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GLOBAL SOLVABILITY FOR INVOLUTIVE SYSTEMS
ON THE TORUS

CLEBER DE MEDEIRA

Abstract. In this article, we consider a class of involutive systems of n

smooth vector fields on the torus of dimension n + 1. We prove that the
global solvability of this class is related to an algebraic condition involving

Liouville forms and the connectedness of all sublevel and superlevel sets of the

primitive of a certain 1-form associated with the system.

1. Introduction

In this article we study the global solvability of a system of vector fields on
Tn+1 ' (R/2πZ)n+1 given by

Lj =
∂

∂tj
+ (aj + ibj)(t)

∂

∂x
, j = 1, . . . , n, (1.1)

where (t1, . . . , tn, x) = (t, x) denotes the coordinates on Tn+1, aj , bj ∈ C∞(Tn; R)
and for each j we consider aj or bj identically zero.

We assume that the system (1.1) is involutive (see [1, 12]) or equivalently that
the 1-form c(t) =

∑n
j=1(aj + ibj)(t)dtj ∈ ∧1C∞(Tnt ) is closed.

When the 1-form c(t) is exact the problem was treated by Cardoso and Hounie
in [9]. Here, we will consider that only the imaginary part of c(t) is exact, that is,
the real 1-form b(t) =

∑n
j=1 bj(t)dtj is exact.

The system (1.1) gives rise to a complex of differential operators L which at the
first level acts in the following way

Lu = dtu+ c(t) ∧ ∂

∂x
u, u ∈ C∞(Tn+1) or D′(Tn+1)), (1.2)

where dt denotes the exterior differential on the torus Tnt . Our aim is to carry out
a study of the global solvability at the first level of this complex. In other words
we study the global solvability of the equation Lu = f where u ∈ D′(Tn+1) and
f ∈ C∞(Tnt × T1

x;∧1,0).
Note that if the equation Lu = f has a solution u then f must be of the form

f =
n∑
j=1

fj(t, x)dtj .
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The local solvability of this complex of operators was studied by Treves in his
seminal work [11].

When each function bj ≡ 0, the global solvability was treated by Bergamasco
and Petronilho in [8]. In this case the system is globally solvable if and only if the
real 1-form a(t) =

∑n
j=1 aj(t)dtj is either non-Liouville or rational (see definition

in [2]).
When c(t) is exact the problem was solved by Cardoso and Hounie in [9]. In this

case the 1-form c(t) has a global primitive C defined on Tn and global solvability is
equivalent to the connectedness of all sublevels and superlevels of the real function
Im(C).

We are interested in global solvability when at least one of the functions bj 6≡ 0
and c(t) is not exact. Moreover, we suppose that Im(c) is exact and for each j,
aj ≡ 0 or bj ≡ 0.

We prove that system (1.1) is globally solvable if and only if the real 1-form
a(t) is either non-Liouville or rational and any primitive of the 1-form b(t) has only
connected sublevels and superlevels on Tn (see Theorem 2.2).

The articles [3, 4, 5, 6, 7, 10] deal with similar questions.

2. Preliminaries and statement of the main result

There are natural compatibility conditions on the 1-form f for the existence of
a solution u to the equation Lu = f . We now move on to describing them.

If f ∈ C∞(Tnx × T1
t ;∧1,0) we consider the x-Fourier series

f(t, x) =
∑
ξ∈Z

f̂(t, ξ)eiξx,

where f̂(t, ξ) =
∑n
j=1 f̂j(t, ξ)dtj and f̂j(t, ξ) denotes the Fourier transform with

respect to x.
Since b is exact there exists a function B ∈ C∞(Tnt ; R) such that dtB = b.

Moreover, we may write a = a0 + dtA where A ∈ C∞(Tnt ; R) and a0 ∈ ∧1Rn ' Rn.
Thus, we may write c(t) = a0 + dtC where C(t) = A(t) + iB(t).

