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A FIXED POINT METHOD FOR NONLINEAR EQUATIONS
INVOLVING A DUALITY MAPPING DEFINED ON
PRODUCT SPACES

JENICA CRINGANU, DANIEL PASCA

ABSTRACT. The aim of this paper is to obtain solutions for the equation
Jg,p(u1,u2) = Ny g(u1,u2),

where Jg, is the duality mapping on a product of two real, reflexive and
smooth Banach spaces X1, X2, corresponding to the gauge functions ¢1(t) =
t971 po(t) = P71, 1 < ¢,p < o0, Ny 4 being the Nemytskii operator gen-
erated by the Carathéodory functions f,g which satisfies some appropriate
conditions. To prove the existence solutions we use a topological method via
Leray-Schauder degree. As applications, we obtained in a unitary manner
some existence results for Dirichlet and Neumann problems for systems with
(g, p)-Laplacian, with (g, p)-pseudo-Laplacian or with (A4, Ap)-Laplacian.

1. INTRODUCTION

In this article we study the existence of solutions for the equation

Jo.p(ur,uz) = Ny g(u1,uz) (1.1)
in the following functional framework:

(H1) 1< q,p <o0; QCRY N > 2 is abounded domain with smooth boundary
(H2) X5, X5 are real reflexive and smooth Banach spaces, X; compactly embed-
ded in L% (Q) and X5 compactly embedded in LP*(Q2), where

Ngq :
—L if N >
l<q<g- =N !
400 if N <gq
and
Np .
£ if N >
1<p1<p*: N-p p

+oo fN<p

and ¢*, p* are the critical Sobolev exponents of ¢, p respectively;

(H3) Let ¢ = 1,2. For any gauge functions ¢; : Ry — R, the corresponding
duality mapping J,, : X; — X/ (see the precise definition in Section 2.1
below) is continuous and satisfies the (Sy) condition: if x;, — x; (weakly)
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in X; and limsup,,_, o (Jy, Tin, Tin — ;) < 0 then x4, — x; (strongly) in
X

(H4) Jgp : X1 x Xo — X{ x X3, Jgp = (Jg, Jp), where Jg, J, are the duality
mappings corresponding to the gauge functions ¢1(t) =t 1t > 0, pa(t) =
tP~1 ¢ > 0 respectively;

(H5) Nyg: L9(Q) x LP(Q) — LA(Q) x LP1(Q), where -+ 7 =1, -+ - =1

1 1

defined by Ny 4(u1,u2)(x) = (f(z,u1(z),u2(2)), g(z, u1(x), uz(x))), is the
Nemytskii operator generated by the Carathéodory functions f,g: 2 x R x
R — R, which satisfies the growth conditions

f(z,8,8)] <ecr|s|? !+ eolt| @ VE £by(z), forzeQ (s,t) eRxR, (1.2)
|g(:c,5,t)| < 03‘5‘@1_1)% + C4|t|pli1 + b2($), for z € Qﬂ (Sat) € Rx R7 (13)

where c1, o, c3,¢c4 > 0 are constants, b; € qul(Q),bQ € LP (Q), qil + 1 =

9
1.1 4+ L — 1.
’p1+p’1

We make the convention that in the case of a Carathéodory function, the asser-
tion “x € Q1”7 is understood in the sense “a.e. x € 7.

To prove the existence of the solutions of the problem we use topological
methods via Leray-Schauder degree.

We note that equality is understood in the sense of X| x X3, where the
norm on this product space is ||(z7, ¥3)||xs xx; = ||77[|x; +[|25[| x;. More precisely,
let iy : X3 — L2(Q) and is : Xo — LP(Q) be the identity mappings on X7, X
respectively and if : L% (Q) — Xi and i} : LP1(Q) — X3 be the corresponding
dual:

iju] = uj oy for uj € L% () dsul = wuj o1y for uj € LP ().

