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POSITIVE SOLUTIONS FOR ANISOTROPIC DISCRETE
BOUNDARY-VALUE PROBLEMS

MAREK GALEWSKI, SZYMON G LA̧B, RENATA WIETESKA

Abstract. Using mountain pass arguments and the Karsuh-Kuhn-Tucker

Theorem, we prove the existence of at least two positive solution for anisotropic
discrete Dirichlet boundary-value problems. Our results generalized and im-

prove those in [16].

1. Introduction

In this note we consider an anisotropic difference equation with Dirichlet type
boundary condition on the form

∆(|∆y(k − 1)|p(k−1)−2∆y(k − 1)) + f(k, y(k)) = 0, k ∈ [1, T ],

y(0) = y(T + 1) = 0,
(1.1)

where T ≥ 2 is a integer, f : [1, T ] × R → (0,+∞) is a continuous function; [1, T ]
is a discrete interval {1, 2, . . . , T}, ∆y(k − 1) = y(k) − y(k − 1) is the forward
difference operator; y(k) ∈ R for all k ∈ [1, T ]; p : [0, T + 1] → [2,+∞). Let
p− = mink∈[0,T+1] p(k); p+ = maxk∈[0,T+1] p(k).

About the nonlinear term, we assume the following condition
(C1) There exist a number m > p+ and functions ϕ1, ϕ2 : [1, T ] → (0,∞),

ψ1, ψ2 : [1, T ]→ (0,∞) such that

ψ1(k) + ϕ1(k)|y|m−2y ≤ f(k, y) ≤ ϕ2(k)|y|m−2y + ψ2(k)

for all y ≥ 0 and all k ∈ [1, T ].
Now, we show an example of a function that satisfies condition (C1).

Example 1.1. Let f : [1, T ]× R→ (0,∞) be given by

f(k, y) = |y|m−2y
2 + arctan(y)

T 2k
+

sin2(k)e−|y| + 1
T 3

for (k, y) ∈ [1, T ]× R; here m > p+. We see that for y ≥ 0 we have
1
T 3

+
2
T 2k
|y|m−2y ≤ f(k, y) ≤ 4 + π

2T 2k
|y|m−2y +

2
T 3
.
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Thus we may put

ϕ1(k) =
2
T 2k

; ϕ2(k) =
4 + π

2T 2k
; ψ1(k) =

1
T 3

; ψ2(k) =
2
T 3
.

Solutions to (1.1) will be investigated in a space

Y = {y : [0, T + 1]→ R : y(0) = y(T + 1) = 0}

with a norm

‖y‖ =
( T+1∑
k=1

|∆y(k − 1)|2
)1/2

with which Y becomes a Hilbert space. For y ∈ Y , let

y+ = max{y, 0}, y− = max{−y, 0}.

Note that y+ ≥ 0, y− ≥ 0, y = y+ − y−, and y+ · y− = 0.
In order to demonstrate that problem (1.1) has at least two positive solutions

we assume additionally the condition
(C2)

T
p+−2

2

( 1√
T + 1

)p+
>

T∑
k=1

(ϕ2(k) + ψ2(k)).

Example 1.2. We show that the function defined in Example 1.1 satisfies condition
(C2), by taking p+ = 18 and T = 200:

T
p+−2

2

( 1√
T + 1

)p+
= 0.009 > 0.002 =

T∑
k=1

(ϕ2(k) + ψ2(k)).

Theorem 1.3. Suppose that assumptions (C1), (C2) hold. Then (1.1) has at least
two positive solutions.

Discrete boundary-value problems received some attention lately. Let us men-
tion, far from being exhaustive, the following recent papers on discrete BVPs in-
vestigated via critical point theory, [1, 3, 4, 11, 14, 15, 18, 19, 20]. The tools
employed cover the Morse theory, mountain pass methodology, linking arguments;
i.e. methods usually applied in continuous problems.

Continuous versions of problems such as (1.1) are known to be mathematical
models of various phenomena arising in the study of elastic mechanics (see [17]),
electrorheological fluids (see [13]) or image restoration (see [5]). Variational con-
tinuous anisotropic problems have been started by Fan and Zhang in [7] and later
considered by many methods and authors (see [9] for an extensive survey of such
boundary value problems). The research concerning the discrete anisotropic prob-
lems of type (1.1) have only been started (see [10], [12] where known tools from the
critical point theory are applied in order to get the existence of solutions).

When compared with [16] we see that our problem is more general since we
consider variable exponent case instead of a constant one. While we do not include
term depending on Φp−(y) = |y|p−−2y in the nonlinear part as is the case in [16], it
is apparent that our results would also hold should we have made our nonlinearity
more complicated. We note that term Φp−(y) = |y|p−−2y does not influence the
growth of the nonlinearity.
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2. Auxiliary results

We connect positive solutions to (1.1) with critical points of suitably chosen
action functional. Let

F (k, y) =
∫ y

0

f(k, s)ds for y ∈ R and k ∈ [1, T ].