We will identify the 1-form a0 ∈ ∧1Rn with the vector a0 := (a10, . . . , an0) in Rn
consisting of the periods of the 1-form a given by

aj0 =
1

2π

∫ 2π

0

aj(0, . . . , τj , . . . , 0)dτj .

Thus, if f ∈ C∞(Tnt × T1
x;∧1,0) and if there exists u ∈ D′(Tn+1) such that Lu = f

then, since L defines a differential complex, Lf = 0 or equivalently Ljfk = Lkfj ,
j, k = 1, . . . , n; also

f̂(t, ξ)eiξ(a0·t+C(t)) is exact when ξa0 ∈ Z. (2.1)

We define now the set

E =
{
f ∈ C∞(Tnt × T1

x;∧1,0); Lf = 0 and (2.1) holds
}
.

Definition 2.1. The operator L is said to be globally solvable on Tn+1 if for each
f ∈ E there exists u ∈ D′(Tn+1) satisfying Lu = f .
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Given α /∈ Qn we say that α is Liouville when there exists a constant C > 0
such that for each N ∈ N the inequality

max
j=1,...,n

∣∣∣αj − pj
q

∣∣∣ ≤ C

qN
,

has infinitely many solutions (p1, . . . , pn, q) ∈ Zn × N.
Let us consider the following two sets

J = {j ∈ {1, . . . , n}; bj ≡ 0}, K = {k ∈ {1, . . . , n}; ak ≡ 0};
and we will write J = {j1, . . . , jm} and K = {k1, . . . , kp}. Under the above nota-
tion, the main result of this work is the following theorem.

Theorem 2.2. Let B be a global primitive of the 1-form b. If J ∪K = {1, . . . , n}
then the operator L given in (1.2) is globally solvable if and only if one of the
following two conditions holds:

(I) J 6= ∅ and (aj10, . . . , ajm0) /∈ Qm is non-Liouville.
(II) The sublevels Ωs = {t ∈ Tn, B(t) < s} and superlevels Ωs = {t ∈

Tn, B(t) > s} are connected for every s ∈ R and (aj10, . . . , ajm0) ∈ Qm if
J 6= ∅.

Note that if J = ∅ then K = {1, . . . , n} (since J∪K = {1, . . . , n} by hypothesis).
In this case each ak ≡ 0 and Theorem 2.2 says that L is globally solvable if and only
if all the sublevels and superlevels of B are connected in Tn, which is according to
[9].

When J = {1, . . . , n} we have that b = 0, hence any primitive of b has only
connected subleves and superlevels on Tn. In this case Theorem 2.2 says that L is
globally solvable if and only if either a0 /∈ Qn is non-Liouville or a0 ∈ Qn, which
was proved in [8]. Thus, in order to prove Theorem 2.2 it suffices to consider the
following situation ∅ 6= J 6= {1, . . . , n}.

Remark 2.3. As in [8], the differential operator L is globally solvable if and only
if the differential operator

dt + (a0 + ib(t)) ∧ ∂

∂x
(2.2)

is globally solvable.

Indeed, consider the automorphism

S : D′(Tn+1) −→ D′(Tn+1)∑
ξ∈Z

û(t, ξ)eiξx 7−→
∑
ξ∈Z

û(t, ξ)eiξA(t)eiξx,

where A is the previous smooth real valued function satisfying dtA = a(t) − a0.
Observe that following relation holds:

SLS−1 = dt + (a0 + ib(t)) ∧ ∂

∂x
,

which ensures the above statement.
Therefore, it is sufficient to prove Theorem 2.2 for the operator (2.2). For the

rest of this article, we will denote by L the operator (2.2); that is,

L = dt + (a0 + ib(t)) ∧ ∂

∂x
(2.3)
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and by E the corresponding space of compatibility conditions. The new operator
L is associated with the vector fields

Lj =
∂

∂tj
+ (aj0 + ibj(t))

∂

∂x
, j = 1, . . . , n. (2.4)

3. Sufficiency part of Theorem 2.2

First assume that (aj10, . . . , ajm0) /∈ Qm is non-Liouville where

J = {j1, . . . , jm} := {j ∈ {1, . . . , n}, bj ≡ 0}.