We define i : X7 x Xg — L7 () x LP*(Q) given by i(uy,us) = (i1 (u1), i2(u2)) and
its dual i* : L% (Q) x LP1(Q) — X7 x X3 given by

i (ul,uy) = (ijul,ijusy) = (u] ody,us oig).
We say that (u1,us) € X1 x Xa is a solution of if and only if
Jo.p(ur,uz) =" Ny g(i(ur, uz)) (1.4)
or equivalently

(Jgp(ur, uz), (v1, U2)>X;‘><X;,X1><X2

= (i"Ny,g(i(u1,u2)),i(v1, v2)>LQ’1 (Q)x LP1(Q),L91 (Q) x LP1 ()

- /Q [ (w1 (2), ua (@)1 (2) + g(z, un (2), uz(2) on(2)] da

(1.5)

for all (vi,v2) € X7 x Xo.

The rest of this article is organized as follows. The preliminary and abstract
results are presented in Section 2. In Section 3 we prove the existence results
for problem using the method mentioned above. Section 4 provides some
examples.
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2. PRELIMINARY RESULTS

2.1. Duality mappings. Let i = 1,2, (X;,]| - ||x,) be real Banach spaces, X}
the corresponding dual spaces and (-,-) the duality between X and X;. Let ¢; :
R, — R, be gauge functions, such that ¢; are continuous, strictly increasing,
©i(0) = 0 and ¢;(t) — oo as t — oo. The duality mapping corresponding to the
gauge function ¢; is the set valued mapping J,, : X; — 2%/ defined by

Jow ={a} € X] : (], 2i) = @i(llwillx) il x., 27 x; = @illlzillx.)}-
If X; are smooth, then J,, : X; — X is defined by
JSO'iO =0, Jsarixi = @l(Hxl”Xz)H ||/X1 (xl)’ T 7é 0,

and the following metric properties being consequent:

[Joswillxz = willlzillx,),  (Jpimi, i) = @illlzil x,) il x, - (2.1)

Now we define J,, o, : X1 % Xo — 251 x2%X2 by J,, o, (21, 22) = (J, 21, Jp, 2).
From (2.1) we obtain

1102 (@1, 22) Ix7 x x5 = | pr 21l x7 + ([ o @2l x5
= e1(llzallx,) + e2(llz2llx, ),
<J<P1,<P2(x17x2)v (x17x2)> = <J<P1x17x1> + <J<P2x27x2>
= o1lzllx)lzllx, + e2(llz2llx.)72]lx, -

In what follows we consider the particular case when J,, : X; — X are
the duality mappings, assumed to be single-valued, corresponding to the gauge
functions ¢1(t) = t971, po(t) = 71, 1 < ¢,p < oo. In this case we denote
Jgp: X1 X Xog — X x X3 given by Jy , = (Jy, Jp)-

Other properties of the duality mapping are contained in the following proposi-
tions:

(2.2)

(2.3)

Proposition 2.1. J,, : X; — 2Xi s single valued if and only if X; is smooth, if
and only if the norm of X; is Gateauz differentiable on X; \ {0}.

Proposition 2.2. If X; is reflexive and J,, : X; — X, then J,,, is demicontinuous
(i.e. if x,, — x (strongly) in X,;, then J,,x, = J,,x (weakly) in X7 .

Let us recall that X; has the Kadeé-Klee property ((K-K) for short) if it is strictly
convex and for any sequence (z;,) C X; such that z;, — z; (weakly) in X; and
|zinll = ||2:] it follows that x;, — z; (strongly) in X;.

Proposition 2.3. If X, has the (k-k) property and J,, is single valued then J,,
satisfies the (S1) condition.

Let us remark that if X; is locally uniformly convex then X; has the (k-k)
property and then, if in addition, J,, is single valued it results that J,, satisfies
the (S4) condition. Also, if X; is reflexive and X} has the (k-k) property then
Jo, + Xy — X' is continuous.

Proposition 2.4. J,, is single valued and continuous if and only if the norm of
X, is Fréchet differentiable.

Proposition 2.5. If X; is reflexvive and J,, : X; — X then J,, is surjective. If,
in addition X; is locally uniformly convex then J,, is bijective, with its inverse J;il
bounded, continuous and monotone.
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For the details and the proofs of he above propositions, see [II 2, [4]. Clearly,
Propositions and offer sufficient conditions ensuring that hypothesis (H3)
be satisfied.

