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EXISTENCE AND GLOBAL ASYMPTOTIC STABILITY OF
POSITIVE PERIODIC SOLUTIONS OF A LOTKA-VOLTERRA
TYPE COMPETITION SYSTEMS WITH DELAYS AND
FEEDBACK CONTROLS

ANH TUAN TRINH

ABSTRACT. The existence of positive periodic solutions of a periodic Lotka-
Volterra type competition system with delays and feedback controls is studied
by applying the continuation theorem of coincidence degree theory. By con-
tracting a suitable Liapunov functional, a set of sufficient conditions for the
global asymptotic stability of the positive periodic solution of the system is
given. A counterexample is given to show that the result on the existence of
positive periodic solution in [4] is incorrect.

1. INTRODUCTION

In this paper, we consider the following non-autonomous Lotka-Volterra n-species
competition system with delays and feedback controls

2 (t) = gi(wi(t)) [Ti(f) = aii(®)z(t) = > bije(t)a;(t — 7k (1)
j=1 j=1k=1

Ty / et $)ay(s)ds — di(t)us()

j=1k=1Y—%

=S enltuit — ou(t)) - / Filt. $yus(s)ds]. (1.1)
k=1 e

() = —oq(t)ui(t) + Bi(t)wi(t) + > pin(t)wi(t — vin(t))

k=1

t

—l—/ v;i(t, 8)x;(s)ds,
— 0o

where i € {1,2,...,n}, u; denote indirect feedback control variables. For system

(1.1), we introduce the following hypotheses
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2 A. T. TRINH EJDE-2013/261
(H1) ri, e € C(R,R), aij,bijk,di,eik,pzk7ﬂz € C(R, R+) are w-periodic ( is a
fixed positive number) with ["r;(¢)dt > 0, [ os(t)dt > 0,4, =1,2,...,n;
k=1,2,....m
(H2) cijk, fi,vi : R x R — R, are w-periodic functions; i.e.,

Cijk(t+w78+w) = cijk(t78)afi(t+w78+w) = fi(tas)avi(t+w75 +w) = ’Ui(tas)

and f ciji(t, s)ds, f fi(t, s)ds, fioo v;(t, 8)ds are continuous with re-
spect to t Moreover

+oo +oo
/ / Cijk(s +1t,8)dsdt < 400, / fi(s+t,8)dsdt < o0,
—t 0 —t

“+o0
/ / vi(s+t,8)dsdt < +oo, i,j=1,2,....,nk=1,2,...,m.
—t

(H3) g; € C(R4,Ry) is strictly increasing, ¢;(0) = 0 and lim, o+ gifjv) is a
positive constant. Moreover, there are positive constants [ and L such that
1 < w < Lforallv>0,i=1,2,...,n
(H4) Tijk, oik, Yir € C(R,R) are w-periodic fori,j =1,2,... n,k=1,2,...,m
H5) 7k, Oik, Vik € CHR,Ry) and 7;1(t) < 1, 64(8) < 1, Yix(t) < 1 for all
J + J
teR,4,j=1,2,...,n, k=1,2,....m

We consider (1.1) with the initial conditions

xz(s) = ¢z(5)vs € (70070]7 ¢Z € O((*OO,O],R.*.),QSZ(O) >0

1.2
ui(s) = ()5 € (~00,0], W€ O((-00,0LR). s(0) >0, 7
for i = 1,2,...,n. Throughout this paper, we use the following symbols: for an
w-periodic function f € C(R,R), we define
_ 1 w t
=t [Ciwa, 0= [ antoms ro=[ s
0 —o0
t
i(v)d
vi(t) = / vi(t, s)ds, Gi(t,s) = exp{ft ai(v)dv) ,8 >t
oo exp{fo a;(v)dv} =17
t+w
Pi(t) = dy(t) G [ ) + szk }ds 1.3)

t

Z ei;(t / - Gi(t,s) [ﬂz’(S) + Z:pik(s) - U;‘(S)}ds,
/ fi(t,s) / ujG [ +Zp,k }des

Fan et al. [I] studied system in the case k = 1, g;(v;) = v;, fi(t,s) =
vi(t,s) = 0 for i = 1,2,...,n and obtained several results for the existence and
global asymptotically stability of positive periodic solutions of the system. Recently,
Yan and Liu [4] considered system in the case e;;(t) = pir(t) = 0 and fi(t,s) =
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vi(t,s) =0for k=2,3,...,m,i=1,2,...,n,

abi(t):gz-ui(t))[n(t)—za” J2i(t) =D D biae ()t = 7isn(t))

By employing fixed point index theory on cones, Yan and Liu [4] established the
following result.

