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DETERMINATION OF A SOURCE TERM FOR A TIME
FRACTIONAL DIFFUSION EQUATION WITH AN INTEGRAL

TYPE OVER-DETERMINING CONDITION

TIMURKHAN S. ALEROEV, MOKHTAR KIRANE, SALMAN A. MALIK

Abstract. We consider a linear heat equation involving a fractional deriv-

ative in time, with a nonlocal boundary condition. We determine a source
term independent of the space variable, and the temperature distribution for

a problem with an over-determining condition of integral type. We prove the

existence and uniqueness of the solution, and its continuous dependence on
the data.

1. Introduction

In this article, we are concerned with the linear heat equation

Dα
0+

(u(x, t)− u(x, 0))− %uxx(x, t) = F (x, t), (x, t) ∈ QT , (1.1)

with initial and nonlocal boundary conditions

u(x, 0) = ϕ(x), x ∈ (0, 1), (1.2)

u(0, t) = u(1, t), ux(1, t) = 0, t ∈ (0, T ], (1.3)

where QT = (0, 1) × (0, T ], % is a positive constant, Dα
0+

stands for the Riemann-
Liouville fractional derivative of order 0 < α < 1 in the time variable (see formula
(2.4)) and ϕ(x) is the initial temperature.

Our choice of the term Dα
0+

(u(x, ·) − u(x, 0))(t) rather than the usual term
Dα

0+
u(x, ·)(t) is not only to avoid the singularity at zero, but also to include certain

initial conditions.
For (1.1)-(1.3) the direct problem is the determination of u(x, t) in Q̄T such

that u(·, t) ∈ C2([0, 1],R) and Dα
0+

(u(x, .)−u(x, 0)) ∈ C((0, T ],R), when the initial
temperature ϕ(x) and the source term F (x, t) are given and continuous.

Letting the source term have the form F (x, t) = a(t)f(x, t), then the inverse
problem consists of determining a source term a(t) and the temperature distribu-
tion u(x, t), from the initial temperature ϕ(x) and boundary conditions (1.3). This
problem is not uniquely solvable. The inverse problem of determining a(t) was al-
ready considered in the literature for parabolic equations, see for example [5] and [2].
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To have the inverse problem uniquely solvable, we propose the over-determination
condition ∫ 1

0

u(x, t)dx = g(t), t ∈ [0, T ], (1.4)

where g ∈ AC([0, T ],R) (the space of absolutely continuous functions). The solv-
ability of inverse problems with such type of integral over-determination has been
considered in the literature [5, 7].

It is well known (see [13] and references therein) that standard reaction diffusion
equations and transport equations, commonly used to explain physical phenom-
ena, show in some situations a disagreement with experimental data, due to non
Gaussian diffusion. Among the several descriptions of this anomalous diffusion,
one is by using fractional derivatives in time or space, or both, in reaction diffusion
equations and transport equations. There are several publications on this topic, see
[13, 11, 17] and references therein. Nonlocal boundary conditions arise from many
important application in heat conduction and thermo-elasticity, see [2, 1].

When we want to solve (1.1)-(1.3) by using the Fourier method, i.e. by using
separation of variables, we have to consider the spectral problem

X ′′ = −λX, x ∈ (0, 1), (1.5)

X(0) = X(1), X ′(1) = 0. (1.6)

This boundary-value problem is non-self-adjoint, and the set of eigenvectors of the
spectral problem (1.5)-(1.6) is not complete in the space L2(0, 1). Following [4], we
supplement the set of eigenvectors with the associated eigenvectors making the set
complete on L2(0, 1). Another complete set of eigenvectors and associated eigen-
vectors of the adjoint problem of problem (1.5)-(1.6) is obtained in the Appendix.

A solution of the inverse problem is a pair of functions {u(x, t), a(t)} satis-
fying u(., t) ∈ C2[(0, 1),R], Dα

0+
(u(x, .) − u(x, 0)) ∈ C([0, T ],R) such that a ∈

C([0, T ],R+ ∪ {0}), and for a given initial data the over determination condition
(1.4) is satisfied.

Our approach for the solvability of the inverse problem is based on the expansion
of the solution u(x, t) by using the bi-orthogonal system of functions obtained from
the boundary-value problem (1.5)-(1.6) and its adjoint problem.

Let us mention that in [3], the authors considered the inverse problem of deter-
mination of the order of the fractional derivative and the diffusion coefficient for the
one dimensional diffusion equation (they considered the fractional time derivative
defined in the sense of Caputo). They proved the unique determination of the order
of the the fractional derivative and the diffusion coefficient (independent of time);
their proof is based on the eigenfunctions expansion of the weak solution to the
problem along the Gelfand-Levitan theory.