Let us define a functional J : Y → R by

J(y) =
T+1∑
k=1

1
p(k − 1)

|∆y(k − 1)|p(k−1) −
T∑
k=1

F (k, y+(k)).

Functional J is slightly different from functionals applied in investigating the exis-
tence of positive solutions, compare with [15]. Thus we indicate its properties. The
functional J is continuously Gâteaux differentiable and its derivative at y is

〈J ′(y), v〉 =
T+1∑
k=1

|∆y(k − 1)|p(k−1)−2∆y(k − 1)∆v(k − 1)

−
T∑
k=1

f(k, y+(k))v(k)

(2.1)

for all v ∈ Y . Suppose that y is a critical point to J ; i.e., 〈J ′(y), v〉 = 0 for all
v ∈ Y . Summing by parts and taking boundary values into account, see [8], we
observe that

0 = −
T+1∑
k=1

∆(|∆y(k − 1)|p(k−1)−2∆y(k − 1))v(k)−
T∑
k=1

f(k, y+(k))v(k).

Since v ∈ Y is arbitrary, we see that y satisfies (1.1).
Now, we recall some auxiliary material which we use later: For (A1)-(A3) see

[12], for (A4)-(A5) see [8], for (A6) see [15].

(A1) For every y ∈ Y with ‖y‖ > 1, we have

T+1∑
k=1

|∆y(k − 1)|p(k−1) ≥ T
2−p−

2 ‖y‖p
−
− T.

(A2) For every y ∈ Y with ‖y‖ ≤ 1, we have

T+1∑
k=1

|∆y(k − 1)|p(k−1) ≥ T
p+−2

2 ‖y‖p
+
.

(A3) For every y ∈ Y and any m ≥ 2, we have

(T + 1)
2−m

2 ‖y‖m ≤
T+1∑
k=1

|∆y(k − 1)|m ≤ (T + 1)‖y‖m.

(A4) If p+ ≥ 2, there exists Cp+ > 0 such that for every y ∈ Y ,

T+1∑
k=1

|∆y(k − 1)|p(k−1) ≤ 2p
+

(T + 1)(Cp+‖y‖p
+

+ 1).
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(A5) For every y ∈ Y and any m ≥ 2, we have
T+1∑
k=1

|∆y(k − 1)|m ≤ 2m
T∑
k=1

|y(k)|m.

(A6) For every y ∈ Y and any p, q > 1 such that 1
p + 1

q = 1, we have

‖y‖C = max
k∈[1,T ]

|y(k)| ≤ (T + 1)
1
q (
T+1∑
k=1

|∆y(k − 1)|p)1/p.

Let E be a real Banach space. We say that a functional J : E → R satisfies
Palais-Smale condition if every sequence (yn) such that {J(yn)} is bounded and
J ′(yn)→ 0, has a convergent subsequence.

Lemma 2.1 ([6]). Let E be a Banach space and J ∈ C1(E,R) satisfy Palais-Smale
condition. Assume that there exist x0, x1 ∈ E and a bounded open neighborhood Ω
of x0 such that x1 /∈ Ω and

max{J(x0), J(x1)} < inf
x∈∂Ω

J(x).

Let

Γ = {h ∈ C([0, 1], E) : h(0) = x0, h(1) = x1},
c = inf

h∈Γ
max
s∈[0,1]

J(h(s)).

Then c is a critical value of J ; that is, there exists x? ∈ E such that J ′(x?) = 0
and J(x?) = c, where c > max{J(x0), J(x1)}.

Finally we recall the Karush-Kuhn-Tucker theorem with Slater qualification con-
ditions (for one constraint), see [2].

Theorem 2.2. Let X be a finite-dimensional Euclidean space, η, µ : X → R be
differentiable functions, with µ convex and infX µ < 0, and S = {x ∈ X : µ(x) ≤ 0}.
Moreover, let x ∈ S be such that η(x) = infS η. Then, there exists σ ≥ 0 such that

η′(x) + σµ′(x) = 0 and σµ(x) = 0.

We will provide now some results which are used in the proof of the Main Theo-
rem. The following lemma may be viewed as a kind of a discrete maximum principle.

Lemma 2.3. Assume that y ∈ Y is a solution of the equation

∆(|∆y(k − 1)|p(k−1)−2∆y(k − 1)) + f(k, y+(k)) = 0, k ∈ [1, T ],

y(0) = y(T + 1) = 0,
(2.2)

then y(k) > 0 for all k ∈ [1, T ] and moreover y is a solution of (1.1).

Proof. We will show that

∆y(k − 1)∆y−(k − 1) ≤ 0 for every k ∈ [1, T + 1].