Theorem 1.1 ([4]). Assume that (H1)—(H4) hold. For system (1.4), to have at
least one positive w-periodic solution, a necessary and sufficient condition is

i { > [aij + > (bije + Efjk)} + P+ Qi} >0 (1.5)
- =t k=1
and
11'<l’lllnn{,81 +p21} > 0. (16)

Unfortunately, the sufficient condition in the above theorem is incorrect, as
shown by the following example.
Example. Consider the system

#1(t) = 21 (t) [1 — () — 3wa(t) — 2wa(t — 1) — wn(t) — ua (t — 01)},

ia(t) = 21(8) [2 = 301 (1) = 22(t) = 201t — ) — wa(t) — wa(t — 02)|,  (17)
up(t) = —ur(t) + 21(t) + 21(t — m1), wa2(t) = —ua(t) + z2(t) + z2(t — 72),

where 7;,04,7v, © = 1,2, are positive constants. It is easy to see that system
(1.7) satisfies all hypotheses of Theorem with w = 1. On the other hand, if
(x5 (t), x5(t), ui(t), us(t)) is a positive 1-periodic solution of system (1.7]), then

%mx’;(t) - [1 — () — 3ah(t) — 2a5(t — 1) — wk(f) — wi(t — al)},

%hlx;(t) - [2 ~3at(t) — ah(t) — 2wt — ) — wk(t) — ul(t — ag)},

d (1.8)
() = —ui(t) +21(t) + 21(t = m),
d * * * *
%Uz(t) = —u3(t) +a5(t) + 25(t — 72),
Integrating (|1.8)) from 0 to 1 and simplifying, we obtain
Ty 4575 +2uy =1, 5¥] + T3+ 2uy =2, u] =27y, Uy = 2w5. (1.9)

This implies
5%} + 575 =1, 53+ 515 =2,
which is impossible. Thus, system has no positive 1-periodic solution and
then the sufficient condition in Theorem (given in [4]) is incorrect.
In the proof of Theorem (see [4]), authors considered a map ® : K — K|
where

K = {(ml,...,xn) cF: xl(t) 2 (51”1'1H0, 1= 1,2,...,71, te [O,W]}
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(with 6; = exp{—T,w}) is a cone of the Banach space £ = {& € C(R,R") :
z(t + w) = x(t) for all ¢ € R} with the norm ||z[lo = Y i, [lzillo (Where |lz;]jo =
maxye(o,o |2i(t)]). By employing fixed point index theory on cone, it was proved
in [4] that there exist positive constants r and R (r < R) such that ® has at least
one fixed point z* in K, g = {x € K : r < ||z|lo < R}, and then it was concluded
that (z*(t),u*(t)) is positive w-periodic solution of system (L.I). The mistake in
the proof of Theorem [1.1| (see []) is that 2* € K, r does not imply that z*(¢) is
positive for n > 2.

Our purpose of this paper is by using the technique of coincidence degree theory
developed by Gains and Mawhin in [2] to study the existence of positive periodic
solutions of system . Moreover, by contracting a suitable Liapunov functional,
we study the global asymptotic stability of the positive periodic solution of system
. The remainder of this paper is organized as follows. Section 2 is preliminar-
ies, in which we introduce the continuation theorem and some lemmas. Section 3
contains our main results on the existence and the global asymptotic stability of
positive periodic solutions of system .