In [9] the inverse problem of finding the temperature distribution and a source
term independent of the time variable for the one dimensional fractional diffusion
equation with the nonlocal boundary condition

u(1, t) = 0, ux(0, t) = ux(1, t), t ∈ [0, T ],

has been considered. The authors used two sets of Riesz basis (which form a
bi-orthogonal system) for the space L2(0, 1) in order to prove the existence and
uniqueness for the solution of the inverse problem. In [19], the inverse problem of
the determination of the source term (which is independent of the time variable)
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for the fractional diffusion equation

CDα
0+
u(x, t)− uxx(x, t) = f(x), (x, t) ∈ QT , (1.7)

u(x, 0) = ϕ(x), x ∈ [0, 1], (1.8)

ux(1, t) = 0, ux(0, t) = 0, t ∈ [0, T ], (1.9)

where CDα
0+

, for 0 < α < 1 stands for the Caputo fractional derivative in the time
variable has been addressed. They proved the unique determination of the source
term by using analytic continuation along with Duhamel’s principle.

Some authors also consider the regularizing techniques for the solution of the
inverse problem of the one dimensional linear time fractional heat equation. Murio
[14] proposed a space marching regularizing scheme using mollification techniques
for the solution of the inverse time fractional heat equation. The fractional deriva-
tive is considered in the sense of Caputo’s definition. In [12] the author considers the
problem of identification of the diffusion coefficient and the order of the fractional
derivative for the one dimensional time fractional diffusion equation. The author
presents the results by considering Riemann-Liouville’s and Caputo’s definition of
the fractional derivative.

Recently, Kirane et al [10] considered two dimensional inverse source problem
for time fractional diffusion equation and prove the well posedness of the inverse
source problem using Fourier method. Jin and Rundell [6] consider the problem
of recovering a spatially varying potential for a one dimensional time fractional
diffusion equation from the flux measurements at a particular time. They proved
the result of uniqueness of the potential using Green’s function theory and propose
a reconstruction method by a quasi Newton type iterative scheme. Li et al [18]
propose algorithms for simultaneous inversion of order of fractional derivative and a
space dependent diffusion coefficient for a one dimensional time fractional diffusion
equation. They use the inverse eigenvalue problem for proving the uniqueness
results of the inverse problem. An optimal perturbation algorithm for regularization
using sigmoid-type function is proposed for the numerical inversion of order of
fractional derivative and diffusion coefficient.

The rest of the paper is organized as follows: in Section 2, for the sake of the
reader we present some basic definitions and results needed in the sequel. In Section
3, we present our main results concerning the existence, uniqueness and continuous
dependence of the solution of the inverse problem. Section 4 concludes the paper
by describing the results obtained in this paper.

2. Preliminaries

In this section, we recall basic definitions and notations from fractional calculus
(see [16]). For an integrable function f : R+ → R, the left sided Riemann-Liouville
fractional integral of order 0 < α < 1 is defined by

Jα0+
f(t) :=

1
Γ(α)

∫ t

0

f(τ)
(t− τ)1−α

dτ, t > 0, (2.1)

where Γ(α) is the Euler Gamma function. The integral (2.1) can be written as a
convolution

Jα0+
f(t) = (φα ? f)(t), (2.2)
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where

φα :=

{
tα−1/Γ(α), t > 0,
0 t ≤ 0.

(2.3)

The left sided Riemann-Liouville fractional derivative of order 0 < α < 1 of the
continuous function f is defined by

Dα
0+
f(t) :=

d

dt
J1−α

0+
f(t) =

1
Γ(1− α)

d

dt

∫ t

0

f(τ)
(t− τ)α

dτ. (2.4)

Notice that the Riemann-Liouville fractional derivative of a constant is not equal
to zero.

The Laplace transform of the Riemann-Liouville integral of order 0 < α < 1 of
a function with at most an exponential growth is

L{Jα0+
f(t) : s} = L{f(t) : s}/sα.

For 0 < α < 1, we have

Jα0+
Dα

0+

(
f(t)− f(0)

)
= f(t)− f(0). (2.5)

The Mittag-Leffler function plays an important role in the theory of fractional
differential equations; for any z ∈ C the Mittag-Leffler function with parameter ξ
is

Eξ(z) =
+∞∑
k=0

zk

Γ(ξk + 1)
(Re(ξ) > 0). (2.6)

In particular, E1(z) = ez.
The Mittag-Leffler function of two parameters Eξ,β(z) which is a generalization

of (2.6) is defined by

Eξ,β(z) =
+∞∑
k=0

zk

Γ(ξk + β)
(z, β ∈ C; Re(ξ) > 0). (2.7)

Let us set eξ(t, µ) := Eξ(−µtξ) where Eξ(t) is the Mittag-Leffler function with one
parameter ξ as defined in (2.6) and µ is a positive real number.