Let 41 and i5 the compactly embedded injections of X7, Xo in L7 (Q2) and LP*(Q)
respectively:

i1 (ur)l| Lo (@) < Crllual|x, for all ug € X7, (2.4)
iz (u2) || e1 () < Colluz||x, for all ug € Xo. ’

We introduce

q1
)\1 :mf{M LUy GXl\{O}} >0,
H’Ll(ulﬂLtH(Q)
Ag—lnf{% :UQEX2\{O}} > 0.
‘|7’2(u2)| Lr1(Q)

Proposition 2.6. A\, \y are attained and )\l_l/ql and )\2—1/p1 are the best constants
Cy and Cy, respectively in the writing of the embeddings of X1 into L1 () and Xo
into LP*(QY), respectively.

For a proof of the above proposition, see [0, Proposition 4].

2.2. Nemytskii operators. Let  be an open subset in RV, N > 1 and f,g :
2 x R xR — R be Carathéodory functions, i.e.:
(i) for each (s,t) € R x R, the functions z — f(x,s,t), z — g(z,s,t) are
Lebesgue measurable in €2;
(ii) for a.e. x € Q, the functions (s,t) — f(x,s,t), (s,t) — g(x,s,t) are
continuous in R x R.

Let M be the set of all measurable functions v : Q@ — R. If f,g : @ x R x
R — R are Carathéodory functions and (vi,ve) € M x M then the function
x — (f(z,v1(x),v2(x)), g(x,v1(x),v2(x))) is measurable in 2. So, we can define
the operator Ny g : M x M — M x M by

Nyg(v1,09)(x) = (f (2, v1(2), v2(2)), g(2, v1(x), v2(2)))

which we will be the Nemytskii operator.
We need the following result:

Lemma 2.7. Let rq,7r2,k1,ko > 0. Then there are the constants ks, ks > 0 such
that

kra™ + kob"? < ks(a + b)™>¥0r2) 4ok for all a,b > 0.
Proof. If a,b > 1 we have
Fepa™ + kob? < kya™ax(rir2) oy popmax(rire)
< max(ky, ko) (a™x(ro2) 4 pmax(rira))
< max(ky, k) (a + b)mx(rira)

and the proof is ready with ks = max(ky, k2) and k4 > 0 arbitrary.
If a,b < 1 then
kia™ + kob™ < ky + ko

and we may take ky = k1 + ko, ks > 0, arbitrary.
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Ifa>1,b<1,
Fra™ + kob™ < k™ + ko < ki(a+0)" + ko < ka0 4y,
and similarly if a < 1,0 > 1. (]

Some properties of the Nemytskii operator that will be used in the sequel are
contained in the following proposition.

Proposition 2.8. Letp1,q1 > 1, f,g9: QxR XR — R be a Carathéodory functions
which satisfy the growth conditions:

s t)] < als|® ™ + el ™ V% 4 b (@), forze (s eRxR, (25)
lg(x,5,1)] < es]s| PV eyt 4 bo(x), forz € Q(s,t) ERX R, (2.6)
where ¢y, co,c3,¢4 > 0 are constants, by € L‘H(Q), by € Lp/l(Q), q% + qi, =1,
11y '
p1 Py ’

Then Ny, is continuous from L9 () x LP1(Q) into L9 (Q) x LP1(Q) and maps
bounded sets into bounded sets. Moreover, it holds

”Nf g(v17v2)”qu(Q ><LP1(Q) 68”('01’1)2)||f;1_(;2)><[,1)1(9) =+ ¢, (2'7)

for all (vi,ve) € L(Q) x LP1(Q), where cg,c9g > 0 are constants and Ry =
max(qi,p1)-

Proof. From (2.5) and (2.6), for (vi,ve) € L9 (2) x LP* () we have
||Nf g(le U2)||qu (Q XLpl (Q)

- ||Nf(’l}17’l)2)||qu(Q) + ||Ng(U1,’U2)HLp/l(Q)

—1)EL
< aallont® s oy + eaflea @7V o Wl
(p1—1) 5+ —1
+CSH|UI‘ o Lp’(sz)+04mv2|p1 ||LP'1(Q)+Hb2HLPi(Q)
g1 (n—-1% p1—1)3+