2. PRELIMINARIES

Let Y and Z be two normed vector spaces, L : DomL C Y — Z be a linear
mapping, and N : Y — Z be a continuous mapping. The mapping L will be called a
Fredholm mapping of index zero if dim ker L = codim Im L < +o0 and Im L is closed
in Z. If L is a Fredholm mapping of index zero and there exist continuous projectors
P:Y—>Yand Q:Z — Z such that ImP =ker L, InL = ker@Q = Im(] — Q), it
follows that L|pom rrkerp : (I — P)X — Im L is invertible. We denote the inverse
of that map by Kp. If Q2 is an open bounded subset of Y, the mapping N will be
called L-compact on Q if QN () is bounded and Kp(I — Q)N :  — Y is compact.
Since Im @ is isomorphic to ker L, there exists an isomorphism J : Im ) — ker L.

Lemma 2.1 (Continuation theorem [2]). Let L be a Fredholm mapping of index
zero and N be L-compact on ). Suppose that

(i) for each A € (0,1), every solution x of Lx = ANz is such that x & 09);
(ii) @Nz # 0 for each x € 90 Nker L and deg(JQN,Q Nker L, 0) # 0.

Then the operator equation Lx = Nx has at least one solution lying in Dom LN .

Let us consider the system

n

&i(t) = gi(wi(t)) [T’i(t) = aii(®)z(t) = D> bije(t)w;(t — 7 (1)
j=1 J=1 k=1

n m t

B / it 8)z;(s)ds — di(8) (Vi) ()
j=1lk=1"7"%°

=S ealVie(t - ow(®) ~ [ fitt.s) (Vi) (s)ds].
k=1 -

wi(t) = (Vizy)(t), i=12....n,

(2.1)
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where

V.TZ / G t 3 ﬁz xz +szk S_Wzk( ))
6 (2.2)

_|_/_Oov(s )2 (T )dT]dS i=1,2,...,n

Lemma 2.2. Assume (H1)—(H4) hold. Then (x1(t),...,zn(t),u1(t),...,un(t)) is
an w-periodic solution of system (1.1) if and only if it is an w-periodic solution of
system (2.1)).

Proof. (=) Let (z(t),u(t)) = (x1(t),...,zn(t),u1(t),...,un(t)) be an w-periodic
solution of system (1.1)). It is easy to see from (|1.1)) that

w(®) = el- [ aitirt [ + [ ool [ awar {5.me0
+Zplk xi(t — yir (T ))—l—/T v; (T, v) (v )dv}dr},

— 0o
fort >t i= 1727 ...yn. Thus, since u;(t) = u;(t + w) for i = 1,2,...,n, it follows
that
wi(t) = ui(t + w)

— exp{— / rydr} [ui(t) + / " /t ai(mdr{B (i)
+szk zi(t — vir (T ))—I—/T v (T, v)x; (v )dv}dr},

— 0o

forteR,z:1,2,...,n. Hence,

ui(t)/tHwG (t, r)[ +szk T)zi(T — ik (7))

+ /_S Ui(T,U).’Ei(’U)d’U} dr = (Viz)(t), i=1,2,...,n,

oo
which implies that (x(t), u(t)) is an w-periodic solution of system ([2.1]).
(<) Let (z1(t),...,xn(t),ui(t),...,un(t)) be an w-periodic solution of system
(2.1). It is easy to see from ([2.2]) that (ui(t),...,un,(t)) satisfies the system
¢

() = —a; (B)ui(t) + B: (t)x; (t) + Zpik(t)xi(t — k() + / v (t, 8)x;(s)ds,
k=1

—00
for i =1,2,...,n. Thus, (z(t),u(t)) is an w-periodic solution of system ([1.1]). The
proof is complete. U

Lemma 2.3 ([3]). Suppose that v € C*(R,R,) is w-periodic and v'(t) < 1 for all
t € [0,w]. Then the functiont—uv(t) has a unique inverse n(t) satisfyingn € C(R,R)
with n(t + w) = n(t) for all t € R.

Lemma 2.4. Suppose that ¢;; > 0,0; >0 fori,j =1,2,...,n. If

Zq” >0,i=1,2,. (2.3)

iz I
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then the system of algebraic equations
n
(5i—Zqijxj:O, i=1,2,...,n (24)
j=1

has a unique solution =* = (x3,...,z}%) € R". Moreover, z} >0 fori=1,2,...,n.

