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EXISTENCE OF POSITIVE SOLUTIONS FOR A NONLINEAR
FRACTIONAL DIFFERENTIAL EQUATION

HABIB MAAGLI

Abstract. Using the Schauder fixed point theorem, we prove an existence

of positive solutions for the fractional differential problem in the half line
R+ = (0,∞):

Dαu = f(x, u), lim
x→0+

u(x) = 0,

where α ∈ (1, 2] and f is a Borel measurable function in R+ × R+ satisfying
some appropriate conditions.

1. Introduction

Recently, fractional differential equations have been studied extensively. The
motivation for these studies stems from the fact that fractional differential equations
serve as an excellent tool to describe many phenomena in various fields of science
and engineering such as control, porous media, electrochemistry, viscoelasticity,
electromagnetic, etc (see[7, 9, 11, 12, 15]). Therefore, the theory of fractional
differential equations has been developed very quickly and the investigation for the
existence of solutions of fractional differential equations has attracted a considerable
attention from researches (see [1, 2, 3, 4, 5, 6, 8, 10, 13, 16, 17] and the references
therein).

To the best of our knowledge, most of the related results focus on developing the
existence and uniqueness of solutions on the finite interval [0, 1]. In this note, we
consider the following fractional differential problem in the half line R+ = (0,∞):

Dαu = f(x, u),

u > 0 in R+,

lim
x→0+

u(x) = 0,
(1.1)

where 1 < α ≤ 2, f(x, y) is a Borel measurable function in R+ ×R+ satisfying the
following hypotheses:

(H1) f is continuous with respect to the second variable.
(H2) There exists a nonnegative measurable function q defined on R+×R+ such

that
(i) |f(x, y)| ≤ yq(x, y) for all x, y ∈ R+.
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(ii) The function y → q(x, y) is nondecreasing and limy→0+ q(x, y) = 0.
(iii) The integral

∫∞
0
tα−1q(t, tα−1) dt converges.

We recall that for a measurable function v, the Riemann-Liouville fractional integral
Iβv and the Riemann-Liouville derivative Dβv of order β > 0 are respectively
defined by

Iβv(x) =
1

Γ(β)

∫ x

0

(x− t)β−1v(t) dt

and

Dβv(x) =
1

Γ(n− β)
( d
dx

)n ∫ x

0

(x− t)n−β−1v(t) dt =
( d
dx

)n
In−βv(x) ,

provided that the right hand sides are pointwise defined for x > 0. Here n = [β]+1
and [β] means the integral part of the number β and Γ is the Euler Gamma function.

Our main result is the following.

Theorem 1.1. Assume (H1)–(H2), then problem (1.1) has infinitely many solu-
tions. More precisely, there exists a number b > 0 such that for each c ∈ (0, b],
problem (1.1) has a continuous solution u satisfying

(i) u(x) = cxα−1 +
∫∞
0

(
xα−1 − ((x− t)+)α−1

)
f(t, u(t)) dt.

(ii) limx→∞ x1−αu(x) = c.
(iii) c

2x
α−1 ≤ u(x) ≤ 3

2x
α−1, for x > 0.

Note that Theorem 1.1 generalizes a result established by Zhao [18] in the case
α = 2 (see also [14]). As a special but important case of the above general setting
is the problem

Dαu = k(x)up,

u > 0 in R+,

lim
x→0+

u(x) = 0,
(1.2)

where p > 1 and k is a Borel measurable function in R+ satisfying∫ ∞
0

tp(α−1) |k(t)| dt <∞. (1.3)

An immediate consequence of Theorem 1.1 is the following.

Corollary 1.2. Let k be a Borel measurable function satisfying (1.3), then the
conclusion of Theorem 1.1 holds for problem (1.2).

In the sequel, we denote by C([0,∞]) the set of continuous functions v on R+

such that limx→0+ v(x) and limx→∞ v(x) exist. It is easy to see that C([0,∞]) is
a Banach space with the norm ‖v‖∞ = supx>0 |v(x)|. Finally, for λ ∈ R, we put
λ+ = max(λ, 0).

2. Proof of Theorem 1.1

Let F = {v ∈ C([0,∞]) : ‖v‖∞ ≤ 1}. To prove Theorem 1.1, we need the
following Lemma.

