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A COMPUTATIONAL TECHNIQUE FOR SOLVING BOUNDARY
VALUE PROBLEM WITH TWO SMALL PARAMETERS

DEVENDRA KUMAR

Abstract. In this article we study a singularly perturbed boundary-value

problem for a delay differential equation with a small delay parameter in the
first derivative term whose solution has a single boundary layer. The proposed

method is shown to be stable, and its performance is confirmed with examples.

1. Introduction

Delay differential equations arise in the mathematical modelling of various prac-
tical phenomena, for instance, micro scale heat transfer [17], hydrodynamics of
liquid helium [8], second-sound theory [9], thermo elasticity [6], diffusion in poly-
mers [12], reaction-diffusion equations [2], stability [3], control including control of
chaotic systems [11], a variety of model for physiological processes or diseases [4, 13]
etc. As a consequence, they have received a lot of interest in recent years, especially
for linear problems, for which one can obtain analytical solutions by means of, for
example, the Laplace transform in time, separation of variables in finite spatial
domains, etc.

A delay differential equation is said to be of retarded type if the delay argu-
ment does not occur in the highest order derivative term. If we restrict it to a
class in which the highest derivative term is multiplied by a small parameter, then
we obtain singularly perturbed delay differential equations of the retarded type.
Frequently, delay differential equations have been reduced to differential equations
with coefficients that depend on the delay by means of first order accurate Taylor’s
series expansions of the terms that involve delay and the resulting differential equa-
tions have been solved either analytically when the coefficients of these equations
are constant or numerically, when they are not [15].

It is well-known that the standard discretization methods for solving singular
perturbation problems are unstable and fail to give accurate results when the per-
turbation parameter ε is small. Therefore, it is important to develop suitable numer-
ical methods for these problems, whose accuracy does not depend on the parameter
value ε; i.e., the methods that are convergent ε-uniformly [5, 7, 16]. There are es-
sentially two strategies to design schemes which have small truncation errors inside
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the layer region(s). The first approach which forms the class of fitted mesh meth-
ods consists in choosing a fine mesh in the layer region(s). The second approach is
in the context of the fitted operator methods in which the mesh remains uniform
and the difference schemes reflect the qualitative behavior of the solution inside the
layer region(s). A nice discussion using one or both of the above strategies can be
found in Miller et al. [5]. The work in this paper falls under the first category. We
have derived a finite difference scheme on a non uniform mesh for the boundary
value problems for a class of singularly perturbed delay differential equations.

2. Statement of the problem

Consider the following boundary-value problem for a singularly perturbed delay
differential equation with a small parameter multiplying to the second derivative
and containing negative shift in the first derivative term

εy′′(x) + p(x)y′(x− δ)− q(x)y(x) = r(x), x ∈ [0, 1], (2.1)

under the interval and boundary conditions

y(x) = φ(x), −δ ≤ x ≤ 0, y(1) = β, (2.2)

where ε is a small parameter, 0 < ε ≤ 1, and δ is also a small shift parameter of
o(ε). The functions p(x), q(x), r(x) and φ(x) are sufficiently smooth. It is assumed
that p(x) ≥ p∗ > 0, q(x) ≥ q∗ > 0, for all x ∈ [0, 1] for some positive constants
p∗ and q∗. For δ = 0 Equation (2.1) reduces to a singularly perturbed ordinary
differential equation with only a single parameter ε, which has a boundary layer at
one end or both ends depending on p(x) and q(x). It is well-known that if p(x) > 0
throughout the interval [0, 1], the boundary layer exists near left end x = 0 and
if p(x) < 0 throughout the interval [0, 1], the boundary layer exists near right end
x = 1. However, for p(x) = 0 the layer exists at interior of the interval [0, 1] and
such point is called the turning point. In this paper, we consider the problems
which have boundary layers (not interior layers) only. This problem has already
been considered by Kadalbajoo and Kumar in [10]. There we have used B-spline
collocation method with piecewise-uniform mesh and the method was shown to be
parameter uniform of order almost two. In this paper we have generated a geometric
mesh and used finite difference method with geometric mesh. The proposed method
is not very useful in the case when the delay parameter is relatively large as the
Taylor’s series expansion is not valid in that case.