Proof. Let y; = qy;x; for i = 1,2,...,n, so that system (2.4) becomes

5= gy =0,i=1,2,...,n, (2.5)

j=1
where ¢;; = 4j/4, 1,7 =1,2,...,n. Clearly, ¢j; =1 for i = 1,2,...,n. By (2.3),

n
6= a0, >0, i=12...n (2.6)
J#i
Let € be a positive number such that € < min;<;<,, [51- — Z;;Z qjj(?j]. Denote
D={y=(y1,---,yn) ER" 1 e<y; <6;,i=1,2,...,n},
F=(F,...,F,) :R* - R" where

n
j=1

and H = F + I, where I is the identity operator on R". It is easy to see that
e < Hi(y) < 6; fori =1,2,...,n,y € D; ie., H(y) € int(D)-the interior of D for
all y € D. Thus, deg(H — I,int D,0) = deg(F,int D,0) = 1. This implies that the
equation F'y = 0 has at least one solution y* in int D. Since Fy # 0 for all y € 0D
and F'y = 0 is linear equation, it follows that y* is the unique solution in R™ of the
equation F'y = 0. Thus, equation has a unique solution z* = (z3,...,2%) €
R"™. Moreover, z} > 0 for ¢ = 1,2,...,n. The proof is complete. O

Definition 2.5. Let (2(¢),a(t)) = (Z1(¢),...,Zn(t), w1(t),...,a,(t)) be a positive
w-periodic solution of system (1.1]). It is said to be globally asymptotically stable if

any positive solution (z(t),u(t)) = (z1(t),...,zn(t),ur(t), ..., us(t)) of ([L.I)-(T:2)

satisfies .

Jm 3 {l2(t) = ()| + Jui (1) — w(t)|} = 0.
Remark 2.6. Let us put y; = hi(z;) = lri gd—é), t = 1,2,...,n. By (H3), it
is easy to see that h; : (0,4+00) — R, z; — y; = h;(x;) has a unique inverse

;i : R — (0,400), yi — x; = p;(y;). Moreover, ¢; € C1(R,(0,+00)) and ¢; is
strictly monotone increasing.

Remark 2.7. By (H5), Lemma[2.3]implies that the functions ¢ — 7 (t), t — oi (t)
and ¢t — v;,(t) have the unique inverses, respectively. Let p;;x(t), Cix(t) and & (t)
represent the inverses of functions t — 75 (t),t — o (t) and t — v (¢), respec-
tively. Obviously, ,uijk,g}k,fik S C(RJR) and /J,ijk(t + w) = /Lijk(t),cik(t + w) =
Cik(t>7§ik(t + w) = @k(t) for all t € R.

Remark 2.8. It is easy from (H1)-(H4) to show that solutions of (L.1)-(1.2) are
well defined for all ¢ > 0 and satisfy z;(¢t) > 0 and u;(¢) > 0 for all ¢ > 0 and
i=1,2,...,n
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3. MAIN RESULTS
Theorem 3.1. Assume that (H1)—(H4) hold. Let

/[ +me }ds>0 i=1,2,...n, (3.1)

A=, + ZEllk+chlk+P+Ql+R >0, i=1,2,...,n, (3.2)
k=1 k=1

n>2(a” Z Z zj,€+15j+Qj+1§2j)<pj(Bj), i=1,2,...,n, (3.3)

J#i

where By = hi(7;/A;) + (75 + |ri])w, i = 1,2,...,n. Then system (L.1) has at least
one positive w-periodic solution.

Proof. Consider the system

Zaw )23 (Wi (6) = D> bik () (5 (8 = 50 (1))
j=1k=1

n m t

Yy / cige (6 9)3 (43())ds — i (O)(Vigs () (1) (3.4

j=1k=17"°

—zem (Vios(w) (e = ) = [ flt,9)(Vigitw))(s)ds.