= culvill o ) + c2llvallpe, ) + K1+ 03H01||Lq1 @ +eallvallf ) + Ko

By Lemma [2.7] there are the constants cs, ¢g,¢7 > 0, such that
HNf’g(Ulﬂ UQ) HLq/l (Q)prll Q)
< es(||vrll Lo ) + l[vall s ()P ==Y

—1)kL 1)
+C6(||Ul||Lq1(Q)+||'U2||Lp1(Q))maX((ql 1)q17(p1 1)]_71) —’—07

max(p;—1,q1—1 max ((q1—1) o+, (p1— )qf1
= ¢sl(v1, v2) || oy ((S:;;XLZ?II(Q)) + ¢l (v1,v2) | oy (g())me (qSl)) 1) + c7.
Since
max (g1 = D2 (o1 = DL ) < max(pr = 1,01 - 1)
q1 P
we obtain

Ri—1
”Nf g(vl’v2)”Lq1 Q) ><L‘“1 @ = 68”(”1’1)2)”[,;1 (Q)x LP1(£2) + ¢y,

for all (v1,v2) € LT(Q) x LPr(Q), where cg,c9 > 0 are constants and R; =
max(qi,p1).-
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Now assume that (vin,ve,) — (v1,v2) in L9(Q) x LP*(Q) and claim that
Ny.g(Vin, v2n) — Ny g(v1,v2) in L9 () x LP1(Q). Given any sequence of (v1,,, vay)
there is a further subsequence (call it again (v1,,v2,)) such that

[vin(2)] < P (), [van ()] < hz(fﬂ)
for some hy € L91(Q), hy € LP1(). Tt follows from (2.5) and ([2:6) that

£ (@, 01 (), 02 ()| <c1|h1<z>|‘h*1+«:2|h2< >|<q1 Vi (),
902, V(). v2n ()] < sl (@)| T calha(@)P !+ ba(e).

Since f(2, v1n(2), van () converges a.e. to f(z, v1 (), v2(2)), §(@, U1 (x), v2n(2))
converges a.e. to g(z,vi(x), va(x)), the result follows from the Lebesgue Dominated
Convergence Theorem and a standard result on metric spaces. O
3. EXISTENCE OF SOLUTIONS FOR (|1.1) USING A LERAY-SCHAUDER TECHNIQUE

We start we the statement of the Leray-Schauder fixed point theorem.

Theorem 3.1. Let T be a continuous and compact mapping of a Banach space X
into itself, such that the set

{r € X :x =Nz for some 0 < A <1}
is bounded. Then T has a fixed point.
Since X7 — L7 () and X5 — LP'(Q) are compact, the diagram

X1 % Xp — L0(Q) x LP1(Q) 2 L9 (Q) x L7 (Q) - X7 x X3
show that Ny, (by which we mean i*N¢ 4i) is compact.
By Proposmon 2.5 the operator Jgp s X1 X Xo — X x X is bijective with its
inverse J, ) (uf, u3) = (J; 'uf, J, 'us) bounded, continuous and monotone.
Consequently . can be equivalently written
(ur,uz) = Jg Ny g(ur, us),
with J 1Nfg X1 x X9 — X7 x X5 a compact operator.
We deﬁne the operator T = J, )Ny, = (T1,T), where
Tl(ul,u2) = Jq_le(Ul,’LLQ), Tg(ul,UQ) = Jp_lNg(ul,ug) (3].)

and we shall prove that the compact operator T" has at least one fixed point using
the Leray-Schauder fixed point theorem.
For this it is sufficient to prove that the set

S = {(ul,uQ) € Xy x Xy : (u1,us) = aT'(ug,us) for some « € [0, 1]}
is bounded in X; x Xs.
By , and for (u1,us) € X1 x Xy we have
1T (1, u2) %,
= (Jo(Ti(ur, uz)), Ty (u1, uz))
= (Ny(u1,uz), T1(u1, u2))

- /Q £ (101 (), 0 ()T (1 (), wn(2)
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s/(mew*+m@mwrﬁﬂuwmmnmummwwa
Q
and similarly