Lemma 2.1. Assume (H1)–(H2), then the family of functions{
x→

∫ x

0

(1− t

x
)f(t, tα−1v(t)) dt : v ∈ F

}
is relatively compact in C([0,∞]).
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Proof. For v ∈ F and x > 0, put Sv(x) =
∫ x
0

(1− t
x )f(t, tα−1v(t)) dt. By (H2), we

have for all v ∈ F and x > 0,

|Sv(x)| ≤
∫ ∞

0

|f(t, tα−1v(t))| dt

≤
∫ ∞

0

tα−1q(t, tα−1) dt <∞.

Thus the family S(F) is uniformly bounded.
Now,we prove the equicontinuity of S(F) in [0,∞]. Let x, x′ ∈ R+ and v ∈ F ,

then we have

|Sv(x)− Sv(x′)| ≤
∫ ∞

0

|((1− t

x
)+)α−1 − ((1− t

x′
)+)α−1|tα−1q(t, tα−1) dt ,

|Sv(x)| ≤
∫ x

0

tα−1q(t, tα−1) dt ,∣∣∣Sv(x)−
∫ ∞

0

f(t, tα−1v(t)) dt
∣∣∣ ≤ ∫ ∞

0

(
1− ((1− t

x
)+)α−1

)
tα−1q(t, tα−1) dt.

Using the Lebesgue’s theorem, we deduce from the above inequalities that S(F)
is equicontinuous in [0,∞]. Hence, by Ascoli’s theorem, we conclude that S(F) is
relatively compact in C([0,∞]). �

Proof of Theorem 1.1. By (H2) and Lebesgue’s theorem, it follows that

lim
β→0

∫ ∞
0

tα−1q(t, βtα−1) dt = 0.

Hence we can fix a number β > 0 such that∫ ∞
0

tα−1q(t, βtα−1) dt ≤ 1
3
.

Let b = 2
3β and c ∈ (0, b]. In order to apply a fixed point argument , set

Λ = {v ∈ C([0,∞]) :
c

2
≤ v(x) ≤ 3

2
c , for all x > 0} .

Then Λ is a nonempty closed bounded and convex set in C([0,∞]). Define the
operator T on Λ by

Tv(x) = c+
∫ ∞

0

(
1− ((1− t

x
)+)α−1

)
f(t, tα−1v(t)) dt , for x ∈ R+.

First, we shall prove that the operator T maps Λ into itself. Let v ∈ Λ, then for
any x ∈ R+, we have

|Tv(x)− c| ≤
∫ ∞

0

tα−1v(t)q(t, tα−1v(t)) dt

≤ 3
2
c

∫ ∞
0

tα−1q(t, βtα−1) dt ≤ c

2
.

It follows that c
2 ≤ Tv ≤

3
2c and since by Lemma 2.1, T (Λ) ⊂ C([0,∞]), we deduce

that T (Λ) ⊂ Λ.
Next, we shall prove the continuity of T in the supremum norm. Let (vk)k be a
sequence in Λ which converges uniformly to v in Λ. It follows by (H1), (H2) and
Lebesgue’s theorem that Tvk(x) → Tv(x) as k → ∞, for x ∈ R+. Since T (Λ)
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is relatively compact in C([0,∞]), the pointwise convergence implies the uniform
convergence. Thus we have proved that T is a compact mapping from Λ to itself.

Now, the Schauder fixed point theorem implies the existence of ω ∈ Λ such that
Tω = ω. That is

ω(x) = c+
1

xα−1

∫ ∞
0

(
xα−1 − ((x− t)+)α−1

)
f(t, tα−1 ω(t)) dt , for x > 0.

Put u(x) = xα−1ω(x), for x > 0. Then we have

u(x) = cxα−1 +
∫ ∞

0

(
xα−1 − ((x− t)+)α−1

)
f(t, u(t)) dt.

Moreover, for x > 0, we have
c

2
xα−1 ≤ u(x) ≤ 3

2
xα−1,

lim
x→∞

x1−αu(x) = c.

It remains to show that u is a solution of problem 1.1. Indeed, for x > 0, u satisfies

u(x) =
(
c+

∫ ∞
0

f(t, u(t)) dt
)
xα−1 − Iα(f(., u))(x).

So Dαu(x) = −f(x, u(x)), for x > 0. �

Example 2.2. Let β > 0, γ ∈ R and p > γ. Let k be a Borel measurable function
in R+ such that

∫∞
0
t(p−γ+1)(α−1) |k(t)| dt <∞. Then there exists b > 0 such that

for each c ∈ (0, b], the problem

Dαu =
k(x)up+1

xβ + uγ
,

u > 0 in R+,

lim
x→0+

u(x) = 0, lim
x→∞

x1−α u(x) = c

has a continuous solution u in R+.
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