By (1.3)), (2.2) and (3.1)), if system (3.4) has an w-periodic solution (yi(t),...,y%(¢)),

then
up ) = (Vips(uD)(®)
- [ (% min (v (7)) [6:(s)

exp{a;w} — 1 re0,u]

+me vi(s)|ds >0, tER i=12....n

Thus, (5(t),..., x5 t),ui(t),...,us(t)) with values x}(t) = ¢;(y;(t)) and u}(t) =
(Vigi(y))(t) for i = 1,2,...,n is a positive w-periodic solution of system . So,
by Lemma we only need to show that system has at least one w-periodic
solution in order to complete the proof. To apply the continuation theorem of
coincidence degree theory to the existence of an w-periodic solution of system ,
we take

Y=27= {y(t) = (y1(t),...,yn(t)) € C(R,R") : y(t + w) = y(¢t) for all ¢t € R}.

Denote [lyllo = Y7, lyillo, where ||y;[lo = max,cfo,) |yi(t)]. Then Y and Z are
Banach spaces when they endowed with the norm || - ||o.
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We define L : DomL C Y — Z and N : Y — Z by setting Ly = y and
Ny =Fy=(Fiy,...,F,y), where

Fy(t) =r;(t Zam i (y;(t Zzbzgk ©; (Y (t — Tizu(t)))
j=1k=1
B / cigi (b, )93 3 (3))ds — di(0) (Vigpu(w)) (1) (35)

j=1k=1
—Zezk Vi)t = ) = [ filt, ) (Vigitus)(5)ds.

Further, we define continuous projectors P:Y — Y and Q : Z — Z as follows

Py = 1 /Ow y(s)ds, Qz= 1 /Ow z(s)ds.

w

We easily see that InL = {z € Z : [ z(s)ds = 0} and ker L = R™. So, Im L is
closed in Z and dimker L = n = codimIm L. Hence, L is a Fredholm mapping of
index zero. Clearly that Im P = ker L, Im L = ker @ = Im(] — @)/ Furthermore,
the generalized inverse (to L) Kp : Im L — ker P N Dom L has the form

sz(t):/ dsf—/ / s)ds dt.

vyt =% [ Futar

We know that

Thus,
Kp(I —Q)Ny(t) = (KpN — KpQN)y(t)

/Fy ds—f/ /Fy dsdt+<f——>/ Fy(s)ds.

It is easy to see that QN and K,(I — Q)N are continuous. Furthermore, it can
be verified that Kp(I — Q)N(Q) is compact for any open bounded set 2 C Y by
using Arzela-Ascoli theorem and QN (Q) is bounded. Therefore, N is L-compact
on € for any open bounded subset 2 C Y. Now we are in a position to search
for an appropriate open bounded subset €2 for the application of the continuation

theorem (Lemma [2.1)) to system (3.4).

Corresponding to the operator equation Ly = ANy (A € (0,1)), we have

Yi(t) = /\[Ti(t) - Zaij(t)sﬂj(yj(t)) =N bie()e; (st — Tijn(t)

j=1k=1

n m

S et a6 — ) Vi) (3.6)

j=1k=1" "

—Zem (Viorl)(t = @) = [ Filt,9)(VisCw)(s)ds].
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Integrating (3.6]) from 0 to w and simplifying, we obtain

w—Z / sy oy ()t + 303 / 4t (005 (s (¢ — 7330(1)))dt

j=1k=1

S I / ciin(ts5)3 (u5(s)) ds dt + / 4s(t) (Vipi(w) ()t

j=1 k=1

T Z/ eik(t) (Vi (yi)) (t — oun(t))dt

+/0 /_OOfi(t’s)(vi@i(yi))(S)dsdt.
Let

yi(n:) = max y;(t),y;(0:;) = min y;(t), 7,0 €0,0], 1=1,2,...,n.

te[0,w] te[0,w]

It is easy to see from (1.3)), and (| that
w
/0 4s(8)(Vigr () ()t > Py (1 (6,)).

> [ Wit = ottt > Quopi(u0),
k=170

/O i / fi(t, ) (Vigi () (5) ds dt > Riwepi (i (0:))
and

/0 " (1) (Vigs ) ()t < Pogi(yi ().

