfied if p0 verifies the following condition:
There exists a constant C > 0, such that for each x ∈ D,

p0(x) ≤ C

(δ(x))τ
, with τ + (1− α

2
)(γ − 1) < α.

To state our existence result for (1.1), we denote by Mα
Dϕ (see [7]), the unique

positive continuous solution of

(−∆)α/2u = 0 in D, (in the sense of distributions)

lim
x→z∈∂D

u(x)
Mα
D1(x)

= ϕ(z) .
(1.5)

We recall also that in [9], the authors have proved the existence of a constant C > 0
such that for each x ∈ D,

1
C

(δ(x))
α
2−1 ≤Mα

D1(x) ≤ C(δ(x))
α
2−1. (1.6)

Using some potential theory tools and an approximating sequence, we establish the
following result.

Theorem 1.2. Under hypothesis (H1), problem (1.3) has a unique positive contin-
uous solution satisfying for each x ∈ D

c0M
α
Dϕ(x) ≤ u(x) ≤Mα

Dϕ(x),

where the constant c0 ∈ (0, 1].

Next we exploit the result of Theorem 1.2 to prove the existence of a positive
continuous solution (u, v) to the system ((1.1). To this end, we assume the following
hypothesis:

(H2) The functions p, q are nonnegative Borel measurable functions such that

x 7→ (δ(x))(
α
2−1)(σ+r−1)p(x) ∈ Kα(D), x 7→ (δ(x))(

α
2−1)(β+s−1)q(x) ∈ Kα(D).

Then by using the Schauder’s fixed point theorem, we prove the following result.

Theorem 1.3. Under assumption (H2), system (1.1) has a positive continuous
solution (u, v) satisfying: for each x ∈ D,

c1M
α
Dϕ(x) ≤ u(x) ≤Mα

Dϕ(x) and c2Mα
Dψ(x) ≤ v(x) ≤Mα

Dψ(x),

where c1, c2 constants in (0, 1].
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We note that contrary to the classical case α = 2 and n ≥ 3, in our situation the
solution blows up on the boundary of D.

The content of this paper is organized as follows. In Section 2, we collect some
properties of functions belonging to the Kato class Kα(D), which are useful to
establish our results. Our main results are proved in Section 3.

As usual, let B+(D) be the set of nonnegative Borel measurable functions in D.
We denote by C0(D) the set of continuous functions in D vanishing continuously
on ∂D. Note that C0(D) is a Banach space with respect to the uniform norm
‖u‖∞ = sup

x∈D
|u(x)|. When two positive functions f and g are defined on a set S, we

write f ≈ g if the two sided inequality 1
C g ≤ f ≤ Cg holds on S.

Let GD be the Green function of the Dirichlet Laplacian in D. The Martin
kernel MD(., .) of the killed Brownian motion is defined by

MD(x, z) = lim
D3y→z

GD(x, y)
GD(x, z)

for x ∈ D and z ∈ ∂D.

Similarly, the Martin Kernel of the killed process XD is defined by

Mα
D(x, z) = lim

D3y→z

GαD(x, y)
GαD(x, z)

for x ∈ D and z ∈ ∂D.

Using, the Hergoltz theorem, there exists a positive measure ν in ∂D such that

1 =
∫
∂D

MD(x, z) ν(dz). (1.7)

This measure ν is used in (1.2) to define Mα
D1. We define the potential kernel GαD

of XD by

GαDf(x) :=
∫
D

GαD(x, y)f(y)dy, for f ∈ B+(D) and x ∈ D. (1.8)

Finally, let us recall some potential theory tools that will be needed in section 3
and we refer to [7, 12, 22] for more details. For q ∈ B+(D), we define the kernel Vq
on B+(D) by

Vqf(x) :=
∫ ∞

0

Ex(e−
R t
0 q(X

D
s )dsf(XD

t ))dt, x ∈ D, (1.9)

with V0 := V = GαD and Ex stands for the expectation with respect to the sym-
metric α-stable process XD starting from x. If q satisfies V q < ∞, we have the
following resolvent equation

V = Vq + Vq(qV ) = Vq + V (qVq). (1.10)

It follows that for each each measurable function u in D such that V (q|u|) < ∞,
we have

(I − Vq(q.))(I + V (q.))u = (I + V (q.))(I − Vq(q.))u = u. (1.11)

2. The Kato class Kα(D)

Proposition 2.1. [[7]] Let q be a function in Kα(D), then we have

(i) aα(q) := supx,y∈D
∫
D
GαD(x,z)GαD(z,y)

GαD(x,y) |q(z)|dz <∞.
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(ii) Let h be a positive α-superharmonic function with respect to XD. Then,
for all x ∈ D we have∫

D

GαD(x, y)h(y)|q(y)|dy ≤ aα(q)h(x). (2.1)

Furthermore, for each x0 ∈ D, we have

lim
r→0

(
sup
x∈D

1
h(x)

∫
B(x0,r)∩D

GαD(x, y)h(y)|q(y)|dy
)

= 0. (2.2)

(iii) The function x→ (δ(x))α−1q(x) is in L1(D).

