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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR
MISCIBLE LIQUIDS MODEL IN POROUS MEDIA

KARAM ALLALI

Abstract. In this article, we study the existence and uniqueness of solutions

for miscible liquids model in porous media. The model describing the phe-
nomenon is a system of equations coupling hydrodynamic equations with con-

centration equation taking into account the Korteweg stress. We assume that
the fluid is incompressible and its motion is described by the Darcy law. We

prove the existence and uniqueness of global solutions for the initial boundary

value problem.

1. Introduction

Two liquids are miscible if the molecules of the one liquid can mix freely with the
molecules of the other liquid. There is no sharp interface between miscible liquids,
but rather a transition zone. An example of such phenomenon is the mixing of water
and glycerin [8, 13]. It is possible that two liquids are not completely miscible. They
may mix until the concentration reaches a certain saturation value. This saturation
may be affected by the temperature and pressure of the system [1].

There exists a transient capillary phenomena between two miscible liquids. Theo-
retical and experimental studies of such phenomena are reviewed in [8]. The change
of concentration gradients near the transition zone causes capillary forces between
the two miscible liquids [6]. So we need to take into account some additional terms
in the equation of motion due to the concentration inhomogeneities called Korteweg
stress [3, 5].

The existence and uniqueness of the solutions of miscible liquids model with
fully incompressible Navier-Stokes equations are studied in [7]. In this paper, we
are interested in studying porous media. The study of miscible liquids in porous
media is motivated by enhanced oil recovery, hydrology, frontal polymerization,
groundwater pollution and filtration [4, 9, 12, 14, 15].

The paper is organized as follows. The next section introduces the model, while
section 3 deals with the existence of the model solutions and we establish the
uniqueness of solutions in section 4.

1.1. The model. The model describing the interaction between two miscible liq-
uids in porous media is given by the following system of equations in the bounded
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open domain Ω ∈ R2 with Lipschitz continuous boundary [2, 11]:

∂C

∂t
+ u · ∇C = d∆C, (1.1)

∂u

∂t
+
µ

K
u = −∇p+∇ · T (C), (1.2)

div(u) = 0, (1.3)

with the boundary conditions

∂C

∂n
= 0, u · n = 0, on Γ, (1.4)

and the initial conditions

C(x, 0) = C0(x), u(x, 0) = u0(x), x ∈ Ω. (1.5)

Here u is the velocity, p is the pressure, C is the concentration, d is the coefficient
of mass diffusion, µ is the viscosity, K is the permeability of the medium, Γ is
the boundary of Ω, n is the unit outward normal vector to Γ, the additional stress
tensor term is

T11 = k
( ∂C
∂x2

)2
, T12 = T21 = −k ∂C

∂x1

∂C

∂x2
, T22 = k

( ∂C
∂x1

)2
, (1.6)

where k is a nonnegative constant. The gradient, divergence and Laplace operators
can be defined as follows

∇v =
( ∂v
∂x1

,
∂v

∂x2

)
, div−→v =

2∑
i=1

∂vi

∂xi
, ∆v =

2∑
i=1

∂2v

∂2xi
,

the divergence of the additional tensor term will be in the form

∇ · T (C) =

∂T11
∂x1

+ ∂T12
∂x2

∂T21
∂x1

+ ∂T22
∂x2

 . (1.7)

1.2. The problem in variational form. We specify now the functional frame-
work in which we carry out our analysis of the problem. The velocity space Su

is
Su = {u ∈ H(div; Ω); div(u) = 0, u · n = 0 on Γ}.

The concentration space SC is

SC = {C ∈ H2(Ω);
∂C

∂n
= 0 on Γ}.

By the Green formula, the variational form of problem (1.1)-(1.5) is: For each B
and v, find C and u such that(∂C

∂t
,B
)

+ d(∇C,∇B) + (u · ∇C,B) = 0, (1.8)

(
∂u

∂t
, v) + µp(u, v)− (div T (C), v) = 0. (1.9)

Here µp = µ/K. We will assume that d > 0 and µp > 0.
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2. Existence of global solutions

To prove the existence of global solutions, we need the following lemmas.

Lemma 2.1. The concentration C is bounded in the L∞(0, t;L2) space.

Proof. Choosing C as test function in (1.8), we will have:

1
2
∂

∂t
(C,C) + d(∇C,∇C) + (u · ∇C,C) = 0.

Since u ∈ Su the last term vanishes. The second term is positive, so by integrating
over time:

‖C(t = s)‖2L2 ≤ ‖C0‖2L2 ,

from the inequality, it follows that C is bounded in L∞(0, t;L2). �

Lemma 2.2. The concentration C is bounded in L∞(0, t;H1) and the velocity u is
bounded in L∞(0, t;L2).