Since ε is small and δ = o(ε), so taking the Taylor’s series expansion for the term
y′(x− δ), from (2.1)-(2.2), we obtain

εy′′(x) + a(x)y′(x)− b(x)y(x) = f(x), (2.3)

with
y(0) = φ0 = φ(0), y(1) = β, (2.4)

where

a(x) =
p(x)

1− (δ/ε)p(x)
, b(x) =

q(x)
1− (δ/ε)p(x)

, f(x) =
r(x)

1− (δ/ε)p(x)
.

Here we also assume that ε − δp(x) > 0, then we have a(x) ≥ a∗ > 0 and b(x) ≥
b∗ > 0 for some positive constants a∗ and b∗.

The operator Lcε = ε d
2

dx2 +a(x) d
dx−b(x)I in (2.3) satisfies the following minimum

principle:
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Lemma 2.1. Suppose π(x) be any sufficiently smooth function satisfying π(0) ≥ 0
and π(1) ≥ 0. Then Lcεπ(x) ≤ 0 for all x ∈ (0, 1) implies that π(x) ≥ 0 for all
x ∈ [0, 1].

Proof. Let z ∈ [0, 1] be such that π(z) < 0 and π(z) = min0≤x≤1 π(x). Clearly
z /∈ {0, 1}, therefore π′(z) = 0 and π′′(z) ≥ 0. Now we have from Eq. (2.3)

Lcεπ(z) = επ′′(z) + a(z)π′(z)− b(z)π(z) > 0,

which contradict our assumption, therefore we must have π(z) ≥ 0 and thus π(x) ≥
0, ∀ x ∈ [0, 1]. �

Now we can show the boundedness of the solutions of the continuous problem
(2.3)-(2.4).

Lemma 2.2. The solution y(x) of (2.3)-(2.4) satisfies the inequality

‖y‖ ≤ C max
{
|φ0|, |β|,

1
b∗
‖f‖

}
,

where ‖ · ‖ is the l∞ norm given by ‖y‖ = max0≤x≤1 |y(x)|.

Proof. Consider the barrier functions ψ±(x) defined by

ψ±(x) = max
{
|φ0|, |β|,

1
b∗
‖f‖

}
± y(x).

Then we have

ψ±(0) = max
{
|φ0|, |β|,

1
b∗
‖f‖

}
± y(0)

= max
{
|φ0|, |β|,

1
b∗
‖f‖

}
± φ0 ≥ 0,

ψ±(1) = max
{
|φ0|, |β|,

1
b∗
‖f‖

}
± y(1)

= max
{
|φ0|, |β|,

1
b∗
‖f‖

}
± β ≥ 0.

Now we have for x ∈ (0, 1)

Lcεψ
±(x) = ε

d2

dx2
ψ±(x) + a(x)

d

dx
ψ±(x)− b(x)ψ±(x)

= ±Lcεy(x)− b(x) max
{
|φ0|, |β|,

1
b∗
‖f‖

}
≤ ±f − b∗max

{
|φ0|, |β|,

1
b∗
‖f‖

}
≤ 0.

Using the minimum principle we obtain the required estimate. �

Lemma 2.3. The derivatives of the solution y(x) of the problem (2.3)-(2.4) satisfies

‖y(k)‖ ≤ Cε−k, k = 1, 2, 3,

where C is a positive constant independent of ε.

Proof. Let x ∈ (0, 1) and let V = (c, c + γ) be a neighborhood of x, where γ > ε
is a constant, so that V ⊂ (0, 1), then by mean value theorem there exists a point
ζ ∈ V such that

y′(ζ) =
y(c+ ε)− y(c)

ε
,
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so
ε‖y′(ζ)‖ ≤ 2‖y‖. (2.5)

Now differentiating (2.3) from ζ to x and taking the modulus from both sides, we
obtain

ε|y′(x)| ≤ ε|y′(ζ)|+ ‖f‖|x− ζ|+
∫ x

ζ

|a(t)y′(t)| dt+ ‖b‖‖y‖|x− ζ|. (2.6)

Now since ∫ x

ζ

|a(t)y′(t)| dt ≤ (2‖a‖+ ‖a′‖|x− ζ|)‖y‖, (2.7)

with inequalities (2.5), (2.7) and using the fact |x − ζ| < γ and Lemma 2.2, from
(2.6) we obtain