> [ ealdWipntu)te - o )it < Qupi(n),

k=1
/0 / Fi(t, ) (Vigi () (5) ds dt < Rewipr (i (1))-
It follows from , m and @ that

rz el (CL“ + Zbuk + Zcuk + P + Qz + R )@Z(yz(ez» = Az%(%(@)%
k=1

for i =1,2,...,n. Thus, by (3.2) and Remarkm, we have
i .
yz(ﬂz)ghz(z), ZZLQ,...,H
From (3.6) and (3.7)), we know that
/ G Oldt < (i + Trdw, i=1,2,...,m,
0
and thus, by (3.12),

0 < (6 + [ Ol < () + 0+ T = B € [0,

(3

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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fori=1,2,...,n. It is easy to see from (3.7), (3.8), (3.10) and (3.14)) that

(aii + Z biik + Z i+ P+ Qi + Ri)%(%(m))

k=1 k=1

n m m (315)
>7— ) (%‘ + bk + > i+ P+ Q5+ Rj)%(yj(nj)),
i k=1 k=1
fori=1,2,...,n. Thus, by (3.3) and (3.14)), we have
) > i — D (@z‘j + 2 [bigk €] + P+ Q) + Rj)%(Bj) .
PRV = Qii + Yoy ik + ) + P+ Qi + R, S
fori=1,2,...,n; or
yi(ni) Z h,(CZ), 1= 1,27...,n, (316)
From (3.13) and (3.16)), it follows that
y(t) > yi(n) —/ G (Oldt > hi(Ci) — (s + frihlw = Dot € 0,0],  (3.17)
0
fori=1,2,...,n. From (3.12) and (3.16) we see that
lyllo < M :=> (IBi| + |Di]). (3.18)

i=1
By (3.3), Lemma implies that the following system of algebraic equations

T = Z {dij + Zbijk + Zéjjk} ©0i(y;) + (P + Qi + Ri)pi(yi), (3.19)
j=1 k=1 k=1
fori =1,2,...,n, has a unique solution y* = (y7,...,y}) € R™. Let S = ||y*|o+M.
Evidently, S is independent of the choice of A. Let Q:={y € Y : |ly||1 < S}. Tt
is clear that Q satisfies the requirement (i) in Lemma [2.1] Moreover, QNy # 0 for
any y € 02 Nker L. Let us take J = I, where I is the identity operator on R". By
straightforward computation, we have

deg(JQN,Q Nker L,0) = sgn {(—1)” [det(wij)] e1(yy) ... gpn(y;)} #0,

where w;; = A;,
m m
wig =i+ b+ Y e (G#49), 4i=1,2,...,n
k=1 k=1
By Lemma [2.3] we conclude that the equation Ly = Ny has at least one solution

in Y. Therefore, system (|1.1) has at least one positive w-periodic solution. The
proof is complete. O
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Theorem 3.2. Assume that (H1)—(H5), (3.1) and (3.3)) hold. If there exist positive
constants vy, Vs, ...V, such that

. “ Dik £lk +oeo
i, e =80 =30 T2 e ) o, o]

_ i l/jaﬂ Z Z ]zk M]zk )
j=1

G#i 1- T]zk: M]zk:(t))

R (3.20)
_ZVJZ/ cﬂkt+7t)d7}>0
J=1 0
min {a- i ear(Gn®) __ /+°° fit+7 t)dT} >0
te[0,w] ‘ 1— 0ok Czk( )) 0 ' 7 ’

=1

fori=1,2,... ,n, then system (L.1)) has a unique positive w-periodic solution which
is globally asymptotically stable.

Proof. From , we conclude that a;; > 0 for ¢ = 1,2,...,n, which means
that holds. By Theorem system has a positive w-periodic solution
(Z(t),a(t)). Let (x(t),u(t)) be any other positive solution of with initial
condition (L.2). Consider the Liapunov functional V() = V(2(t), a(t)), (x(t), u(t)))
defined by

n

Vo =m0 + VB0 + 3 V0 + Vi)

j=1k=1

VP& + v w] + v + v w},

<.