Then, there exist a constant C > 0 and an integer N > 1 such that

max
j∈J
|ξaj0 − κj | ≥

C

|ξ|N−1
, ∀(κ, ξ) ∈ Zm × N. (3.1)

Consider the set I where I ∪ J = {1, . . . , n} and I ∩ J = ∅. Remember that
∅ 6= J 6= {1, . . . , n} then I 6= ∅ and b` 6≡ 0 if ` ∈ I.

We denote by tJ the variables tj1 , . . . , tjm and by tI the other variables on Tnt .
Let f(t, x) =

∑n
j=1 fj(t, x)dtj ∈ E. Consider the (tJ , x)-Fourier series as follows

u(t, x) =
∑

(κ,ξ)∈Zm×Z

û(tI , κ, ξ)ei(κ·tJ+ξx) (3.2)

and for each j = 1, . . . , n,

fj(t, x) =
∑

(κ,ξ)∈Zm×Z

f̂j(tI , κ, ξ)ei(κ·tJ+ξx), (3.3)

where κ = (κj1 , . . . , κjm) ∈ Zm and û(tI , κ, ξ) and f̂j(tI , κ, ξ) denote the Fourier
transform with respect to variables (tj1 , . . . , tjm , x).

Substituting the formal series (3.2) and (3.3) in the equations Lju = fj , j ∈ J ,
we have for each (κ, ξ) 6= (0, 0)

i(κj + ξaj0)û(tI , κ, ξ) = f̂j(tI , κ, ξ), j ∈ J.

Also, from the compatibility conditions Ljf` = L`fj , for all j, ` ∈ J , we obtain
the equations

(κj + ξaj0)f̂`(tI , κ, ξ) = (κ` + ξa`0)f̂j(tI , κ, ξ), j, ` ∈ J.

By the preceding equations we have

û(tI , κ, ξ) =
1

i(κM + ξaM0)
f̂M (tI , κ, ξ), (κ, ξ) 6= (0, 0), (3.4)

where M ∈ J , M = M(ξ) is such that

|κM + ξaM0| = max
j∈J
|κj + ξaj0| 6= 0.

If (κ, ξ) = (0, 0), since f̂(tI , 0, 0) is exact, there exists v ∈ C∞(Tn−mtI ) such that
dv = f̂(·, 0, 0). Thus, we choose û(tI , 0, 0) = v(tI).

Given α ∈ Zn−m+ we obtain from (3.1) and (3.4) the inequality

|∂αû(tI , κ, ξ)| ≤
1
C
|ξ|N−1|∂αf̂M (tI , κ, ξ)|.
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Since each fj is a smooth function we conclude that

u(t, x) =
∑

(κ,ξ)∈Zm×Z

û(tI , κ, ξ)ei(κ·tJ+ξx) ∈ C∞(Tn+1).

By construction u is a solution of

Lju = fj , j ∈ J.
Now, we will prove that u is also a solution to the equations

L`u = f`, ` ∈ I.
Let ` ∈ I. Given (κ, ξ) 6= (0, 0) by the compatibility condition LMf` = L`fM we
have

i(κM + ξaM0)f̂`(tI , κ, ξ) =
∂

∂t`
f̂M (tI , κ, ξ)− ξb`(t)f̂M (tI , κ, ξ). (3.5)

Therefore, (3.4) and (3.5) imply
∂

∂t`
û(tI , κ, ξ)− ξb`(t)û(tI , κ, ξ)

=
1

i(κM + ξaM0)
∂

∂t`
f̂M (tI , κ, ξ)− ξb`(t)

1
i(κM + ξaM0)

f̂M (tI , κ, ξ)

=
1

i(κM + ξaM0)

( ∂

∂t`
f̂M (tI , κ, ξ)− ξb`(t)f̂M (tI , κ, ξ)

)
= f̂`(tI , κ, ξ).