The next two Lemmas will play a special role.

Lemma 2.2 ([7]). Let q be a nonnegative function in Kα(D) and h be a positive
finite α-superharmonic function with respect to XD. Then for all x ∈ D, such that
0 < h(x) <∞, we have

exp(−aα(q))h(x) ≤ h(x)− Vq(qh)(x) ≤ h(x).

Lemma 2.3. Let q be a nonnegative function in Kα(D), then the family of func-
tions

Λq =
{ 1
Mα
Dϕ(x)

∫
D

GαD(x, y)Mα
Dϕ(y)f(y)dy, |f | ≤ q

}
is uniformly bounded and equicontinuous in D. Consequently Λq is relatively com-
pact in C0(D).

Proof. Taking h ≡Mα
Dϕ in (2.1), we deduce that for |f | ≤ q and x ∈ D, we have

|
∫
D

GαD(x, y)
Mα
Dϕ(x)

Mα
Dϕ(y)f(y)dy| ≤

∫
D

GαD(x, y)
Mα
Dϕ(x)

Mα
Dϕ(y)q(y)dy ≤ aα(q) <∞. (2.3)

So the family Λq is uniformly bounded.
Next we aim at proving that the family Λq is equicontinuous in D. First, we

recall the following interesting sharp estimates on GαD, which is proved in [8]:

GαD(x, y) ≈ |x− y|α−n min
(

1,
(δ(x)δ(y))α/2

|x− y|α
)
. (2.4)

Let x0 ∈ D and ε > 0. By (2.2), there exists r > 0 such that

sup
z∈D

1
Mα
Dϕ(z)

∫
B(x0,2r)∩D

GαD(z, y)Mα
Dϕ(y)q(y)dy ≤ ε

2
.

If x0 ∈ D and x, x′ ∈ B(x0, r) ∩D, then for |f | ≤ q, we have∣∣∣ ∫
D

GαD(x, y)
Mα
Dϕ(x)

Mα
Dϕ(y)f(y)dy −

∫
D

GαD(x′, y)
Mα
Dϕ(x′)

Mα
Dϕ(y)f(y)dy

∣∣∣
≤
∫
D

∣∣GαD(x, y)
Mα
Dϕ(x)

− GαD(x′, y)
Mα
Dϕ(x′)

∣∣Mα
Dϕ(y)q(y)dy

≤ 2sup
z∈D

∫
B(x0,2r)∩D

1
Mα
Dϕ(z)

GαD(z, y)Mα
Dϕ(y)q(y)dy

+
∫

(|x0−y|≥2r)∩D

∣∣GαD(x, y)
Mα
Dϕ(x)

− GαD(x′, y)
Mα
Dϕ(x′)

∣∣Mα
Dϕ(y)q(y)dy

≤ ε+
∫

(|x0−y|≥2r)∩D

∣∣GαD(x, y)
Mα
Dϕ(x)

− GαD(x′, y)
Mα
Dϕ(x′)

∣∣Mα
Dϕ(y)q(y)dy.
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On the other hand, for every y ∈ Bc(x0, 2r) ∩ D and x, x′ ∈ B(x0, r) ∩ D, by
using (2.4) and the fact that Mα

Dϕ(z) ≈ (δ(z))
α
2−1, we have∣∣ 1

Mα
Dϕ(x)

GαD(x, y)− 1
Mα
Dϕ(x′)

GαD(x′, y)
∣∣Mα

Dϕ(y) ≤ C(δ(y))α−1.

Now since x→ 1
Mα
Dϕ(x)G

α
D(x, y) is continuous outside the diagonal and q ∈ Kα(D),

we deduce by the dominated convergence theorem and Proposition 2.1 (iii), that∫
(|x0−y|≥2r)∩D

|G
α
D(x, y)

Mα
Dϕ(x)

− GαD(x′, y)
Mα
Dϕ(x′)

|Mα
Dϕ(y)q(y)dy → 0 as |x− x′| → 0.

If x0 ∈ ∂D and x ∈ B(x0, r) ∩D, then we have∣∣ ∫
D

GαD(x, y)
Mα
Dϕ(x)

Mα
Dϕ(y)f(y)dy

∣∣ ≤ ε

2
+
∫

(|x0−y|≥2r)∩D

GαD(x, y)
Mα
Dϕ(x)

Mα
Dϕ(y)q(y)dy.

