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EXISTENCE AND UNIQUENESS FOR A TWO-POINT
INTERFACE BOUNDARY VALUE PROBLEM

RAKHIM AITBAYEV

Abstract. We obtain sufficient conditions, easily verifiable, for the existence

and uniqueness of piecewise smooth solutions of a linear two-point boundary-
value problem with general interface conditions. The coefficients of the differ-

ential equation may have jump discontinuities at the interface point. As an

example, the conditions obtained are applied to a problem with typical inter-
face such as perfect contact, non-perfect contact, and flux jump conditions.

1. Introduction

In this article, we study existence and uniqueness of solutions of a two-point
boundary-value problem with general interface conditions specified at an interme-
diate point. A linear differential equation of the problem has variable coefficients
that may have jump discontinuities at the interface point. The problem may be
viewed as a multi-point boundary value problem where solution and coefficient dis-
continuities are permitted at interface points. It may serve as a one-dimensional
model problem for studying corresponding multi-dimensional, time dependent, or
nonlinear interface problems.

Boundary-value problems with interface conditions are also known as BVPs with
transmission (transmittal) conditions, or diffraction problems. BVPs with interface
conditions arise in applications such as heat or mass transfer in composite mate-
rials or materials with thin porous barriers, elasticity problems for heterogeneous
materials, and population genetics [2, 10]. For example, heat transfer in layered
composite materials causes a finite temperature discontinuity while the heat flux
is continuous across the interface; this phenomenon is described by the interfacial
thermal resistance [14]. Similarly, a non-perfect contact of two materials causes the
thermal contact resistance effect which also results in discontinuity of temperature
across the interface [7]. In both cases, the temperature difference at the interface is
proportional to the heat flux. Formal analytical solutions of conductive heat flow
problems in a composite medium with perfect or contact interfaces is possible for
differential equations with piecewise constant coefficients (see Ch. 9 and references
on p. 378 in [7]).
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General linear two-point interface boundary value problems (IBVPs) for systems
of ordinary differential equations were studied long ago in [11, 12, 13]. Note that
existence and uniqueness of a solution is proved in [13, Theorem 2] assuming that
det(H(Y )) 6= 0, where H(Y ) is a matrix functional defining boundary conditions,
and Y is a d-solution, a solution of the system that satisfies only the interface
conditions. This condition is hard to verify in practice for general problems. Under
a similar assumption, a d-solution of an interface problem with a more general
boundary condition is obtained in [11, see (15)].

An interface BVP with a linear second-order differential equation that has a
piecewise constant leading coefficient and a complex spectral parameter λ was stud-
ied in [8], where existence, uniqueness, and coerciveness in weighted Sobolev spaces
are proved assuming that |λ| is sufficiently large along with some other conditions.
Similar results are obtained in [4] for an m-th order differential equation also with a
piecewise constant leading coefficient but with a spectral parameter that may now
appear in multi-point boundary-interface conditions. Sturm–Liouville problems for
differential operators with interface conditions were studied in many works; for ex-
ample, see [6, 15]. These studies address issues of existence of a sequence of real
eigenvalues, zero counts of corresponding eigenfunctions, and their completeness,
and do not focus on uniqueness of solutions of IBVPs.

The goal of this work is to formulate easily verifiable sufficient conditions for exis-
tence and uniqueness of the solution of the interface BVP with piecewise continuous
coefficients and general interface conditions. The obtained conditions involve only
the coefficients of the boundary and interface conditions and the coefficients of the
differential operator. The results of this work may be useful for developing and
analyzing numerical methods for solving IBVPs.

The presented simple analysis is based on the approach in [5, §1.2], which ap-
plies an alternative theorem and reduces the question of existence and uniqueness
of solutions of two-point BVP to that of unique solvability of a scalar nonlinear
equation using an auxiliary variational initial value problem (IVP). Similar results
could be obtained in the case of multiple interface points or a nonlinear differential
equation.

The outline of the article is as follows. In Section 2, we give the formulation of
IBVP, introduce notation, and present auxiliary results. In Section 3, we show that
there is a bijective map between the solution sets of IBVP and of a certain nonlinear
system of two equations corresponding to the interface conditions, and then we
prove an alternative theorem which associates unique solvability of IBVP with
that of the corresponding homogeneous problem. In Section 4, we state the main
result of this article which gives sufficient conditions for existence and uniqueness of
solutions of IBVP, and we also present a counterpart statement obtained by change
of variable. In Section 5, we find the Green’s function of the problem, and list some
of its properties.