If (κ, ξ) = (0, 0) then ∂
∂t`
û(tI , 0, 0) = f̂`(tI , 0, 0).

We have thus proved that condition (I) implies global solvability.
Suppose now that the condition (II) holds. Let qJ be the smallest positive integer

such that qJ(aj10, . . . , ajm0) ∈ Zm.
We denote by A := qJZ and B := Z\A and define

D′A(Tn+1) :=
{
u ∈ D′(Tn+1); u(t, x) =

∑
ξ∈A

û(t, ξ)eiξx
}
.

Let LA be the operator L acting on D′A(Tn+1). Similarly, we define D′B(Tn+1) and
LB.

Then L is globally solvable if and only if LA and LB are globally solvable (see
[3]).

Lemma 3.1. The operator LA is globally solvable.

Proof. Since qJa0 ∈ Zn, we define

T : D′A(Tn+1) −→ D′A(Tn+1)∑
ξ∈A

û(t, ξ)eiξx 7−→
∑
ξ∈A

û(t, ξ)e−iξa0·teiξx.

Note that T is an automorphism of D′A(Tn+1) (and of C∞A (Tn+1)). Furthermore
the following relation holds:

T−1LAT = L0,A, (3.6)

where L0 := dt + ib(t) ∧ ∂
∂x .

Let B be a global primitive of b on Tn. Since all the sublevels and superlevels
of B are connected in Tn, by work [8] we have L0 globally solvable, hence L0,A is
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globally solvable. Since T is an automorphism, from equality (3.6) we obtain that
LA is globally solvable. �

If qJ = 1 then A = Z and the proof is complete. Otherwise we have:

Lemma 3.2. The operator LB is globally solvable.

Proof. Let (κ, ξ) ∈ Zm × B. Since qJ is defined as the smallest natural such that
qJ(aj10, . . . , ajm0) ∈ Zm, there exists ` ∈ J such that∣∣a`0 − κ`

ξ

∣∣ ≥ C

|ξ|
,

where C = 1/qJ . Therefore

max
j∈J

∣∣aj0 − κj
ξ

∣∣ ≥ ∣∣a`0 − κ`
ξ

∣∣ ≥ C

|ξ|
, (κ, ξ) ∈ Zm × B.

Note that if the denominators ξ ∈ B then (aj10, . . . , ajm0) behaves as non-Liouville.
Thus, the rest of the proof is analogous to the case where (aj10, . . . , ajm0) is non-
Liouville. �

4. Necessity part of Theorem 2.2

Assume first that (aj10, . . . , ajm0) ∈ Qm and the global primitive B : Tn → R of
b has a disconnected sublevel or superlevel on Tn.

By Lemma 3.1 we have that LA is globally solvable if and only if L0,A is globally
solvable, where A = qJZ and L0 = dt + ib(t) ∧ ∂

∂x . Since B has a disconnected
sublevel or superlevel, we have L0,A not globally solvable by [9]. Therefore L is not
globally solvable.

Suppose now that (aj10, . . . , ajm0) /∈ Qm is Liouville. Therefore, by work [8] the
involutive system LJ generated by the vector fields

Lj =
∂

∂tj
+ aj0

∂

∂x
, j ∈ J = {j1, . . . , jm}, (4.1)

is not globally solvable on Tm+1.
As in the sufficiency part, we will consider the set I such that J ∪ I = {1, . . . , n}

and J ∩ I = ∅.
Consider the space of compatibility conditions EJ associated to LJ . Since (4.1)

is not globally solvable on Tm+1 there exists g(tJ , x) =
∑
j∈J gj(tJ , x)dtj ∈ EJ such

that
LJv = g

has no solution v ∈ D′(Tm+1).
Now, we define smooth functions f1, . . . , fn on Tn+1 such that f =

∑n
j=1 fjdtj ∈

E and Lu = f has no solution u ∈ D′(Tn+1).
Let B be a primitive of the 1-form b. Thus, we have ∂

∂tj
B = bj . Since for

each j ∈ J the function bj ≡ 0 then B depends only on the variables tI ; that is,
B = B(tI).