Now, since GαD(x,y)
Mα
Dϕ(x) → 0 as |x− x0| → 0, for |x0 − y| ≥ 2r, then by same argument

as above, we obtain∫
(|x0−y|≥2r)∩D

GαD(x, y)
Mα
Dϕ(x)

Mα
Dϕ(y)q(y)dy → 0 as |x− x0| → 0.

Consequently, by Ascoli’s theorem, we deduce that Λq is relatively compact in
C0(D). �

3. Proofs of Theorems 1.2 and 1.3

The next Lemma will be used for uniqueness.

Lemma 3.1 ([7, Lemma 4]). Let h ∈ B+(D) and υ be a nonnegative α-superhar-
monic function on D with respect to XD. Let z be a Borel measurable function in
D such that V (h|z|) <∞ and υ = z + V (hz). Then z satisfies

0 ≤ z ≤ υ.

Proof of Theorem 1.2. Let ϕ be a positive continuous function on ∂D. We recall
that on D we have

Mα
Dϕ(x) ≈Mα

D1(x) ≈ (δ(x))
α
2−1.

Let p̃0 = γ(Mα
Dϕ)γ−1p0 and put c0 = e−aα(fp0), where aα(p̃0) is given by Proposition

2.1(i). Since by (H1), p̃0 ∈ Kα(D), it follows from Proposition 2.1 that V (p̃0) ≤
aα(p̃0) <∞. Define the nonemty closed bounded convex Λ by

Λ = {ω ∈ B+(D) : c0 ≤ ω ≤ 1}.

Let T be the operator defined on Λ by

Tω := 1− 1
Mα
Dϕ

Vfp0(p̃0M
α
Dϕ) +

1
Mα
Dϕ

Vfp0(p̃0ωM
α
Dϕ− p0(ωMα

Dϕ)γ).

We claim that T maps Λ to itself. Indeed, for each ω ∈ Λ we have

Tω ≤ 1− 1
Mα
Dϕ

Vfp0(p0(ωMα
Dϕ)γ) ≤ 1.

On the other hand, since the function p̃0ωM
α
Dϕ − p0(ωMα

Dϕ)γ ≥ 0, we deduce
by Lemma 2.2 with h = Mα

Dϕ, that Tω ≥ 1 − 1
Mα
Dϕ
Vfp0(p̃0M

α
Dϕ) ≥ c0. Hence

TΛ ⊂ Λ. Next, we aim at proving that T is nondecreasing on Λ. To this end, we
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let ω1, ω2 ∈ Λ such that ω1 ≤ ω2. Using the fact that the function t → γt − tγ is
nondecreasing on [0, 1], we deduce that

Tω2 − Tω1

=
1

Mα
Dϕ

Vfp0(p̃0ω2M
α
Dϕ− p0(ω2M

α
Dϕ)γ)− 1

Mα
Dϕ

Vfp0(p̃0ω1M
α
Dϕ− p0(ω1M

α
Dϕ)γ)

=
1

Mα
Dϕ

Vfp0(p0(Mα
Dϕ)γ [(γω2 − ωγ2 )− (γω1 − ωγ1 )]) ≥ 0.

Next we define the sequence (ωk)k≥0 by

ω0 = 1− 1
Mα
Dϕ

Vfp0(p̃0M
α
Dϕ),

ωk+1 = Tωk.

Clearly ω0 ∈ Λ and ω1 = Tω0 ≥ ω0. Thus, from the monotonicity of T , we deduce
that

c0 ≤ ω0 ≤ ω1 ≤ ... ≤ ωk ≤ 1.

So, the sequence (ωk)k≥0 converges to a measurable function ω ∈ Λ. Therefore by
applying the monotone convergence theorem, we obtain

ω = 1− 1
Mα
Dϕ

Vfp0(p̃0M
α
Dϕ) +

1
Mα
Dϕ

Vfp0(p̃0ωM
α
Dϕ− p0(ωMα

Dϕ)γ)

Put u = ωMα
Dϕ. Then we have

u = Mα
Dϕ− Vfp0(p̃0M

α
Dϕ) + Vfp0(p̃0u− p0u

γ) (3.1)

or equivalently

u− Vfp0(p̃0u) = Mα
Dϕ− Vfp0(p̃0M

α
Dϕ)− Vfp0(p0u

γ). (3.2)

Observe that by Proposition 2.1 (ii), we have V (p̃0u) <∞. So applying the operator
(I + V (p̃0.)) on both sides of (3.2), we deduce by using (1.10) and (1.11) that

u = Mα
Dϕ− V (p0u

γ).