The Mittag-Leffler functions eα(t;µ), eα,β(t;µ) := tβ−1Eα,β(−µtα) for 0 < α ≤
1, 0 < α ≤ β ≤ 1 respectively, and µ > 0 are completely monotone functions; i.e.,

(−1)n[eα(t;µ)]n ≥ 0, and (−1)n[eα,β(t;µ)]n ≥ 0, n ∈ N ∪ {0}.
Furthermore, we have

Eα,β(µtα) ≤M, t ∈ [b, c], (2.8)
where [b, c] is a finite interval with b ≥ 0, and∫ t

0

(t− τ)α−1Eα,β(µtα)dτ <∞,

on [b, c] (see [15] page 9).
Let H be a Hilbert space with the scalar product (·, ·). Two sets S1 and S2

of functions of H form a bi-orthogonal system of functions if a one-to-one cor-
respondence can be established between them such that the scalar product of
two corresponding functions is equal to unity and the scalar product of two non-
corresponding functions is equal to zero, i.e.,

(fi, gj) = δij ,
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where fi ∈ S1, gi ∈ S2 and δij is the Kronecker symbol.

Lemma 2.1. [9] Let G : R+ → R be a differentiable function such that G ∈ L1(R).
The solution of the equation

v(t) + µJα0+
v(t) = G(t)

for µ ∈ R+ satisfies the following integral equation

v(t) =
∫ t

0

G′(t− τ)eα(τ, µ)dτ + G(0)eα(t, µ).

For the proof see Lemma 3.1 in [9].

3. Main Results

Our approach to the solvability of the inverse problem is based on the expansion
of the solution u(x, t) in a Riesz basis of the space L2(0, 1) obtained from the
eigenfunctions and associated eigenfunctions of the spectral problem (1.5)-(1.6).
The unique expansion of the function in terms of the Riesz basis is assured by a
bi-orthogonal system of functions formed from the spectral problem (1.5)-(1.6) and
its adjoint problem.

3.1. A bi-orthogonal system of functions. The sets of functions

{2, {4 cos(2πnx)}∞n=1, {4(1− x) sin(2πnx)}∞n=1} (3.1)

and
{x, {x cos(2πnx)}∞n=1, {sin(2πnx)}∞n=1} (3.2)

are obtained from the non-self-adjoint spectral problem (1.5)-(1.6) and its adjoint
problem

Y ′′ = −λY, x ∈ (0, 1), (3.3)

Y ′(0) = Y ′(1), Y (0) = 0, (3.4)

respectively (see Appendix).
The set of functions (3.1) and (3.2) is complete in L2(0, 1) and forms a Riesz basis

in L2(0, 1). Furthermore, set of functions (3.1)-(3.2) constitutes a bi-orthogonal
system with the one to one correspondence

{ 2︸︷︷︸
↓

, {4 cos(2πnx)}∞n=1︸ ︷︷ ︸
↓

, {4(1− x) sin(2πnx)}∞n=1︸ ︷︷ ︸
↓

},

{ x, {x cos(2πnx)}∞n=1, {sin(2πnx)}∞n=1 }.

The set of bi-orthogonal functions formed from (3.1) and (3.2) plays an important
role in proving

existence and uniqueness of the solution of the inverse problem.

3.2. Existence and uniqueness of the solution of the inverse problem. For
the proof of the main result, i.e., Theorem 3.1 we will use properties of the bi-
orthogonal system of functions and application of the Banach fixed point theorem.
We have the following theorem

Theorem 3.1. Suppose the following conditions hold:
(A1) ϕ ∈ C4([0, 1]), ϕ(1) = ϕ(0), ϕ′(1) = 0, ϕ′′(0) = ϕ′′(1), ϕ′′′(1) = 0;
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(A2) f ∈ C4([QT ,R]), f(0, t) = f(1, t), fx(1, t) = 0, fxx(0, t) = fxx(1, t),
fxxx(1, t) = 0,

∫ 1

0
f(x, t) dx 6= 0 and

0 <
1
M1
≤
∣∣∣∫ 1

0

f(x, t)dx
∣∣∣;

(A3) g ∈ AC([0, T ]), and g(t) satisfies the consistency condition
∫ 1

0
ϕ(x)dx =

g(0),

then the inverse problem has a unique solution.

Proof. We write the solution u(x, t) of the inverse problem for the linear system
(1.1)-(1.4) in the form

u(x, t) = 2u0(t) +
∞∑
n=1

u1n(t)4 cos(2πnx) +
∞∑
n=1

u2n(t)4(1− x) sin(2πnx) (3.5)

where u0(t), u1n(t), u2n(t) for n ∈ N are to be determined.
Let {f0(t), f1n(t), f2n(t)} be the coefficients of the series expansion of f(x, t) in

the basis (3.1) which are given by

f0(t) =
∫ 1

0

f(x, t)x dx, f1n(t) =
∫ 1

0

f(x, t)x cos(2πnx) dx,

f2n(t) =
∫ 1

0

f(x, t) sin 2πnx dx.
(3.6)

Using properties of the bi-orthogonal system we have

u0(t) = (u(x, t), x), (3.7)

where (f, g) :=
∫ 1

0
f(x)g(x) dx is the scalar product in L2(0, 1). By virtue of (3.7),

we have
Dα

0+
(u0(t)− u0(0)) = (Dα

0+
(u(x, t)− u(x, 0)), x).