2. Problem and auxiliary facts

Let (a, b) be a line interval, and let c ∈ (a, b). For an integer k ≥ 0, let Qk be a
vector space of functions v defined on [a, c] ∪ [c, b] such that

v|[a,c] ∈ Ck[a, c], v|[c,b] ∈ Ck[c, b].
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Note that function v and its derivatives can have only jump discontinuities at the
interface point x = c, and v is double-valued at x = c. For every v ∈ Q0, let

v± = lim
x→c±

v(x), and [v] = v+ − v−.

Let functions p, q, and f belong to Q0, and let α, β, aj , bj , c±ij , and γi for i = 1, 2,
and j = 0, 1 be reals. Consider the following two-point IBVP:

Lu(x) ≡ −u′′(x) + p(x)u′(x) + q(x)u(x) = f(x), x ∈ (a, c) ∪ (c, b), (2.1a)

la(u) ≡ a0u(a)− a1u
′(a) = α, lb(u) ≡ b0u(b) + b1u

′(b) = β (2.1b)

with additional two interface conditions

li(u) ≡ c−i,0u
− + c−i,1(u′)− + c+i,0u

+ − c+i,1(u′)+ = γi, i = 1, 2. (2.1c)

Letting

C = (C−|C+), C± =
(
c±10 ∓c±11
c±20 ∓c±21

)
, (2.2)

the interface conditions (2.1c) can be written in the matrix-vector form

C(u−, (u′)−, u+, (u′)+)T = (γ1, γ2)T .

Nonhomogeneous IBVP (2.1) can be reduced to a problem with homogeneous
boundary and interface conditions by introducing a new dependent function ũ =
u − φ, where piecewise linear function φ is chosen to satisfy the nonhomogeneous
conditions (assuming that the resulting 4× 4 linear system is consistent).

To describe some typical interface conditions, let d0, h, k1 and k2 be positive
constants, and let

k(x) =

{
k1, x ∈ (a, c),
k2, x ∈ (c, b).

Consider the differential equation

−(ku′)′ + qu = f in (a, c) ∪ (c, b) (2.3)

along with the boundary conditions (2.1b) and interface conditions presented in
Table 1.

Table 1. Typical interface conditions.

Type Equations Interface matrix C Matrix Ĉ

perfect
contact

[u] = 0,
[ku′] = 0

(
1 0 −1 0
0 k1 0 −k2

)
1
k2

(
k2 0
0 k1

)
flux jump [u] = 0,

[ku′] = d0u(c)

(
1 0 −1 0
0 k1 d0 −k2

)
1
k2

(
k2 0
d0 k1

)
radiation /
thermal
resistance

h[u] = ku′(c),
[ku′] = 0

(
h 0 −h k2

0 k1 0 −k2

)
1

hk2

(
hk2 k1k2

0 hk1

)

For each type of interface conditions in Table 1, submatrix C− is nonnegative,
and −C+ is an M-matrix; hence,

Ĉ ≡ −(C+)−1C− ≥ 0 (2.4)
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(see [1]). It will be shown in the sequel, that condition (2.4) is required for existence
and uniqueness of a solution.

The following is a known existence and uniqueness statement for BVP (2.1a)–
(2.1b) without interface conditions (see the corollary from Theorem 1.2.2 in [5]).

Theorem 2.1. Let functions p, q, and f be continuous on [a, b] with q(x) > 0 for
all x ∈ [a, b]. If reals a0, a1, b0, and b1 satisfy

a0a1 ≥ 0, b0b1 ≥ 0, |a0|+ |a1| 6= 0, |b0|+ |b1| 6= 0, |a0|+ |b0| 6= 0,

then BVP (2.1a), (2.1b) has a unique solution for all reals α and β.

The goal of this work is to obtain a similar result for IBVP (2.1); that is, a list
of simple conditions involving only the coefficients of the differential equation, and
the boundary and interface conditions that imply existence and uniqueness. The
following statement is proved in [5] (see the proof of Theorem 1.2.2), and it plays
a key role in the following analysis.