Proof. By choosing −k∆C as test function in (1.8), we have

(
∂C

∂t
,−k∆C) + (u · ∇C,−k∆C) = d(∆C,−k∆C);

therefore,
k

2
∂

∂t
(∇C,∇C) + dk(∆C,∆C)− k(u · ∇C,∆C) = 0,

then
1
2
∂

∂t
(∇C,∇C) + d(∆C,∆C)− (u · ∇C,∆C) = 0. (2.1)

Also, by choosing u as test function in (1.9),

1
2
∂

∂t
(u, u) + µp(u, u)− (∇ · T (C), u) = 0. (2.2)

To have an explicit expression of ∇ · T (C), we calculate its first component:

∂T11

∂x1
+
∂T12

∂x2
= 2k

∂C

∂x2

∂2C

∂x1∂x2
− k ∂2C

∂x1∂x2

∂C

∂x2
− k ∂C

∂x1

∂2C

∂x2
2

, (2.3)

hence
∂T11

∂x1
+
∂T12

∂x2
= k

∂C

∂x1

∂2C

∂x1∂x2
+ k

∂C

∂x1

∂2C

∂x2
1

− k ∂C
∂x1

∆C,

then
∂T11

∂x1
+
∂T12

∂x2
=
k

2
∂

∂x1
(∇C)2 − k ∂C

∂x1
∆C.

Following the same steps for the second component, we have

∇ · T =
k

2
∇(∇C)2 − k∆C∇C.

Replacing this last equality in (2.2) and since u ∈ Su, we have

1
2
∂

∂t
(u, u) + µp(u, u)− k(∆C∇C, u) = 0. (2.4)

Adding (2.1) and (2.4), and with the fact u ∈ Su and C ∈ Sc, we have

1
2
∂

∂t

(
(u, u) + (∇C,∇C)

)
+ µp(u, u) + dk(∆C,∆C) = 0.
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Since the second and the third terms are positive, by integrating over time, we have

k‖C(t = s)‖2H1 + ‖u(t = s)‖2L2 ≤ k‖C(t = 0)‖2H1 + ‖u(t = 0)‖2L2 .

We conclude that C is bounded in L∞(0, t;H1) and u is bounded in L∞(0, t;L2).
�

Now, we look for the estimates over the time derivatives of u and C. To this end
we will need the following Lemmas.

Lemma 2.3. The derivative ∂C
∂t of the concentration is bounded in L2(0, t;L2).

Proof. From (1.8) and by the triangular inequality, we have

‖∂C
∂t
‖L2 ≤ d‖∆C‖L2 + ‖u · ∇C‖L2 .

Using Hölder inequality, we obtain

‖∂C
∂t
‖L2 ≤ d‖∆C‖L2 + ‖u‖L4‖∇C‖L4 ,

and by the Gagliardo-Nirenberg inequality, it follows that there exists N > 0 such
that

‖∂C
∂t
‖L2 ≤ d‖∆C‖L2 +N‖u‖1/2

L2 ‖∇u‖1/2
L2 ‖∇C‖1/2

L2 ‖∇C‖1/2
H1 .

We conclude that ∂C
∂t is bounded in L2(0, t;L2). �

Lemma 2.4. The time derivative of the velocity ∂u
∂t is bounded in L2(0, t;L2).

Proof. To prove this lemma, it is sufficient to remark that ∇ · T (C) is sum of
expressions of the form λDi(DjCDlC). Where Di = ∂

∂xi
, i = 1, 2, and λ depends

on i, j and l (see for example (2.3)). Using the problem in its variational form and
using the same technics as for the previous lemmas, it follows that ∂u

∂t is bounded
in L2(0, t;L2). �

Now, we can give our main result as follows:

Theorem 2.5. The problem (1.1)-(1.5) admits a global solution.

Proof. A priori error estimates over concentration and speed (see all the previous
Lemmas) allow us to deduce that our finite dimensional solution is global in time. In
addition, applying some classical compactness theorems (see for example [10, 16]),
it follows the existence of our continuous problem. �

3. Uniqueness of solutions

To prove the uniqueness, we assume that (1.1)-(1.5) has two different solutions
(C1, u1) and (C2, u2). From (1.1), we have:

∂

∂t
(C1 − C2)− d∆(C1 − C2) + u1∇C1 − u2∇C2 = 0, (3.1)

and from (1.2), we have also:

∂

∂t
(u1 − u2) + µp(u1 − u2) +∇(p1 − p2)

=
k

2
∇
(
(∇C1)2 − (∇C2)2

)
− k(∆C1∇C1 −∆C2∇C2).

(3.2)



EJDE-2013/254 EXISTENCE AND UNIQUENESS OF SOLUTIONS 5

Multiplying (3.1) by −k∆(C1 − C2) and integrating, we obtain

(
∂

∂t
(C1 − C2),−k∆(C1 − C2)) + dk(∆(C1 − C2),∆(C1 − C2))

+ (u1∇C1,−k∆(C1 − C2)) + (u2∇C2, k∆(C1 − C2)) = 0.