Using (1.1) we can write

Dα
0+

(u0(t)− u0(0)) = ((%uxx + a(t)f(x, t)), x).

On computing we obtain the following linear fractional differential equation

Dα
0+

(u0(t)− u0(0)) = a(t)f0(t). (3.8)

Alike, we obtain the linear fractional differential equations

Dα
0+

(u2n(t)− u2n(0)) + 2πn%u2n(t) = a(t)f2n(t), (3.9)

Dα
0+

(u1n(t)− u1n(0)) + 4π2n2%u1n(t)− 4πn%u2n(t) = a(t)f1n(t). (3.10)

The solution of the linear fractional differential equation (3.8) is

u0(t) = ϕ0 +
1

Γ(α)

∫ t

0

(t− τ)α−1a(τ)f0(τ)dτ.

The solutions of the linear fractional differential equations (3.9)-(3.10) are

u2n(t) =
∫ t

0

eα,α(t− τ, λn)a(τ)f2n(τ)dτ + ϕ2neα(t, λn),
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u1n(t) = 2λn
∫ t

0

h(t− τ)a(τ)f2n(τ)dτ +
∫ t

0

eα,α(t− τ, λ2
n/%)a(τ)f1n(τ)dτ

+ 2λnϕ2n

∫ t

0

eα,α(t− τ, λn)eα(τ, λ2
n/%)dτ + ϕ1neα(t, λ2

n/%),

where we have used Lemma 2.1, λn := 2πn%,

ϕ0 =
∫ 1

0

ϕ(x)x dx, ϕ1n =
∫ 1

0

ϕ(x)x cos(2πnx) dx, ϕ2n =
∫ 1

0

ϕ(x) sin 2πnx dx,

h(t) =
∫ t

0

eα,α(t− τ, λn)eα,α(τ, λ2
n/%)dτ.

In the above calculations we have used the following relations

h ? (f ? g) = (h ? f) ? g, Dα
0+

(f ? g) = (Dα
0+
f ? g),

D1−α
0+

eα(t, λn) = tα−1Eα,α(−λntα) =: eα,α(t, λn).

Taking fractional derivative Dα
0+

under the integral sign of the over-determination
condition (1.4) and in view of the consistency relation we have∫ 1

0

Dα
0+

(u(x, t)− u(x, 0)) dx = Dα
0+

(g(t)− g(0)),

which by using (1.1) and integration by parts leads to

a(t) =
(∫ 1

0

f(x, t)dx
)−1(

Dα
0+

(g(t)− g(0)) + ρux(0, t)
)
. (3.11)

Recall that
∫ 1

0
f(x, t)dx 6= 0 and we have

f(x, t) = 2f0(t) +
∞∑
n=1

f1n(t)4 cos(2πnx) +
∞∑
n=1

f2n(t)4(1− x) sin(2πnx),

where f0(t), f1n(t) and f2n(t) are given by (3.6), then∫ 1

0

f(x, t)dx = 2f0(t) +
2
π

∞∑
n=1

f2n(t)
n

, (3.12)

and

ux(0, t) =
∞∑
n=1

8πnϕ2neα(t, λn) +
∞∑
n=1

8πn
∫ t

0

eα,α(t− τ, λn)a(τ)f2n(τ)dτ. (3.13)

Let B(a(t)) := a(t), where the operator B is defined by

B(a(t)) =
(∫ 1

0

f(x, t)dx
)−1(

Dα
0+

(g(t)− g(0)) + ρux(0, t)
)
.

By (3.12) and (3.13) we have the Volterra integral equation

B(a(t)) = F(t) +
(

2f0(t) +
2
π

∞∑
n=1

f2n(t)
n

)−1
∫ t

0

K(t, τ)a(τ)dτ, (3.14)

where

F(t) =
(∫ 1

0

f(x, t) dx
)−1(

Dα
0+

(g(t)− g(0)) +
∞∑
n=1

8πnρϕ2neα(t, λn)
)
, (3.15)
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and

K(t, τ) =
∞∑
n=1

8πnρf2n(τ)eα,α(t− τ, λn) =
∞∑
n=1

8πnρf2n(t− τ)eα,α(τ, λn). (3.16)

Before we proceed further, notice that under the assumptions (A2), the series∑∞
n=1 8πnf2n is uniformly convergent by the Weierstrass M-test because the series

is bounded from above by the uniformly convergent numerical series

∞∑
n=1

|f (4)
2n |/(2π3n3),

where f (4)
2n is the coefficient of the Fourier sine series of the function f (4)(x). Fur-

thermore, f (4)
2n for n ∈ N are bounded by the Bessel’s inequality, indeed we have

∞∑
n=1

[f (4)
2n ]2 ≤ C‖f (4)‖2L2(0,1),

where C is a constant independent of t and n. Thus, we have
∑∞
n=1 8πnf2n ≤ C,

where (C is a constant independent of t and n.
Setting T < (M1MC)−1, where M1 is from assumption (A2) of Theorem 3.1,

M is from the inequality (2.8). Consider the space C([0, T ]), equipped with the
Chebyshev norm

‖f‖ := max
0≤t≤T

|f(t)|.