Indeed,

∆y(k − 1)∆y−(k − 1)

= (y(k)− y(k − 1))(y−(k)− y−(k − 1))

= [(y+(k)− y+(k − 1))− (y−(k)− y−(k − 1))](y−(k)− y−(k − 1))

= (y+(k)− y+(k − 1))(y−(k)− y−(k − 1))− (y−(k)− y−(k − 1))2
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= y+(k)y−(k)− y+(k)y−(k − 1)− y+(k − 1)y−(k)

+ y+(k − 1)y−(k − 1)− (y−(k)− y−(k − 1))2

= −[y+(k)y−(k − 1) + y+(k − 1)y−(k) + (y−(k)− y−(k − 1))2] ≤ 0.

Assume that y ∈ Y is a solution of (2.2). Taking v = y− in (2.1) we obtain
T+1∑
k=1

|∆y(k − 1)|p(k−1)−2∆y(k − 1)∆y−(k − 1) =
T∑
k=1

f(k, y+(k))y−(k).

Since the term on the left is non-positive and the one on the right is non-negative, so
this equation holds true if the both terms are equal zero, which leads to y−(k) = 0
for all k ∈ [1, T ]. Then y = y+. Therefore, y is a positive solution of (1.1). Arguing
by contradiction, assume that there exists k ∈ [1, T ] such that y(k) = 0, while we
can assume y(k − 1) > 0. Then, by (2.2) we have

|y(k + 1)|p(k)−2y(k + 1) = −y(k − 1)p(k−1)−1 − f(k, 0) < 0,

which implies y(k + 1) < 0, a contradiction. So y(k) > 0 for all k ∈ [1, T ]. �

Finally we prove that J satisfies Palais-Smale condition.

Lemma 2.4. Assume that (C1) holds. Then the functional J satisfies Palais-
Smale condition.

Proof. Assume that {yn} is such that {J(yn)} is bounded and J ′(yn) → 0. Since
Y is finitely dimensional, it is sufficient to show that {yn} is bounded. Note that

∆y+(k)∆y−(k) ≤ 0 for every k ∈ [0, T ].

Using the above inequality we obtain

−
T+1∑
k=1

|∆y(k − 1)|p(k−1)−2∆y(k − 1)∆y−(k − 1)

= −
T+1∑
k=1

|∆y(k − 1)|p(k−1)−2∆(y+(k − 1)− y−(k − 1))∆y−(k − 1)

= −
T+1∑
k=1

|∆y(k − 1)|p(k−1)−2∆y+(k − 1)∆y−(k − 1)

+
T+1∑
k=1

|∆y(k − 1)|p(k−1)−2∆y−(k − 1)∆y−(k − 1)

≥
T+1∑
k=1

|∆y(k − 1)|p(k−1)−2(∆y−(k − 1))2

≥
T+1∑
k=1

|∆y−(k − 1)|p(k−1).

(2.3)

Since yn = (yn)+ − (yn)−, we will show that {(yn)−} and {(yn)+} are bounded.
Suppose that {(yn)−} is unbounded. Then we may assume that there exists N0 > 0
such that for n ≥ N0 we have ‖(yn)−‖ ≥ T ≥ 2. Using (2.3) we obtain

〈J ′(yn), (yn)−〉
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=
T+1∑
k=1

|∆yn(k − 1)|p(k−1)−2∆yn(k − 1)∆(yn)−(k − 1)

−
T∑
k=1

f(k, (yn)+(k))(yn)−(k)

≤ −
T+1∑
k=1

|∆(yn)−(k − 1)|p(k−1).

So by (A1) we obtain

T
2−p−

2 ‖(yn)−‖p
−
− T ≤

T+1∑
k=1

|∆(yn)−(k − 1)|p(k−1)

≤ 〈J ′(yn),−(yn)−〉 ≤ ‖J ′(yn)‖ ‖(yn)−‖.
Next, we see that

T
2−p−

2 ‖(yn)−‖p
−
≤ ‖J ′(yn)‖ ‖(yn)−‖+ T

≤ ‖J ′(yn)‖ ‖(yn)−‖+ ‖(yn)−‖
≤ (‖J ′(yn)‖+ 1)‖(yn)−‖

and
T

2−p−
2 ‖(yn)−‖p

−−1 ≤ (‖J ′(yn)‖+ 1).
Since, for a fixed ε > 0, there exists some N1 ≥ N0 such that ‖J ′(yn)‖ < ε for every
n ≥ N1, we obtain

‖(yn)−‖p
−−1 ≤ (ε+ 1)

T
2−p−

2

.

This means that {(yn)−} is bounded.
Now, we will show that {(yn)+} is bounded. Suppose that {(yn)+} is unbounded.

