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POSITIVE SOLUTIONS FOR ANISOTROPIC DISCRETE
BOUNDARY-VALUE PROBLEMS

MAREK GALEWSKI, SZYMON GLAB, RENATA WIETESKA

ABSTRACT. Using mountain pass arguments and the Karsuh-Kuhn-Tucker
Theorem, we prove the existence of at least two positive solution for anisotropic
discrete Dirichlet boundary-value problems. Our results generalized and im-
prove those in [16].

1. INTRODUCTION

In this note we consider an anisotropic difference equation with Dirichlet type
boundary condition on the form

AjAy(k = FED2AY(k = 1)) + f(k.y(k) = 0, k€ [1,T],
y(0) =y(T'+1) =0,
where T' > 2 is a integer, f : [1,7] x R — (0,400) is a continuous function; [1, 7]
is a discrete interval {1,2,...,T}, Ay(k — 1) = y(k) — y(k — 1) is the forward
difference operator; y(k) € R for all k € [1,T]; p : [0,T + 1] — [2,400). Let

p~ = mingep, 741 p(k); pT = maxyep 11 (k).
About the nonlinear term, we assume the following condition

(1.1)

(C1) There exist a number m > p* and functions ¢1,¢2 : [1,7] — (0,00),
1,19 1 [1,T] — (0,00) such that

1(k) + o1 (k) |y 2y < flk,y) < a(R)yl™ 2y + a(k)
for all y > 0 and all k € [1,T].

Now, we show an example of a function that satisfies condition (C1).

Example 1.1. Let f: [1,7] x R — (0, 00) be given by

f(k,y) = |y|m72y2 + arCtan(y) + Sin2(k)@*\y| + 1

T2k T3
for (k,y) € [1,T] x R; here m > p*. We see that for y > 0 we have
1 2 9 4+m 9 2
_ . m < k < m —
75 Tl Ty < flky) < o WM Ty + g
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Thus we may put
2 447 1 2

p1(k) = Tag; pa(k) = 5T Y1(k) = T Pa(k) = 3"
Solutions to (1.1)) will be investigated in a space
Y = {y:[0,T+1] = R:y(0) = y(T +1) = 0}

with a norm
T4+1

1/2
ol = (3 1ay(k - 1))
k=1
with which Y becomes a Hilbert space. For y € Y, let

y+ = max{y,0}, y_ = max{—y,0}.

Note that yy >0, y- >0, y=y4+ —y—, and y4 -y_ = 0.

In order to demonstrate that problem (1.1)) has at least two positive solutions
we assume additionally the condition

(C2)

T

pte2y 1 P
T (\/Tjﬂ) >k:1(902(k)+¢2(k?))-

Example 1.2. We show that the function defined in Example[I.I]satisfies condition
(C2), by taking p* = 18 and T = 200:

T

pto2 1 \»"
T (\/m) :o.oog>0.002=];(¢2(k)+w2(k)).

Theorem 1.3. Suppose that assumptions (C1), (C2) hold. Then (1.1) has at least
two positive solutions.

Discrete boundary-value problems received some attention lately. Let us men-
tion, far from being exhaustive, the following recent papers on discrete BVPs in-
vestigated via critical point theory, [I, B, [, 11l 4], 15 I8, 19, 20]. The tools
employed cover the Morse theory, mountain pass methodology, linking arguments;
i.e. methods usually applied in continuous problems.

Continuous versions of problems such as are known to be mathematical
models of various phenomena arising in the study of elastic mechanics (see [I7]),
electrorheological fluids (see [13]) or image restoration (see [5]). Variational con-
tinuous anisotropic problems have been started by Fan and Zhang in [7] and later
considered by many methods and authors (see [9] for an extensive survey of such
boundary value problems). The research concerning the discrete anisotropic prob-
lems of type have only been started (see [10], [I2] where known tools from the
critical point theory are applied in order to get the existence of solutions).