For ` ∈ I we choose f` ≡ 0 and for j ∈ J we define

fj(t, x) :=
∑
ξ∈Z

f̂j(t, ξ)eiξx,
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where

f̂j(t, ξ) :=

{
ĝj(tJ , ξ)eξ(B(tI)−M) if ξ ≥ 0
ĝj(tJ , ξ)eξ(B(tI)−µ) if ξ < 0,

where M and µ are, respectively, the maximum and minimum of B over Tn.
Given α ∈ Zn+, for each j ∈ J we obtain

∂αf̂j(t, ξ) = [∂αJ gj(tJ , ξ)]ξ|αI |[∂αIB(tI)]eξ(B(tI)−M), ξ ≥ 0,

and
∂αf̂j(t, ξ) = [∂αJ gj(tJ , ξ)]ξ|αI |[∂αIB(tI)]eξ(B(tI)−µ), ξ < 0,

where |αI | :=
∑
i∈I αi. Since the derivatives of B are bounded on Tn then, there

exists a constant Cα > 0 such that |∂αIB(tI)| ≤ Cα for all tI ∈ Tn−mtI . Therefore,

|∂αf̂j(t, ξ)| ≤ Cα|ξ||αI ||∂αJ gj(tJ , ξ)|, ξ ∈ Z.

Since gj are smooth functions it is possible to conclude by the above inequality
that fj , j ∈ J , are smooth functions. Moreover, it is easy to check that f =∑n
j=1 fjdtj ∈ E.
Suppose that there exists u ∈ D′(Tn+1) such that Lu = f . Then, if u(t, x) =∑
ξ∈Z û(t, ξ)eiξx, for each ξ ∈ Z we have

∂

∂tj
û(t, ξ) + iξaj0û(t, ξ) = f̂j(t, ξ), j ∈ J (4.2)

and
∂

∂t`
û(t, ξ)− ξb`(t)û(t, ξ) = 0, ` ∈ I (4.3)

Thus, for each ` ∈ I we may write (4.3) as follows
∂

∂t`

(
û(t, ξ)e−ξ(B(tI)−M)

)
= 0, if ξ ≥ 0,

∂

∂t`

(
û(t, ξ)e−ξ(B(tI)−µ)

)
= 0, if ξ < 0.

Therefore,
û(t, ξ)e−ξ(B(tI)−M) := ϕξ(tJ), ξ ≥ 0,

û(t, ξ)e−ξ(B(tI)−µ) := ϕξ(tJ), ξ < 0.
(4.4)

Let tI
∗ and tI∗ such that B(tI∗) = M and B(tI∗) = µ. Thus, ϕξ(tJ) =

û(tJ , tI∗, ξ) if ξ ≥ 0 and ϕξ(tJ) = û(tJ , tI∗, ξ) if ξ < 0 for all tJ . Since u ∈ D′(Tn+1)
we have

v(tJ , x) :=
∑
ξ∈Z

ϕξ(tJ)eiξx ∈ D′(Tm+1). (4.5)

On the other hand, by (4.2) and (4.4) we have for each j ∈ J
∂

∂tj
(ϕξ(tJ)eξ(B(tI)−M)) + iξaj0(ϕξ(tJ)eξ(B(tI)−M)) = f̂j(t, ξ), ξ ≥ 0,

∂

∂tj
(ϕξ(tJ)eξ(B(tI)−µ)) + iξaj0(ϕξ(tJ)eξ(B(tI)−µ)) = f̂j(t, ξ), ξ < 0,

thus
∂

∂tj
ϕξ(tJ) + iξaj0ϕξ(tJ) = ĝj(tJ , ξ), ξ ∈ Z, j ∈ J.
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We conclude that the v given by (4.5) is a solution of LJv = g, which is a contra-
diction.
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