We may assume that ‖(yn)+‖ → ∞. Since

f(k, y) ≥ ϕ1(k)|y|m−2y + ψ1(k) for all k ∈ [1, T ],

it follows that

F (k, y) ≥ ϕ1(k)
m
|y|m + ψ1(k)y.

Thus by (A3) and (A5), we obtain
T∑
k=1

F (k, (yn)+(k)) ≥ ϕ−1
m

T∑
k=1

|(yn)+(k)|m ≥ ϕ−1
m

2−m(T + 1)
2−m

2 ‖(yn)+‖m,

where ϕ−1 = mink∈[1,T ] ϕ1(k). Therefore by (A4), we have

J(yn) =
T+1∑
k=1

[
1

p(k − 1)
|∆yn(k − 1)|p(k−1) − F (k, (yn)+(k))]

≤ 2p
+

(T + 1)(Cp+‖(yn)+ − (yn)−‖p
+

+ 1)− ϕ−1
m

2−m(T + 1)
2−m

2 ‖(yn)+‖m

≤ 2p
+

(T + 1)(Cp+2p
+−1(‖(yn)+‖p

+
+ ‖(yn)−‖p

+
) + 1)

− ϕ−1
m

2−m(T + 1)
2−m

2 ‖(yn)+‖m.
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Since p+ < m and {(yn)+} is unbounded and {(yn)−} is bounded, so J(yn)→ −∞.
Thus we obtain a contradiction with the assumption {J(yn)} is bounded, so {(yn)+}
is bounded. It follows that {yn} is bounded. �

3. Proof of the main result

In this section we present the proof of Theorem 1.3.

Proof. Assume that y0 ∈ Y is a local minimizer of J in

B := {y ∈ Y : µ(y) ≤ 0},

where µ(y) = ‖y‖2
2 − 1

2(T+1) . Note that for y ∈ B by (A6) it follows that for all
k ∈ [1, T ],

|y(k)| ≤ max
s∈[1,T ]

|y(s)| ≤
√
T + 1‖y‖ ≤ 1√

T + 1

√
T + 1 = 1.

We prove that y0 ∈ IntB, by contradiction. Thus suppose otherwise; i.e., we
suppose that y0 ∈ ∂B. Then by Theorem 2.2 there exists σ ≥ 0 such that for all
v ∈ Y

〈J ′(y0), v〉+ σ〈y0, v〉 = 0.
Hence

T+1∑
k=1

|∆y0(k − 1)|p(k−1)−2∆y0(k − 1)∆v(k − 1)

−
T∑
k=1

f(k, (y0)+(k))v(k) + σ

T∑
k=1

〈y0(k), v(k)〉 = 0.

Taking v = y0, we see that
T+1∑
k=1

|∆y0(k − 1)|p(k−1) + σ‖y0‖2 =
T∑
k=1

f(k, (y0)+(k))y0(k).

Since y0 ∈ ∂B, we see that ‖y0‖ = 1√
T+1

. Thus by (A2), we have

T+1∑
k=1

|∆y0(k − 1)|p(k−1) + σ‖y0‖2 ≥
T+1∑
k=1

|∆y0(k − 1)|p(k−1) ≥ T
p+−2

2

( 1√
T + 1

)p+
.

On the other hand
T∑
k=1

f(k, (y0)+(k))y0(k)

=
T∑
k=1

f(k, (y0)+(k))(y0)+(k)−
T∑
k=1

f(k, (y0)+(k))(y0)−(k)

≤
T∑
k=1

ϕ2(k)|(y0)+(k)|m +
T∑
k=1

ψ2(k)|(y0)+(k)|

≤
T∑
k=1

ϕ2(k) +
T∑
k=1

ψ2(k).
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Thus,

T
p+−2

2 (
1√
T + 1

)p
+
≤

T∑
k=1

(ϕ2(k) + ψ2(k)).

A contradiction with (C2). Hence y0 ∈ IntB and y0 is a local minimizer of J . Thus
J(y0) < miny∈∂B J(y). We will show that there exists y1 such that y1 ∈ Y \B and
J(y1) < miny∈∂B J(y). Let yλ ∈ Y be define as follows: yλ(k) = λ for k = 1, . . . , T
and yλ(0) = yλ(T + 1) = 0. Then for λ > 1 we have

J(yλ) ≤ λp(0)

p(0)
+
λp(T )

p(T )
−

T∑
k=1

ϕ1(k)λm

m
≤ λp

+

p(0)
+

λp
+

p(T )
− ϕ−1 λ

m

m
T − ψ−1 λT.

Since m > p+, then limλ→∞ J(yλ) = −∞. Thus there exists λ0 with J(yλ0) <
miny∈∂B J(y). By Lemma 2.1 and Lemma 2.4 we obtain a critical value of the
functional J for some y? ∈ Y \ ∂B. Then y0 and y? are two different critical points
of J and therefore by Lemma 2.3 these are positive solutions of problem (1.1). �
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