When compared with [I6] we see that our problem is more general since we
consider variable exponent case instead of a constant one. While we do not include
term depending on ®,,- (y) = |y[P ~?y in the nonlinear part as is the case in [16], it
is apparent that our results would also hold should we have made our nonlinearity
more complicated. We note that term ®,-(y) = |y[? ~2y does not influence the
growth of the nonlinearity.
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2. AUXILIARY RESULTS

We connect positive solutions to (1.1) with critical points of suitably chosen
action functional. Let

y
F(k,y):/ f(k,s)ds foryeRand ke [1,T)].
0

Let us define a functional J : Y — R by

T+1 1 ) T
J(y) = ;mmy(k—l)\ —;F(’ﬁm(h))-

Functional J is slightly different from functionals applied in investigating the exis-
tence of positive solutions, compare with [I5]. Thus we indicate its properties. The
functional J is continuously Gateaux differentiable and its derivative at y is

T+1

('(y),v) =D 1Ay(k = PED2Ay(k — 1) Av(k — 1)

k=1

T
= flkyg (k))v(k)
k=1

for all v € Y. Suppose that y is a critical point to J; i.e., (J'(y),v) = 0 for all
v € Y. Summing by parts and taking boundary values into account, see [§], we
observe that

(2.1)

T+1 T
0=—> A(Ay(k—DPED"2Ay(k - )= > flkyr (k))o(k).
k=1 k=1

Since v € Y is arbitrary, we see that y satisfies ([1.1]).

Now, we recall some auxiliary material which we use later: For (A1)-(A3) see
[12], for (A4)-(A5) see [§], for (A6) see [15].

(Al) For every y € Y with ||y|| > 1, we have

T+1

> 1Ay(k - 1)

k=1

(A2) For every y € Y with |ly|| < 1, we have

T+1

Z | Ay (k |p(k D>

(A3) For every y € Y and any m > 2, we have

T+1
(T + 1) lyl™ < D~ JAy(k = )™ < (T + 1)]y]|™

k=1
(A4) If p* > 2, there exists Cp+ > 0 such that for every y € Y,

T+1
+
ZIAy DPED < 27 (T + 1)(Cpe JylP +1).
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(A5) For every y € Y and any m > 2, we have

T+1 T
S 1Ay =)™ < 2™y (k)
k=1 k=1

(A6) For every y € Y and any p,q > 1 such that % + % =1, we have

T+1

Iylle = s ly(k)] < (T+1)7 (3 |Ay(k = DIP)7.
k=1

Let E be a real Banach space. We say that a functional J : E — R satisfies
Palais-Smale condition if every sequence (y,) such that {J(y,)} is bounded and
J'(yn) — 0, has a convergent subsequence.

Lemma 2.1 ([6]). Let E be a Banach space and J € C*(E,R) satisfy Palais-Smale
condition. Assume that there exist xo,x1 € E and a bounded open neighborhood 2
of xo such that z1 ¢ Q and

max{J(zo), J(z1)} < zlergg J(z).

Let
I'={heC([0,1], E) : h(0) = o, h(1) = z1},

= inf J(h(s)).
° )

Then ¢ is a critical value of J; that is, there exists x* € E such that J'(z*) = 0
and J(x*) = ¢, where ¢ > max{J(xo), J(z1)}.

Finally we recall the Karush-Kuhn-Tucker theorem with Slater qualification con-
ditions (for one constraint), see [2].

Theorem 2.2. Let X be a finite-dimensional Fuclidean space, n,u : X — R be
differentiable functions, with u conver andinfx p < 0, and S = {x € X : u(x) < 0}.
Moreover, let T € S be such that n(T) = infgn. Then, there exists o > 0 such that

n'(Z)+ou' () =0 and owp(x) =0.

We will provide now some results which are used in the proof of the Main Theo-
rem. The following lemma may be viewed as a kind of a discrete maximum principle.