Similarly, multiplying (3.2) by u1 − u2 and integrating, we have

(
∂

∂t
(u1 − u2), u1 − u2) + µp(u1 − u2, u1 − u2)

=
k

2
(∇
(
(∇C1)2 − (∇C2)2

)
, u1 − u2)− k(∆C1∇C1 −∆C2∇C2, u1 − u2).

Adding the two last equalities, using the Green formula and the fact that ui ∈ Su,
it follows that

1
2
∂

∂t
(‖u1 − u2‖2L2 + k‖∇C1 −∇C2‖2L2) + µp‖u1 − u2‖2L2 + kd‖∆(C1 − C2)‖2L2

= k(u1∇(C1 − C2),∆(C1 − C2)) + k((u1 − u2)∇C2,∆(C1 − C2))

− k(∆C1∇(C1 − C2), u1 − u2) + k(−∆C1∇C2 + ∆C2∇C2, u1 − u2);

therefore,
1
2
∂

∂t
(‖u1 − u2‖2L2 + k‖∇C1 −∇C2‖2L2) + µp‖u1 − u2‖2L2 + kd‖∆(C1 − C2)‖2L2

= k(u1∇(C1 − C2),∆(C1 − C2))− k(∆C1∇(C1 − C2), u1 − u2).
(3.3)

Now we look for estimates of the right-hand terms. We put C = C1 − C2 and
u = u1 − u2, by Hölder inequality, it follows that

|(∆C1∇C, u)| ≤ ‖∆C1‖L2‖∇C · u‖L2

≤ ‖∆C1‖L2‖∇C‖L4‖u‖(L4)2 .

Also, by Gagliardo-Nirenberg inequality, it follows that

|(∆C1∇C, u)| ≤ N1‖∆C1‖L2‖∇C‖1/2
L2 ‖∆C‖1/2

L2 ‖u‖1/2
L2 ‖∇u‖1/2

L2 .

By applying Young inequality, we obtain

|(∆C1∇C, u)| ≤ N1

4
‖∆C‖2L2 +

3N1

4
‖∆C1‖4/3

L2 ‖∇C‖2/3
L2 ‖u‖2/3

L2 ‖∇u‖2/3
L2 .

Using that same technics, we obtain the following inequalities: first,

|(u1∇C,∆C)| ≤ ‖∆C‖L2‖∇C.u1‖L2

≤ ‖∆C‖L2‖∇C‖L4‖u1‖(L4)2 ;

therefore,

|(u1∇C,∆C)| ≤ N2‖∆C‖3/2
L2 ‖∇C‖1/2

L2 ‖u1‖1/2
L2 ‖∇u1‖1/2

L2 .

Finally,

|(u1∇C,∆C)| ≤ 3N2

4
‖∆C‖2L2 +

N2

4
‖∇C‖2L2‖u1‖2L2‖∇u1‖2L2 .

From (3.3) and assuming that N1 + 3N2 ≤ 4d, we have
1
2
∂

∂t
(‖u‖2L2 + k‖∇C‖2L2)

≤ 3N1k

2
‖∆C1‖4/3

L2 ‖∇C‖2/3
L2 ‖u‖2/3

L2 ‖∇u‖2/3
L2 +

N2k

2
‖∇C‖2L2‖u1‖2L2‖∇u1‖2L2
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≤ (‖u‖2L2 + k‖∇C‖2L2)
(N2

2
‖∇C‖2L2‖u1‖2L2‖∇u1‖2L2

+
3N1k

2
‖∆C1‖4/3

L2 ‖∇C‖2/3
L2 ‖u‖−4/3

L2 ‖∇u‖2/3
L2

)
.

If we denote

φ(t) = ‖∇C‖2L2‖u1‖2L2‖∇u1‖2L2 + ‖∆C1‖4/3
L2 ‖∇C‖2/3

L2 ‖u‖−4/3
L2 ‖∇u‖2/3

L2 ,

M = max(
N2

2
,

3N1k

2
),

we have

d

dt
(exp(M

∫ t

0

φ(s)ds)(‖u‖2L2 + k‖∇C‖2L2)) ≤ 0quad∀t ≥ 0 .

We deduce:

exp(M
∫ t

0

φ(s)ds)(‖u‖2L2 + k‖∇C‖2L2) ≤ ‖u(0)‖2L2 + k‖∇C(0)‖2L2 .

Since u(0) = C(0) = 0, we conclude the uniqueness of the solution.
Now, we can state our second theorem as follows.

Theorem 3.1. Problem (1.1)-(1.5) admits a unique solution.

Concluding remarks. The interaction between two miscible liquids is modelled
by a system of equations, coupling hydrodynamic equations and the species con-
servation equation. Due to the interfacial interaction between the two liquids, we
have taken into account two additional terms, called Korteweg stress tensor. We
have chosen the appropriate functional framework for our variational problem. We
have established a priori estimates over the concentration and speed which allow
us to establish the existence of the solution. Furthermore, we have also proved the
uniqueness of solution.
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