We shall show that B : C([0, T ])→ C([0, T ]) and the mapping B is a contraction.
For a ∈ C([0, 1]), using (2.8) and assumptions (A2), we have ux(0, t) continuous
function. Indeed, the series in the expression of ux(0, t) (see 3.13) is uniformly
convergent on [0, T ] and represents a continuous function. The termDα

0+
(g(t)−g(0))

being the difference of two continuous functions; i.e., a and ux(0, t) are continuous.
We have

|B(a)−B(c)| ≤M1

∫ t

0

|a(τ)− c(τ)| |K(t, τ)|dτ

≤MTCM1 max
0≤t≤T

|a(τ)− c(τ)|

‖B(a)−B(c)‖ = max
0≤t≤T

|B(a)−B(c)| ≤MTCM1‖a− c‖,

(3.17)

Thus the mapping B is a contraction for t ∈ [0, T ]. This assures unique determina-
tion of a ∈ C([0, T ]) by the Banach fixed point theorem.
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3.3. Uniqueness of the solution. Let {u(x, t), a(t)} and {v(x, t), b(t)} be two
solution sets of the inverse problem then

u(x, t)− v(x, t) = 2
( 1

Γ(α)

∫ t

0

(t− τ)α−1(a(τ)− b(τ))f0(τ)dτ
)

+ 4(1− x) sin(2πnx)
(∫ t

0

eα,α(t− τ, λn)f2n(τ)(a(τ)− b(τ))dτ
)

+ 4 cos(2πnx)
(

4πn
∫ t

0

h(t− τ)f2n(τ)(a(τ)− b(τ))dτ

+
∫ t

0

eα,α(t− τ, λn)f1n(τ)(a(τ)− b(τ))dτ
)
,

(3.18)
and

a(t)− b(t) =
∫ t

0

K(t, τ)(a(τ)− b(τ))dτ.

Due to the estimate (3.17), we have a = b and by substituting a = b in (3.18), we
obtain u = v.

Let us mention that under assumptions (A1)–(A3) and following [9], we shall
show that the series solution for u(x, t) given by (3.5) and the series corresponding to
uxx(x, t) are uniformly convergent and represent continuous function on QT . Also,
we shall show that the series corresponding to u(x, t)− u(x, 0) is α differentiable.

Let
M∗ = max{M1,M2,M3}, and max

0<t≤T
a(t) = N,

where eα(t, λn) ≤M1, eα,α(t, λn) ≤M2, eα(t, λ2
n/%) ≤M3. Then the series (3.5)

is bounded above by the uniformly convergent series

|ϕ0|+NT 2−α|f0|+
∞∑
n=1

(16π4n4)−1
(
M∗|ϕ(4)

2n |+NM∗T |f (4)
2n |+ λnN |f (4)

2n |

+NM∗T |f (4)
1n |+ λnT (M∗)2|ϕ(4)

1n |+M∗|ϕ(4)
1n |
)
,

where ϕ(4)
1n , ϕ(4)

2n and f
(4)
1n , f (4)

2n are the coefficients of the Fourier cosine and the
Fourier sine series of the functions ϕ(4)(x) and f (4)(x, t), respectively. These func-
tions are bounded by virtue of Bessel’s inequality. By the Weierstrass M-test the
series (3.5) is uniformly convergent.

Let us show that the series corresponding to u(x, t)− u(x, 0), i.e.,

u(x, t)− u(x, 0) = 2(u0(t)− u0(0)) +
∞∑
n=1

(u1n(t)− u1n(0))4 cos(2πnx)

+
∞∑
n=1

(u2n(t)− u2n(0))4(1− x) sin(2πnx),

(3.19)

is α differentiable and for this we use the result from [16], which states:
For a sequence of functions fi, i ∈ N defined on the interval (a, b].
Suppose the following conditions are fulfilled:
(1) for a given α > 0 the fractional derivatives Dα

0+
fi(t), for i ∈ N,

t ∈ (a, b] exists,
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(2) the series
∑∞
i=1 fi(t) and the series

∑∞
i=1D

α
0+
fi(t) are uni-

formly convergent on the interval [a+ ε, b] for any ε > 0.
Then the function defined by the series

∑∞
i=1 fi(t) is α differentiable

and satisfies

Dα
0+

∞∑
i=1

fi(t) =
∞∑
i=1

Dα
0+
fi(t). (3.20)