Lemma 2.3. Assume that y € Y is a solution of the equation
A(|Ay(k = P2 Ay (k = 1) + f (ki (k) = 0k € [1,T],
y(0) =y(T'+1) =0,
then y(k) > 0 for all k € [1,T] and moreover y is a solution of (L.1]).
Proof. We will show that
Ay(k —1)Ay_(k—1) <0 forevery k € [1,T +1].

(2.2)

Indeed,
Ay(k —DAy_(k-1)
= (y(k) —y(k = 1)(y- (k) —y-(k — 1))
= [(y+ (k) =y (k = 1)) = (y—(k) —y—(k — 1))(y- (k) —y—(k — 1))
= (y+(k) = y+ (k= 1)) (y—(k) —y—(k = 1)) = (y—(k) —y—(k —1))°
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=y4(k)y—(k) =y (k)y—(k — 1) =y (k — Dy—(k)

+ys (k= Dy-(k=1) = (y-(k) —y-(k = 1))

—[y+ (K)y—(k = 1) + yy (k = Dy (k) + (y—(k) —y—(k — 1))*] 0.

Assume that y € Y is a solution of (2.2). Taking v = y_ in we obtain
T+1

D 1Ay(k = 1PED 2 AY(k — 1) Ay ( Zf (kyy (k))y— (k).

k=1
Since the term on the left is non-positive and the one on the right is non-negative, so
this equation holds true if the both terms are equal zero, which leads to y_(k) =0
for all k € [1,T]. Then y = y;. Therefore, y is a positive solution of . Arguing
by contradiction, assume that there exists k € [1,7T] such that y(k) = 0, while we
can assume y(k — 1) > 0. Then, by we have

ly(k + DP® 2y (k + 1) = —y(k — PED71 — f(k,0) <0
which implies y(k + 1) < 0, a contradiction. So y(k) > 0 for all k € [1,T]. O
Finally we prove that J satisfies Palais-Smale condition.

Lemma 2.4. Assume that (C1) holds. Then the functional J satisfies Palais-
Smale condition.

Proof. Assume that {y,} is such that {J(y,)} is bounded and J'(y,) — 0. Since
Y is finitely dimensional, it is sufficient to show that {y,} is bounded. Note that

Ayi(k)Ay_(k) <0 for every k € [0,T].

Using the above inequality we obtain

T+1
—ZIAy DPED=2Ay(k = 1)Ay - (k — 1)
T+1
:fZ\Ay DPED2A(y, (k= 1) =y (k— 1) Ay (k- 1)
T+1

== > [Ay(k - )PED Ay, (k- 1Ay (k- 1)
k=1

(2.3)
T+1
+Z|Ay DPED2 Ay (k- 1Ay (k—1)
T+1
> ZIAy DPED2(Ay_ (k- 1))
T+1

>Z|Ay Pt

Since Y, = (Yn)+ — (yn)—, we will show that {(y,)_} and {(y»)+} are bounded.
Suppose that {(y,)—} is unbounded. Then we may assume that there exists Ny > 0
such that for n > Ny we have ||(y,)—| > T > 2. Using (2.3]) we obtain

(J"(yn)s (yn)-)
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T+1
= Z |Ayn(k - 1)‘p(k_1)_2Ayn(k - 1)A(yn)f(k) - 1)
k:lT
= > F ks (ya)+ (K)) (yn) - (k)
i1

< =D 1AG)- (k= 1Pt
k=1

So by (A1) we obtain

_ - T+1
T z ||(yn)f||p -T< Z |A(yn)7(k _ 1)|p(k—1)
1

k=
(T (), = () =) < 11 @) | ()~ I-

IN

Next, we see that

2

T ) 1P < 11 )| )|+ T
< N ) @) =1l + 1) -]
< (17 () |+ DIl () -l

and
2—p— -
T i) l” = < (1 () + 1),
Since, for a fixed € > 0, there exists some N7 > Ny such that ||J'(y,)|| < € for every
n > Ny, we obtain

)t < EED
T =

This means that {(y,)-} is bounded.
Now, we will show that {(y,)+} is bounded. Suppose that {(y,)+ } is unbounded.
We may assume that ||(y,)+| — oo. Since

flk,y) = or(R)lyl™ 2y + ¢ (k) for all k € [1,7],

it follows that
P1 (k)
m

F(k,y) >
Thus by (A3) and (A5), we obtain

ly[™ + 1(k)y.