1T (ur, u2) %,

= (Jp(Ta(u1,u2)), To(us, uz))

= (Ng(u1,u2), To(u1, uz))

:/mamwwmmnwmmmez
Q

—1)4
g/(mewm”%+qmquuwmmmBmmmw@mm.
Q
If (uy,u2) € S, that is (ug,u2) = aT(ui,u2) = (T1(u1,uz), To(ur,uz)) with
a € [0,1], we have

(T (urs u2)|%,
g/ (cla‘“_1|T1(u1($)aU2($))|q1_1
Q

+ 620 @V Ty 1 (2), ua (@) TV [y (2)]) T (4 (2), wa(@)) e

_ ) —nm (a-1)gt
< era® 7Ty (un, wa)|%, ) + 20TV || To(ur, un) | o ™ 171 (01, 9) | o )

+ Hbl ||L<1/1 () ||Tl (ula U2)||Lq1 Q)

(m-1)5r (a—1)%
< ak{ | Ta(un, ua)l|§, + cakiky (| To(ur,ue)ly, ™ 1T (un, us)llx,

+k1||b1||LLIi(Q)”T1(u1aUQ)HXU
where k1,ks > 0 are coming from the compact embeddings X; — L%(Q) and

Xo — LP*(Q), respectively.
In the same way we obtain

(-1 (p—1F-
[To(ur, u2)|l, < csky kol| Ty (ur,u2) e, 7t T2 (un, ua)l|x,

+ caky [ To(ur, u2) X, + kallb2ll ot o 172 (ur, ua) [ x -
Consequently, for each (u1,us) € S it hold

71 (ur, u2)[1%, — esl|Th(ur, u2)[1%,

(g1 —-1)

b1
—colTa(ur,u2)lly, " IT1(ur,u2)llx, — crl|Th(ur, uz)|x, <0

and
T2 (ur, ua) | *CSHTl(Ul,Uz)Hgl_U%\|T2(U17U2)||X2
2 1
— col| Ta(ur, u2) |, — crol| To(ur, u2)||x, <0,
with ¢s, ..., c1o positive constants.

Lemma 3.2. Letg>p>1,1<p; <p, 1<q <qanda,b>0 such that
a? < ecsa® + cﬁab(ql_l)% + cra,

I § Cga(pl_l);%b + Cgbpl + Clob7
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where cs, . ..,c19 > 0 positve constants. Then there is the constant K > 0 be such
that a+b < K.

Proof. We consider the following cases:
(1) fa<1l,b<1thena+b<2.
(2) If a < 1,b > 1 we have b? < cgb + cgbP! + c10b and since p > p; > 1, there
is a constant K7 > 0 such that b < K;. Consequently a +b <1+ Kj.
(3) If a > 1,b < 1 we have a? < ¢5a? + cga + cya and since ¢ > ¢; > 1, there
is a constant K5 > 0 such that a < K5. Consequently a +b <1+ Ks.
(4) We consider @ > 1,b > 1. Let us remark that

p q
max ((q1 — 1)—17 (p1 — 1)—1) <max(p; — 1,1 — 1).
q1 P

If a > b we have a? < c5a® —|—c6abmax(m—1vql_1) +cra < esa?t + CGama"(pl’ql) + cra,
and since ¢ > ¢1,q > max(p1,q1) > 1, there is a constant K3 > 0 such that a < K3
and so a + b < 2K3. If a < b we reasoning similarly. O

Now, by Lemma|3.2] there exists a constant K > 0 such that |7 (u1, u2)||x, x x, =
171 (ua, w2) |l x, + [|[T2(u1, u2)l|x, < K for (ug,us) € S and then

(w1, u2)[[ X, xx, = | T(ur, up)|| < @K < K, for (ur,up) €5,
that is S is bounded. We have obtained the following result.

Theorem 3.3. Assume that X1, Xo are locally uniformly convez, J; : X1 — X7,
Jp 1 Xo — X3 and the Carathéodory functions f and g satisfy (1.2) and (1.3)),

respectively with g1 € (1,q) and p1 € (1,p). Then the operator T = J;;wag has

one fized point in Xy X Xo or equivalently problem (L.1)) has a solution. Moreover,
the set of solutions of problem (1.1)) is bounded in X1 x X5.