We need to show that the series

2Dα
0+

(u0(t)− u0(0)) +
∞∑
n=1

Dα
0+

(u1n(t)− u1n(0))4 cos(2πnx)

+
∞∑
n=1

Dα
0+

(u2n(t)− u2n(0))4(1− x) sin(2πnx),

(3.21)

is uniformly convergent. Since Dα
0+
eα,α(t, λn) = −λneα,α(t, λn) and Dα

0+
h(t) =

−λneα,α(t, λn) ? eα,α(t, λn), we have

Dα
0+

(
u0(t)− u0(0)

)
= a(t)f0(t), (3.22)

Dα
0+

(
u2n(t)− u2n(0)

)
= −λnϕ2neα(t, λn)− λn

∫ t

0

eα,α(t− τ, λn)a(τ)f2n(τ)dτ,
(3.23)

Dα
0+

(
u1n(t)− u1n(0)

)
= −2λ2

n

(∫ t

0

eα,α(t− τ, λn)eα,α(τ, λ2
n/%)dτ

)
?a(t)f2n(t)

− λ2
n/%

∫ t

0

eα,α(t− τ, λ2
n/%)a(τ)f1n(τ)dτ

− 2λ2
nϕ2n

∫ t

0

eα,α(t− τ, λn)eα(τ, λ2
n/%)dτ − λ2

n/%ϕ1neα(t, λ2
n/%).

(3.24)

From the expressions of fractional derivative (3.22)-(3.24), we have∣∣∣Dα
0+

(
u0(t)− u0(0)

)∣∣∣ ≤ 2N |f0|,∣∣∣Dα
0+

(
u2n(t)− u2n(0)

)∣∣∣ ≤M∗λn|ϕ2n|+NλnM
∗T |f2n|,∣∣∣Dα

0+

(
u1n(t)− u1n(0)

)∣∣∣ ≤ 2λnM∗TN |f2n|+NTM∗ρλ2
n|f1n|+ 2M∗Tλ2

n|ϕ2n|

+M∗|ϕ1n|λ2
n/ρ.

Due to the assumptions of the Theorem 3.1, we have

ϕ2n =
1

16π4n4

∫ 1

0

ϕ(4)(x) sin(2πnx) dx =
1

16π4n4
ϕ

(4)
2n ,

ϕ1n =
1

16π4n4
ϕ

(4)
1n , f2n =

1
16π4n4

f
(4)
2n .

The series (3.21) is bounded from above by the uniformly convergent series

2N |f0|+ %M∗
∞∑
n=1

(4πnT + 1
8π3n3

(|ϕ(4)
2n |+NT |f (4)

2n |) +
NT |f (4)

1n |
4π2n2

+
|ϕ(4)

1n |
4π2n2

)
,
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consequently, the series (3.21) is uniformly convergent by the Weierstrass M-test.
Hence the series (3.19) is α-differentiable with respect to the time variable and the
relation (3.20) holds true.

Similarly we can show that the series corresponding to uxx(x, t) is uniformly
convergent and represents continuous function. �

3.4. Continuous dependence of the solution on the data. Let T be the set
of triples {ϕ, f, g} where the functions ϕ, f, g satisfy the assumptions of Theorem
3.1 and

‖ϕ‖C3([0,1]) ≤M2, ‖f‖C3([QT ]) ≤M3, ‖g‖AC([0,1]) ≤M4.

For ψ ∈ T , we define the norm

‖ψ‖ = ‖ϕ‖C3([0,1]) + ‖f‖C3([QT ]) + ‖g‖AC([0,1]).

Before presenting the result about the stability of the solution of the inverse problem
let us mention that the series

∞∑
n=1

1
2π3n4

|f (4)
2n | ≤M5,

is uniformly convergent, where f (4)
2n are the coefficients of the sine Fourier expansion

of the function f (4)(., t). The functions {f (4)
2n }∞n=1 are bounded by virtue of the

Bessel’s inequality.
Setting T such that

T < (M1N )−1 (3.25)
where M1 is from the assumption (A1) and N := MM5 (M is from (2.8)). Then
we have the following theorem.

Theorem 3.2. The solution {u(x, t), a(t)} of the inverse problem (1.1)-(1.4), un-
der the assumptions of Theorem 3.1, depends continuously upon the data for T
satisfying (3.25).

Proof. Let {u(x, t), a(t)}, {ũ(x, t), ã(t)} be solution sets of the inverse problem
(1.1)-(1.4), corresponding to data ψ = {ϕ, f, g}, ψ̃ = {ϕ̃, f̃ , g̃}, respectively. From
(3.16) we have

‖K‖C([0,T ])×C([0,T ]) ≤M
∞∑
n=1

1
2π3n4

|f (4)
2n |.

Then
‖K‖C([0,T ])×C([0,T ]) ≤ N .