=~

(3.21)
_|_

B
I

1

where, for i, =1,2,...,n, k=1,2,...,m, we have

v 7‘ /
i(t) gz
vt

bza (1ijn(8)) .
e (1) = /t T”k(t)lk—klxj(S)—xj(SNds,

Tijk (1ijk(8))

V) = lult) — ()],

+oo
Vi //tc”ks+m>|x]<>—xj<>\dsd7

t
(5) _ ezk C’Lk(s)) s
V;k a t—oik(s) O-lk(Czk(S))hLZ( ) u7,($)|ds’
T Cpal&in(s) o o
- t— %k(t) 1- PY?k flk(s)) |$ (S) ,TZ(S)‘ ds,
v = +oo fils + 7, 8)|ui(s) — @;(s)| ds dr,

0 t—1

+
O / (s + 7, 8)|us(s) — iaa(s)] ds dr
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Clearly V() is continuous on [0, +00). Calculating the upper right derivative of

Vi(l)(t) ..... Vi(g)(t) along the solutions of system (L.1)) for ¢ > 0, we obtain
Dt V(l)

=D bin() (st — Tk (1) — F5(t - Tk (t))
j=1k=1

Y / o (t,7) (s () — &5 (0)dr — dy() (i (1) — (1))
j=1k=1

3 et it — o (t)) — lt — o) — | e - wrar];
k=1 e
and thus,

1
DV < —a(t)|ai(t) — &t |+Zaw () — ;(t)]

J#i
+Zme e (t = Tiji(t)) — &5 (t — Tiu(1))]
j=1k=1
+ZZ / cijie(t, )|z (1) = &5(T)|dr — di(t)us(t) — a;(t)]  (3-22)
j=1k=1

+ Z e (D) ui(t — oi(t)) — wi(t — oir(t))]
k=1

+/ fi(t, ) |wi (1) — @ (7)|dr,

DV = [ii(t) — i (t)] sgnlus(t) — @i (1))
= sgnfui(t) — @(0)][ — alt) (wi(t) — @ (1)) + Bi(t) (ws(t) — #: (1))

" me (it — (1)) — Ft — 7ie(1)))

" / 0ilt, 7)(wa(r) — (7)) dr] (3.23)
< —ai(O)]ui(t) — @i ()] + Bi(t)|zi(t) — i (¢)]

+ Zpik(tﬂﬂ?i(t — Yk (t)) — Ti(t — var(t))]
k=1

+[ vi(t, 7) |2 (1) — Z4(7)|dT5
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~3) _ i (pige(t)) (1) — 7
‘/ijk 1— Tuk(//"z]k(t))) | J(t) J(t)| (324)
= bijr(t)]@; (¢ — 7i5x(t)) — T (t — Tije(1))],
+oo
= [ e+ a0 - 3, 0)lar
0 (3.25)

+oo
—/ Ciji(t,t —7)|a;(t —7) — Z;(t — 7)|dr;
0

VAP = oS ) = (8] an Ot — o) = 0 = (1)
(3.26)
i = 2o = 0]~ sl (0 = 30(0) = lt — o)
(3.27)
%WL_/%wﬁ@+ﬂﬂuﬂﬂ@@ﬁh
o (3.28)
—/0 filt,t — 1) |ui(t — 1) — @ (t — 7)|dT;
W®:/M}m+nm@@—@@mr
. (3.29)
,/O vilt,t — )it — ) — F5(t — 7)|dr.
From — it follows that
" ) ~a Dik gzk
D+V<;VZ{|: “ +ﬁl Zl_’yzk gzk( )))
+oo
+A w@+7tmﬂuAt—m@ﬂ
@ !L‘ z]k ,U/zﬂe ) e — F.
*; 00 5501 + 35 )~ 550
n m 4o n
DM [ et mnar]ies0 - 201} + ;u{ —au(t) + di()
~einl(Gn(t)) e )
IO e e | s - )
_ - ) a: Dik E’L}C +OOU‘
=" {u] - @t + 5 me 5+ | wtee o]

+ zn: Z/Jaﬂ + Z vj Z Jzk ;U']zk
Jj=1 =

por T )

m

+Zuj2/ cjik(t+7,t)d7}|xi(t)—ii(t)|
j=1 k=170
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+;{ui[—ai +; 1 iizizzk( t)
# [ e ] Yt — o). o

By (3.20)), there exists positive number ¢ such that

min {ui {a“—(t)—ﬂi(t) Y p’“(g’“()))) /0 o vi(t+7,t)d7}

te[0,w] 1 — Yik (gzk (t

n
L M
AR 3>

1 — Tk M]zk( ))