2—m

T _ T _
D7 F (b ()4 (k) = 537 (o) (1) = E2m(T 4 1)
k=1 k=1

)+ ™,

where ¢ = mingc(1 77 01(k). Therefore by (A4), we have

T+1 1 o
J(yn) = Z[mlAyn(k — 1) — F(k, (yn)+ (k)]

k=1

<P (T4 D)ol — () IP" +1) = EL277 (T 4 1) ()|
<2 (T+ 1)(Cpr 2 M I+ P + 1) -IIP") + 1)

901_ —-m 2-m m
— Pl L 1V () |
Ly (T 4 1) )|
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Since p™ < m and {(y, )+ } is unbounded and {(y,)_} is bounded, so J(y,) — —oo.

Thus we obtain a contradiction with the assumption {J(y,,)} is bounded, so {(yn)+}

is bounded. It follows that {y,} is bounded. ]
3. PROOF OF THE MAIN RESULT

In this section we present the proof of Theorem

Proof. Assume that yy € Y is a local minimizer of J in

B:={yeY:puy) <0},

2

where u(y) = |\y2|\ — 2(T1+1)' Note that for y € B by (A6) it follows that for all
ke [1,T],
1
k)] < ma )| < VT +1 < T+1=1.
) < max [9(9)] < VI Lyl < <=V

We prove that yg € IntB, by contradiction. Thus suppose otherwise; i.e., we
suppose that yo € 0B. Then by Theorem there exists o > 0 such that for all
veY

(J'(yo), v) + o (yo,v) = 0.
Hence
T+1
D 1Ay (k= PED 2 Ayg(k — 1) Av(k — 1)
k=1

T T
=Y f(k (yo)+ (K)o(k) + 0 Y (yo(k), v(k)) = 0.
k=1 k=1

Taking v = yo, we see that

T+1 T
S 1Agolk = DIPFED 4 ool = 3 £ (o) + ()wo(k).
k=1 k=1
Since yo € 0B, we see that ||yo| = \/%H Thus by (A2), we have
T+1 e , T+1 - s 1 ot
3 1o(k = DF ol 2 3 1Au(k ~ P 2 T (7))
On the other hand
T
D1k, (yo)+ (k) yo (k)
k_lT T
=D fk (g0)+ (k) (yo)+ (k) = > f(k (y0)+ (k) (o) (k)
k=1 k=1
< Z p2(k)[(yo)+ (k)™ + Z V2(k)|(yo)+ (k)|
k;l . k=1
< Z p2(k) + Z%(M
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Thus,

pt—2 1

T

VT

A contradiction with (C2). Hence yo € IntB and yg is a local minimizer of J. Thus
J(y0) < minyegp J(y). We will show that there exists y; such that y; € Y\ B and
J(y1) < mingean J(y). Let yx € Y be define as follows: yx(k) = Afor k=1,...,T
and yx(0) = yx(T + 1) = 0. Then for A > 1 we have

" 1)p+ < ;(@2(15) + (k).

T m P p
5 kA" N
m

p0) (D) p(0) " p(T)

Since m > p*, then limy_ o J(yx) = —oo. Thus there exists Ay with J(y»,) <
mingepp J(y). By Lemma and Lemma we obtain a critical value of the
functional J for some y* € Y\ dB. Then gy and y* are two different critical points
of J and therefore by Lemma these are positive solutions of problem . ([l

+ +

AP0 Z\p(T) 1 A

I(y») < T — 7 AT.

=1
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