4. EXAMPLES

4.1. Dirichlet problem for systems with (g,p)-Laplacian. If X; x X, =
Wy Q) x Wy P(Q), then J,, = (~A,,—A,) and the solutions set of equation
Jgp(u1,u2) = Ny g(u1,us) coincides with the solutions set of the Dirichlet problem
—Aqur = f(z,ui,u2) inQ,
—Apug = g(z,u1,u2) in Q, (4.1)
u; =ue =0 on O0N.

4.2. Neumann problem for systems with (¢, p)-Laplacian. We consider X; x
Xy = Whe(Q) x WP endowed with the norm

[(ur, u2)ll = [[uafl1,q + [luzll1,p

where
Jullf , = lluall§ , + 1IVualll§, for all uy € WH(€),
luallf, = lluzllt , + I[Vualllf, for all ug € WHP(9),

which are equivalent with the standard norms on the spaces W14(Q), W1P(Q)
respectively (see [3]).
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In this case, the duality mappings Jy, J, on (WH9(Q), ||-[l1,q), (WHP(Q),]-[11,p)
respectively, corresponding to the gauge functions ¢ (t) = t471 and @q(t) = tP~1
are defined by

Jg (VVl""’(Q)7 Il - ||1,q) (Wl’q( )1l - ||1,q)*

Jour = —Aquy + |ug|? 2y for all uy € WH(Q)
Tyt (W), p) = (W), 1] 1)"
Jpus = —Apus + |u2|p_2uz for all ug € WhH P(Q)

(4.2)

(4.3)

(see [5]).
By a weak solution of the Neumann problem
—Aqur + lut|??uy = f(z,u1,u2) in €,

—Apuz + |ua|P"2uy = g(x,u1,uz) in Q,
|Vu1|q*2% =0 on 09,
on
VusP22%2 Z 0 on 0,
on

we mean an element (u,us) € WH4(Q) x WHP(Q) which satisfies
/ |V (2)|972Vuy (2) Vo (2)dz +/ luy ()7 2wy (z)vy (2)d
Q Q
+/ |Vua ()P~ 2Vug (z) Vs (z)dz —|—/ [ug () [P~ 2ug (x)ve (x)dx (4.5)
Q Q

=/Qf(x,ul(fc)m(x))vl(m)+g(m,ul(x)yuQ(w))vz(x)dx,

for all (v1,ve) € WHI(Q) x WHP(Q).
It is easy to see that (ug,us) € WH9(2) x WP(€) is a solution of the problem

(4.4), in the sense of (4.5) if and only if
Jgp(ur, uz) = (" Ny g1)(u1, u2),

where Jg p(u1,u2) = (Jqui, Jpus) and Jg, J, are given by and (£.3), i(u1,uz) =
(i1u1,iguz), and i : WhH4(Q) — L9 (Q), iy : WHP(Q) — LP1(Q) are the compact
embeddings of W14(Q) into L% () and of W1P(Q) into LP1(Q), respectively. By
i* 0 LO(Q) x LP () — (WH(Q), || - [l1.g)* x (WEP(Q), ]| - l1p)* we denoted the
dual of i.

So, we are in the functional framework described in introduction. Indeed, the
spaces (Wh4(Q), ]+ [l1,¢) and (WP(Q), ||-||1,,) are smooth reflexive Banach spaces,
compactly embedded in L% (2) and LP*(£2), respectively. J, : (WH4(Q), | - [|1,4) —
(Wha@), |l - Hl,q)* and J, : (W2(Q), | - 1) — (WHP(Q),]| - ||1,p)* are single
valued, continuous and satisfies the (Sy) condition (see [3]). Consequently, the
existence result given in section 3 becomes the existence result for the Neumann

problem (4.4]).

Remark 4.1. We note that using the same method it is possible to proved the
existence of a solution for the Dirichlet and Neumann problems with (g, p)-pseudo-
Laplacian or with (A,, A,)-Laplacian (see []).
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Remark 4.2. In [5] the authors used the same method to proved the existence of
a solution for the Dirichlet problem with p-Laplacian.
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