For g ∈ AC[0, T ] the term Dα
0+

(g(t) − g(0)) is continuous being the difference
of continuous functions (see equation (3.11)). Furthermore, for any ε > 0 the term
Dα

0+
(g(t)− g(0)) is bounded on the interval (ε, T ]. In the estimates below, we will

use this fact frequently.
From (3.15) and (3.14) we have

‖F‖C([0,T ]) ≤M8, ‖a‖C([0,T ]) ≤
M8

1− TM1N
,

where M8 = M1(M6 +MM7), M6 is a bound of Dα
0+

(g(t)−g(0)),
∑∞
n=1 8πnρϕ2n ≤

M7 and, both M6,M7 are constants independent of t and n. Before we proceed to
the next estimate notice that from the expansion of f(x, t), the norm of f0, f2n−1
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and f2n for n ∈ N can be estimated by the norm of f(x, t). Similarly, the norm of
ϕ0, ϕ2n−1 and ϕ2n can be estimated by the norm of ϕ(x). From (3.15), We have

F(t)− F̃(t) =
(∫ 1

0

f(x, t)dx
)−1[

Dα
0+

(g(t)− g(0)) +
∞∑
n=1

8πnρϕ2neα(t, λn)
]

−
(∫ 1

0

f̃(x, t)dx
)−1[

Dα
0+

(g̃(t)− g̃(0)) +
∞∑
n=1

8πnρϕ̃2neα(t, λn)
]

F(t)− F̃(t) =
(∫ 1

0

f(x, t)dx
∫ 1

0

f̃(x, t)dx
)−1[∫ 1

0

f̃(x, t)dx
(
Dα

0+
(g(t)− g(0))

+
∞∑
n=1

8πnρϕ2neα(t, λn)
)

−
∫ 1

0

f(x, t)dx
(
Dα

0+
(g̃(t)− g̃(0)) +

∞∑
n=1

8πnρϕ̃2neα(t, λn)
)]

F(t)− F̃(t) =
(∫ 1

0

f(x, t)dx
∫ 1

0

f̃(x, t)dx
)−1[∫ 1

0

f̃(x, t)dx
(
Dα

0+
(g(t)− g(0))

−Dα
0+

(g̃(t)− g̃(0)) +
∞∑
n=1

8πnρeα(t, λn) (ϕ2n − ϕ̃2n)
)

+Dα
0+

(g̃(t)− g̃(0))
(∫ 1

0

f̃(x, t)dx−
∫ 1

0

f(x, t)dx
)

+
∞∑
n=1

8πnρϕ̃2neα(t, λn)
(∫ 1

0

f̃(x, t) dx−
∫ 1

0

f(x, t) dx
)]
.

Notice that we can consider ϕ2n − ϕ̃2n as the Fourier coefficient of the function
ϕ− ϕ̃; i.e.,

ϕ2n − ϕ̃2n =
∫ 1

0

(ϕ− ϕ̃)(x) sin(2πnx) dx.

Recall that λn := 2πnρ, eα(t, λn) := Eα(−λntα) and the following estimate for
the Mittag-Leffler type function

|λnEα(−λntα)| ≤ λn
1 + λntα

≤ C∗,

leads to the estimate

‖F − F̃‖C([0,T ]) ≤ N1‖ϕ− ϕ̃‖C([0,1]) +N2‖f − f̃‖C3([QT ]) +N3‖g − g̃‖AC([0,T ]),

where 0 < 1/M1 ≤
∣∣∣∫ 1

0
f(x, t)dx

∣∣∣, 0 < 1/M1 ≤
∣∣∣∫ 1

0
f̃(x, t)dx

∣∣∣ and N1 = M2
1M3C

∗,

N2 = M2
1 (M6 +M2C

∗), N3 = M2
1M3C

∗/Γ(1− α) are constants independent of n.
From (3.16), we have

‖K − K̃‖C([0,T ])×C([0,T ]) ≤
∞∑
n=1

4πnρeα,α(t− τ, λn)‖f − f̃‖C3([QT ]) .

Recall that eα,α(t−τ, λn) := (t−τ)α−1Eα,α(−λn(t−τ)α). Then due to the estimate

|λn(t− τ)α−1Eα,α(−λn(t− τ)α)| ≤ 1
t

(t− τ)αλn
1 + λn(t− τ)α

≤ C∗,
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we have the estimate

‖K − K̃‖C([0,T ])×C([0,T ]) ≤ 2C∗‖f − f̃‖C3([QT ]),

for C∗ is a positive constant independent of n.
From (3.14), we obtain

a(t)− ã(t)

= F(t)− F̃(t) +
(∫ 1

0

f(x, t)dx
)−1[∫ t

0

K(t, τ)a(τ)dτ −
∫ t

0

K̃(t, τ)ã(τ)dτ
]