L (3.31)
*ZVJZ/ cﬂkt+7't)d7'}>5
Jj=1 0
min {z/v[a i ik (G ¢ /+oof'(t+7t)d7}}>6
te[0,w] o 1 1—0cu Czk( )) 0 ' ’ 7
fori=1,2,...,n. In the view of (3.30) and (3.31)) we have
DYV(t) < 52 {l2:(t) = 8Ol + lui®) = @)}, ¢ =0, (3.32)
Integrating both sides of (3.32)) from 0 to ¢, we obtain
V() - V(0) < 5/ Z [23(s) — #4(s)| + Juals) — s(s)] bds, 1> 0.
Thus,
- V(0
A Z fra(s) — & ()] + fus(s) — (o) Jas < L4 >0,
which implies
ro V(0
/ Z lzi(s) — Zi(s)] + |us(s) — ﬂi(s)|}ds < % (3.33)

Since

‘/(t 7:(5 ‘+|U7 )*ﬁi(t)l}SV(t)SV(O), t>0,

1t follows from (H3) that x;(¢) and u;(t) are bounded on [0,400), and hence from
we can conclude that &;(¢) and 4;(t) are also bounded on [0, +0c). This implies
that z;(t) and u;(t) are uniformly continuous on [0, +00). Therefore, Y7, |z;(t) —
Z; ()] + |u; (t) — @;(t)] is uniformly continuous on [0, +00). Thus, implies that

n

Jm 2 {l2i(t) = 2:(0) + ui(t) — w(8)] } = 0

and (Z(t), u(t)) is the unique positive w-periodic solution of system (1.1]). The proof
is complete. ([
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As an example we consider system (1.1)) with

Inb
- a1(t) = as(t) =6,

a11(t) = age(t) =21 +sin27t, a12(t) = a1 (t) = 1 + sin 27t,
b111(t) = b121(t) = ba11(t) = boo1 (t) = 1 + 2sin e,
cini(t, s) = ci21(t, 8) = can1(t, s) = cazu1(t, s) = vi (L, s) = v2(l, s) = exp{—(t — s)},
e11(t) = ea1(t) = 14 cos2nt, di(t) =da(t) =1 — sin 27t
B1(t) = P2(t) =1+ cos2nmt, p11(t) = p21(t) =1 — cos 2nt,
T111(t) = 7121 (t) = 7211 (f) = T201(t) =77 > 0,
o11(t) =001(t) = 0" >0, 711(t) =v21(t) =" >0, 91 (v) = g2(v) = 0.

n=2 m=1, r()=rot) =

It is easy to see that (H1)—(H5) hold. By straightforward computation, we have

* * * D, 2 D! 3
Cijl(t):fi(t):vi(t):L Pi:Qi:Ri:g>
Inb 5Inb
A; =248, B, = 1— 1 i(B;) = , 4,7=1,2
8 Biog TS wilBi) =g
Let v1 = 15 = 1. We can easily see that
1
/ {51(8) +pi1(s) + ’Uf(s)}ds =3>0,
0
2
30 In5 Inb
Z(a2j+bz_71+c 1+P +Q]+R) ( J):—xn—<n—:ﬂ,
gy 31 2 2

min {v; [aii(t) = Bi(t) - p“@“())))—/om it t)dr| - Zyjaﬂ

te]0,2x] 1= (& (t i

2 b 1/J 1 +oo
_ZV,L Zy]/ cﬂlt—i-Tt)dT}

J
=1 1-— Tjil szl

= min [14 — cos 27 (t +~*) — 2sin 27 (t + 7%)] > 0,
te(0,27]

min {ai(t) —d;(t) — “(Cl(t)))) —/;Oo fz-(t+7,t)d7}

t€[0,27] 1= (Gt

= min [3+4sin27t —cos2n(t+0%)] >0, i=1,2
te(0,27]

Thuerefore, conditions (3.1)), (3.3) and (3.30) hold. Hence, by Theorem the
system has a unique positive 1-periodic solution which is globally asymptotically

stable.
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