‖y′‖ ≤ Cε−1,

where C is a positive constant independent of ε. The bounds for ‖y′′‖ and ‖y′′′‖
can be obtained similarly. �

The solution y(x) of the problem (2.3)-(2.4) can be decomposed into a smooth
and singular components as

y = u+ v,

where u and v are smooth and singular components respectively. The smooth
component u can be written in three term asymptotic expansion as

u(x) = u0(x) + u1(x)ε+ u2(x)ε2,

where u0, u1 and u2 satisfies

a(x)u′0(x) + b(x)u0(x) = f(x), u0(1) = u(1),

a(x)u′1(x) + b(x)u1(x) = −εu′′0(x), u1(1) = 0,

u′′2(x) = 0, u2(0) = 0, u2(1) = 0.

The smooth component u is the solution of

Lcεu(x) = f(x), u(0) = u0(0) + εu1(0), u(1) = y(1), (2.8)

and the singular component v is the solution of the homogeneous problem

Lcεv(x) = 0, v(0) = y(0)− u(0), v(1) = 0. (2.9)

Now we can state the following theorem on the bounds for the solutions and deriva-
tives of (2.8) and (2.9)

Theorem 2.4. The solutions and the derivatives of (2.8) and (2.9) satisfy the
following estimates

‖u‖ ≤ C(1 + exp(−a∗x/ε)),
‖v‖ ≤ C exp(−a∗x/ε),

‖u(k)‖ ≤ C(1 + ε2−k exp(−a∗x/ε)),

‖v(k)‖ ≤ Cε−k exp(−a∗x/ε).

The proof of the above theorem can be found in [14].
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3. The discrete problem

Let ΩN = {x0, x1, x2, . . . , xN} be the partition of [0, 1] such that x0 = 0, xi =∑i−1
k=0 hk, i = 1(1)N, hk = xk+1 − xk, xN = 1. Let r = hi

hi−1
, i = 1(1)N be the

common mesh ratio. Taking the Taylor’s series expansion and neglecting the term
of third and higher orders, we obtain the following expansions for yi+1 and yi−1,

yi+1 ' yi + hiy
′
i +

h2
i

2
y′′i , (3.1)

yi−1 ' yi − hi−1y
′
i +

h2
i−1

2
y′′i . (3.2)

If the boundary layer occurs at the left end then we choose r > 1, this gives more
mesh points near the left boundary layer and if the boundary layer occurs at the
right end then we choose r < 1, this gives more mesh points near the right boundary
layer.

Multiplying (3.1) by r and adding it to (3.2), we obtain the approximation

y′′i '
2r

h2
i (1 + r)

[yi+1 − (1 + r)yi + ryi−1] . (3.3)

Similarly we can get the two terms expression for y′i as

y′i '
yi+1 − yi
rhi

. (3.4)

Here we can use the central difference formula also in place of forward difference
formula. With the help of (3.3) and (3.4), Equation (2.3) can be discretized as

Eiyi−1 − Fiyi +Giyi+1 = Hi, (3.5)

with
y0 = φ0, yN = β, (3.6)

where

Ei =
2εr2

(1 + r)h2
i

,

Fi =
2εr
h2
i

+
ai
rhi

+ bi,

Gi =
2εr

(1 + r)h2
i

+
ai
rhi

,

Hi = fi, i = 1, 2, . . . , N − 1.

(3.7)

This can be written in matrix form as

AY = B, (3.8)

where A = [ci,j ] is a tridiagonal matrix of order N − 1 with entries

ci,i−1 = Ei, i = 2(1)N,

ci,i = −Fi, i = 1(1)N − 1,

ci,i+1 = Gi, i = 1(1)N − 1,

Y = (y1, y2, . . . yN−1)′ and B = (f1, f2, . . . fN−1)′ are the column vectors. Equation
(3.8) represents a system of linear equations withN−1 equations inN−1 unknowns,
y1, y2, . . . yN−1. The system of equations can be easily solved by discrete invariant
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imbedding algorithm given in [1]. Note that one can use any other algorithm also
such as Thomas algorithm.