= F(t)− F̃(t) +
(∫ 1

0

f(x, t)dx
)−1[∫ t

0

a(τ)
(
K(t, τ)− K̃(t, τ)

)
dτ

−
∫ t

0

K̃(t, τ)
(
a(τ)− ã(τ)

)
dτ
]

using the assumption 0 < 1/M1 ≤
∣∣∫ 1

0
f(x, t)dx

∣∣ and due to the estimates of ‖F −
F̃‖C([0,T ]), ‖K − K̃‖C([0,T ])×C([0,T ]), we have

‖a− ã‖C([0,T ]) ≤ ‖F − F̃‖C([0,T ]) + TM1N‖a− ã‖C([0,T ])

+
TM1M6

1− TM1N
‖K − K̃‖C([0,T ])×C([0,T ])

or
(1− TM1N )‖a− ã‖C([0,T ]) ≤ N5‖ψ − ψ̃‖,

where

N5 = max
{
N1, N2 +

2C∗TM1M6

1− TM1N
, N3

}
.

For t ∈ [0, T ], we have

‖a− ã‖C([0,T ]) ≤
N5

1− TM1N
‖ψ − ψ̃‖.

From (3.5) a similar estimate can be obtained for u − ũ, which completes the
proof. �

4. Appendix

The spectral problem (1.5)-(1.6) is a non-self-adjoint; it has the following conju-
gate (adjoint) problem:

Y ′′ = −λnY, x ∈ (0, 1), (4.1)

Y (0) = 0, Y ′(0) = Y ′(1). (4.2)

In fact ∫ 1

0

Y X ′′ = −X ′(0)Y (0) +X(0)(Y ′(0)− Y ′(1)) +
∫ 1

0

Y ′′X.

It is clear that the right side of this relation vanishes if Y ′(0) = Y ′(1) and Y (0) = 0.
The spectral problem (1.5)-(1.6) has the eigenvalues

λn = (2πn)2 for n = 0, 1, 2, . . .

and the eigenvectors

X0 = 1, for λ0 = 0, Xn = cos(2πnx), for λn = (2πn)2 n = 1, 2, . . .
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The set of functions {X0, Xn} does not form a complete system and is not a basis
for the space L2(0, 1). To complete the basis (see [4]), we consider the associated
eigenvectors X̃ for the λn corresponding toXn defined as the solution of the problem

X̃ ′′ = −λnX̃ −Xn, x ∈ (0, 1), (4.3)

X̃ ′(1) = 0, X̃(0) = X̃(1). (4.4)

If λ0 = 0, problem (3.3)-(3.4) has no solution. For λn = (2πn)2 for n ∈ N, the
problem (3.3)-(3.4) has the eigenvectors

X̃n =
(1− x)

4πn
sin(2πnx), n ∈ N.

Thus S = {X0, Xn, X̃n} forms a complete system but not orthogonal.
We need another complete set of functions which together with the set S forms

a bi-orthogonal system for the space L2(0, 1). To obtain the other system, we shall
consider the conjugate or adjoint problem (4.1)-(4.2).

Alike, solving (4.1)-(4.2), we obtain the eigenvectors {Y0 = x, Yn = x cos(2πn)},
and associated eigenvectors are obtained from the boundary-value problem

Ỹ ′′ = −λnỸ − Yn, x ∈ (0, 1), (4.5)

Ỹ (0) = 0, Ỹ ′(0) = Ỹ ′(1). (4.6)

The set S̃ = {Y0, Yn, Ỹn}, with

Y0 = x, Yn = x cos(2πn), Ỹn = sin(2πnx)

is a complete system for the space L2(0, 1).
The set of functions S and S̃ forms a bi-orthogonal system for the space L2(0, 1).

We can normalize the bi-orthogonal system and its final form is

{X0 = 2, Xn = {4 cos(2πnx)}∞n=1, X̃n = {4(1− x) sin(2πnx)}∞n=1}l (4.7)

{Y0 = x, Yn = {x cos(2πnx)}∞n=1, Ỹn = {sin(2πnx)}∞n=1}. (4.8)

Conclusion

The purpose of this paper is to determine the pair of functions {u(x, t), a(t)},
i.e., the temperature distribution and the source term for the fractional diffusion
equation (1.1)-(1.4). The problem in solving the inverse problem is not only due to
the nonlocal boundary conditions (1.3) but also due to the presence of the fractional
derivative in time. The underlying spectral problem for (1.1)-(1.3) is non-self-
adjoint.

For the solution of the inverse problem we use two basis for the space L2(0, 1),
which form the bi-orthogonal system (see Il’in [4] and Keldysh [8]). Due to this
bi-orthogonal system we are able to expand the solution in terms of the functions
of the bi-orthogonal system. We show the existence and uniqueness of the solution
of the inverse problem using properties of the Mittag-Leffler function and using the
over-determination condition of integral type (1.4). The result about the continuous
dependence of the solution of the inverse problem on the data is proved.
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