Now using (H1) and similar argument as in the proof of Lemma 2.3, we prove that
x 7→ 1

Mα
Dϕ
V (p0u

γ) ∈ C0(D). So u is a continuous function in D and u is a solution
of (1.3). It remains to prove the uniqueness of such a solution. Let u be a continuous
solution of (1.3). Since the function x 7→ u(x)

Mα
D1(x) is continuous and positive in D

such that lim
x→z∈∂D

u(x)
Mα
D1(x) = ϕ(z), it follows that u(x) ≈Mα

D1(x) ≈Mα
Dϕ(x). Then

by using this fact and Lemma 2.3, we have

(−∆)α/2(u+ V (p0u
γ)) = 0 in D,

lim
x→z∈∂D

(u+ V (p0u
γ))(x)

Mα
D1(x)

= ϕ(z).

So from the uniqueness of problem (1.5) (see [7]]), we deduce that

u+ V (p0u
γ) = Mα

Dϕ in D.

It follows that if u and v are two continuous solution of (1.3), then z = v − u
satisfies

z + V (p0hz) = 0 in D,
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where h is the nonnegative measurable function defined in D by

h(x) =

{
vγ−uγ
v−u , if u(x) 6= v(x),

0, if u(x) = v(x).

Since V (p0h|z|) <∞, we deduce by Lemma 3.1 that z = 0, and so u = v. �

Proof of Theorem 1.3. Let p̃ = σ(Mα
Dϕ)σ−1(Mα

Dψ)rp, q̃ = β(Mα
Dψ)β−1(Mα

Dϕ)sq.
Then by hypothesis (H2), p̃ and q̃ are Kα(D).

Put c1 = e−aα(ep), c2 = e−aα(eq). Note that by Proposition 2.1, we have aα(p̃) <∞
and aα(q̃) <∞. Consider the nonemty closed convex set Γ defined by

Γ = {(y, z) ∈ C(D)× C(D) : c1 ≤ y ≤ 1 and c2 ≤ z ≤ 1}.
Let T be the operator defined on the set Γ by T (y, z) := (ω, θ), such that

(ũ = ωMα
Dϕ, ṽ = θMα

Dψ) is the unique positive continuous solution of the problem

(−∆)α/2ũ+ ((Mα
Dψ)rzrp)(x)ũσ = 0 in D,

(−∆)α/2ṽ + ((Mα
Dϕ)sysq)(x)ṽβ = 0 in D,

lim
x→z∈∂D

ũ(x)
Mα
D1(x)

= ϕ(z),

lim
x→z∈∂D

ṽ(x)
Mα
D1(x)

= ψ(z),

According to Theorem 1.2, we have

ω = 1− 1
Mα
Dϕ

V (zrωσ(Mα
Dψ)r(Mα

Dϕ)σp),

θ = 1− 1
Mα
Dψ

V (ysωβ(Mα
Dϕ)s(Mα

Dψ)βq).

Moreover we have c1 ≤ ω ≤ 1 and c2 ≤ θ ≤ 1 and by Lemma 2.3, T (Γ) is
equicontinuous on D. Since T (Γ) is also bounded, then we deduce that T (Γ) is
relatively compact in C(D)× C(D). This implies in particular that T (Γ) ⊂ Γ.

Next, we shall prove the continuity of the operator T in Γ in the supremum
norm. Let (yk, zk)k be a sequence in Γ which converges uniformly to a function
(y, z) in Γ. Put (ωk, θk) = T (yk, zk) and (ω, θ) = T (y, z). Then we have

|ωk − ω| =
∣∣∣ 1
Mα
Dϕ

V (zrωσ(Mα
Dψ)r(Mα

Dϕ)σp)− 1
Mα
Dϕ

V (zrkω
σ
k (Mα

Dψ)r(Mα
Dϕ)σp)

∣∣∣
≤ 1
σMα

Dϕ
V (|zrωσ − zrkωσk |(Mα

Dϕ)p̃).

Using the fact that |zrωσ − zrkωσk | ≤ 2 and that p̃ ∈ Kα(D), we deduce by Proposi-
tion 2.1 and the dominated convergence theorem, that ωk → ω as k →∞. Similarly
we prove that θk → θ as k →∞. So T (yk, zk)→ T (y, z) as k →∞. Since T (Γ) is
relatively compact in C(D)× C(D), we deduce that

‖T (yk, zk)− T (y, z)‖∞ → 0 as k →∞.
Now the Schauder fixed point theorem implies that there exists (y, z) ∈ Γ such that
T (y, z) = (y, z). Which is equivalent to

u = Mα
Dϕ− V (puσvr),

v = Mα
Dψ − V (qusvβ),
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where (u, v) = (yMα
Dϕ, zM

α
Dψ). The pair (u, v) is a required solution of (1.1) in

the sense of distributions. This completes the proof. �
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