The discrete problem (3.5) satisfies the following discrete minimum principle.

Lemma 3.1 (Discrete minimum principle). Let ψi be any mesh function such that
ψ0, ψN ≥ 0, then Ldεψi ≤ 0 for 1 ≤ i ≤ N−1 implies that ψi ≥ 0 for all 0 ≤ i ≤ N .

Proof. Suppose there is a positive integer k such that 0 > ψk = min1≤i≤N−1 ψi.
Then we have

Ldεψk = Ekψk−1 − Fkψk +Gkψk+1

=
2εr2

(1 + r)h2
k

(ψk−1 − ψk) +
2εr

(1 + r)h2
k

(ψk+1 − ψk)

+
ak
hk+1

(ψk+1 − ψk)− bkψk > 0,

which contradict the hypothesis and hence ψi ≥ 0 for all 0 ≤ i ≤ N . �

The existence, uniqueness and the stability of the solution of problem (3.5)-(3.6)
are given by the following theorem.

Theorem 3.2. The solution of the discrete problem (3.5) together with the bound-
ary condition (3.6) exists, is unique and satisfies

|yi| ≤ C max{|y(0)|, |y(1)|, 1
b∗

max
1≤j≤N−1

|Ldεyj |}.

Proof. Let ψi be any mesh function satisfying Ldε (ψi) = fi. Taking absolute value
on both sides, using (3.5), we obtain

|Fi||ψi| ≤ |Hi|+ |Ei||ψi−1|+ |Gi||ψi+1|, i = 1, 2, . . . , N − 1.

This gives
2εr2

(1 + r)h2
i

(|ψi−1| − |ψi|) +
2εr

h2
i (1 + r)

(|ψi+1| − |ψi|)

+
ai
hi+1

(|ψi+1| − |ψi|)− bi|ψi|+ |Hi| ≥ 0.
(3.9)

Let ui, vi be two solutions of the difference equation (3.5) satisfying the boundary
condition (3.6). Then wi = ui − vi satisfies Ldε (wi) = 0, with w0 = wN = 0.

Let k be the integer such that wk = max1≤i≤N−1 wi, then from (3.9) we have

2εr2

(1 + r)h2
k

(|wk−1| − |wk|) +
2εr

h2
k(1 + r)

(|wk+1| − |wk|)

+
ak
hk+1

(|wk+1| − |wk|)− bk|wk| ≥ 0.
(3.10)

Since ak > 0, bk > 0, so the inequality (3.10) gives wk = 0 and so wi ≤ 0 for
i = 1, 2, . . . , N − 1. Hence ui ≤ vi for i = 1, 2, . . . , N − 1.

Again if we set zi = vi − ui, then zi is a mesh function satisfying z0 = zN = 0.
Continuing in the same way as above, we obtain ui ≥ vi for i = 1, 2, . . . , N − 1.
Hence ui = vi for i = 1, 2, . . . , N − 1, which shows the uniqueness of the solution.

Now we define two mesh functions ϕ±i such that

ϕ±i = max{|y(0)|, |y(1)|, max
1≤j≤N−1

|Ldεyj |} ± yi.
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Then ϕ±0 ≥ 0 and ϕ±N ≥ 0 and for 1 ≤ i ≤ N − 1 we have

Ldεϕ
±
i = −bi max{|y(0)|, |y(1)|, 1

b∗
max

1≤j≤N−1
|Ldεyj |} ± Ldεyi

≤ −b∗max{|y(0)|, |y(1)|, 1
b∗

max
1≤j≤N−1

|Ldεyj |} ± Ldεyi < 0.

A consequence of Lemma 3.1 gives the required estimate. �

4. Stability Analysis

Consider a difference relation

yi = Siyi+1 + Ti, (4.1)

where Si = S(xi) and Ti = T (xi) are unknowns which are to be determined. From
(4.1), we have

yi−1 = Si−1yi + Ti−1. (4.2)

Using (4.2) in (3.5), we obtain

yi =
Gi

Fi − EiSi−1
yi+1 +

EiTi−1 −Hi

Fi − EiSi−1
. (4.3)

On comparing (4.1) and (4.3), we obtain the recurrence relations

Si =
Gi

Fi − EiSi−1
, (4.4)

Ti =
EiTi−1 −Hi−1

Fi − EiSi−1
. (4.5)

To solve above recurrence relations for i = 1, 2, . . . N − 1, we need S0 and T0. Now
it is given that y0 = φ0, therefore we have S0y1 +T0 = φ0. So we can choose S0 = 0
and then T0 = φ0. Now by using these initial conditions, we can compute Si and
Ti for i = 1, 2, . . . , N − 1 and using these values of Si and Ti in (4.1), we obtain yi
for i = 1, 2, . . . , N − 1.

Now we give the proof of the stability of our scheme. Suppose a small error ei−1

has been made in the calculation of Si−1, then we have, S̄i−1 = Si−1 + ei−1, and
we are actually calculating

S̄i =
Gi

Fi − EiS̄i−1
. (4.6)

From (4.4) and (4.6), we have

ei =
Gi

Fi − Ei(Si−1 + ei−1)
− Gi
Fi − EiSi−1

=
GiEiei−1

(Fi − Ei(Si−1 + ei−1))(Fi − EiSi−1)
.

(4.7)

Under the assumption, the error is small initially, from (4.7) we obtain

ei =
(S2

i Ei
Gi

)
ei−1. (4.8)

Now we have

G1 − F1 = − 2εr2

(1 + r)h2
1

− b1 < 0,
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so G1
F1

< 1. Therefore from (4.4), we have S1 = G1
F1

< 1. Again from (4.4) we have

S2 =
G2

F2 − E2S1
<

G2

F2 − E2
<

G2

E2 +G2 − E2
= 1.

Similarly we can show that Si < 1 for 1 ≤ i ≤ N − 1. Now we have

|Ei| − |Gi| =
2εr2

(1 + r)h2
i

− 2εr
(1 + r)h2

i

− ai
rhi

,

=
2εr(r − 1)
(1 + r)h2

i

− ai
rhi

< 0 as ε is small and r is close to 1.

Thus |Ei|
|Gi| < 1, it follows from (4.8) that

|ei| = |Si|2
∣∣Ei
Gi

∣∣|ei−1| < |ei−1|.

Which confirm the stability of the recurrence relation (4.4). Similarly we can prove
that the recurrence relation (4.5) is also stable.

5. Numerical results and discussions

To validate the theoretical results, we apply the proposed numerical scheme to
a test problem having a left boundary layer.

Example 5.1. Consider the problem εy′′(x) + y′(x − δ) − y(x) = 0, under the
interval conditions y(x) = 1, −δ ≤ x ≤ 0, y(1) = 1.

Table 1. Maximum absolute error for Example 5.1 for δ = 0.001×
ε using N = 100

ε r = 1.1 r = 1.01 r = 1.001
10−2 2.42E-02 5.65E-02 7.96E-02
10−4 2.95E-02 9.05E-03 7.97E-03
10−6 6.39E-02 1.65E-03 1.53E-03
10−8 2.57E-02 1.66E-03 1.47E-03
10−10 2.57E-02 1.66E-03 1.47E-03
10−12 2.57E-02 1.66E-03 1.46E-03

A numerical method for solving singularly perturbed boundary value problem
with a negative shift in the first derivative term is considered. It is a practical
method and can be easily implemented on a computer to solve such problems.
An example is given to demonstrate the efficiency of the proposed method. The
maximum absolute errors ENε = maxi |y(xi)− yi| at the nodal points are tabulated
in the table for different values of perturbation parameter ε and different values of
mesh ratio r by using N = 100.

The graph of the solution of the considered example for different values of delay is
plotted in Figure 1 to examine the questions on the effect of delay on the boundary
layer behavior of the solution. One can observe that if δ = o(ε), the layer behavior is
maintained in the case of left boundary layer (the layer behavior is also maintained
in the case of right boundary layer). As the delay increases, the thickness of the
layer decreases in the case when the solution exhibits layer behavior on the left
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Figure 1. Numerical solution of Example 5.1 for ε = 0.1

side (as shown in Figure 1) while in the case of the right side boundary layer, it
increases. The delay affects more in the case when the solution of the boundary
value problem exhibits layer behavior on the left side in comparison to the right
side boundary layer case.
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