Lemma 2.2. Let real values a0 and a1 satisfy a0a1 ≥ 0, |a0| + |a1| 6= 0. Let
functions p(x) and q(x) be continuous on the interval [a, b], let q(x) > 0 for x ∈
[a, b], and let M = maxx∈[a,b] |p(x)|. The solution of the initial value problem

ξ′′ = pξ′ + qξ, ξ(a) = a1, ξ
′(a) = a0,

satisfies the following inequalities:

ξ(b)ξ′(b) > 0,

|ξ(b)| > |a1|+ |a0|(1− e−M(b−a))/M > 0,

|ξ′(b)| > |a0|e−M(b−a) ≥ 0.

(2.5)

Note that, if a0 6= 0, then both ξ(b) and ξ′(b) are bounded away from zero. On
the other hand, if a0 = 0, then ξ(b) is bounded away from zero while ξ′(b) is not.
These facts and the following one-dimensional form of the Hadamard theorem (see
Theorem 5.3.10 in [9]) are used in the proof of Theorem 4.1, the main statement of
this article.

Lemma 2.3. Let φ : R → R be a continuously differentiable function. If there is
γ > 0 such that |φ′(s)| ≥ γ for all s ∈ R, then φ is a homeomorphism.

3. The alternative theorem

The alternative theorem for a boundary value problem is a statement that the
nonhomogeneous BVP has a unique solution if and only if the corresponding re-
duced system is incompatible; that is, the corresponding homogeneous problem
has only the trivial solution [3, Ch. IX]. In this section, we prove the alternative
theorem for IBVP (2.1).

Let functionals l̃a and l̃b correspond to some linear initial conditions that are
linearly independent with la and lb, respectively, defined by (2.1b). For each s =
(s1, s2) ∈ R2, the initial value problems,

Lu1(x) = f(x), x ∈ (a, c), la(u1) = α, l̃a(u1) = s1,

Lu2(x) = f(x), x ∈ (c, b), lb(u2) = β, l̃b(u2) = s2,
(3.1)
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have unique solutions u1(s1, x) and u2(s2, x), respectively. Let

u(s;x) =

{
u1(s1, x), x ∈ [a, c],
u2(s2, x), x ∈ [c, b],

(3.2)

and note that u(s;x) belongs to Q2. For functionals l1 and l2 defined in (2.1c),
consider the following nonlinear system of equations for s:

li(u(s, ·)) = γi, i = 1, 2. (3.3)

Let U and S be the solution sets of IBVP (2.1) and the nonlinear system (3.3),
respectively. If s ∈ S, then function u(s, x) defined by (3.2) is a solution of IBVP
(2.1). Consider mapping û : S → U defined by

û(s) = u(s, ·), ∀s ∈ S. (3.4)

Lemma 3.1. The mapping û is a bijection.

Proof. Let us prove that û is onto. Let U(x) be a solution of IBVP (2.1), let

s1 = l̃a(U), s2 = l̃b(U), s = (s1, s2),

and let u(s;x) be given by (3.1), (3.2). Clearly, u(s, ·) = U since solutions of IVPs
(3.1) are unique. Therefore, u(s, ·) satisfies equations (3.3). Thus, s = (s1, s2) ∈ S,
and û(s) = U(x); that is, mapping û is onto.

To prove that mapping û is one-to-one, suppose that s′, s′′ ∈ S, and s′ 6= s′′. By
uniqueness of solutions of IVPs (3.1) and definition (3.2), obtain u(s′; ·) 6= u(s′′; ·);
that is, û(s′) 6= û(s′′) by (3.4). �

The following is the reduced system corresponding to IBVP (2.1):

Lw(x) = 0, x ∈ (a, c) ∪ (c, b),

la(w) = lb(w) = l1(w) = l2(w) = 0.
(3.5)

Theorem 3.2. IBVP (2.1) has a unique solution u ∈ Q2 if and only if the reduced
system (3.5) has only the trivial solution w = 0.

Proof. If IBVP (2.1) has a unique solution, then w = 0 is the unique solution of
the reduced system (3.5). On the converse, assume that the reduced system has
only the trivial solution.

Problem (3.1), (3.2) can be formulated in the following form: Let v1, w1 ∈ C2[a, c]
and v2, w2 ∈ C2[c, b] be the unique solutions of the initial-value problems

Lv1 = f on (a, c), la(v1) = α, l̃a(v1) = 0,

Lv2 = f on (c, b), lb(v2) = β, l̃b(v2) = 0,

and
Lw1 = 0 on (a, c), la(w1) = 0, l̃a(w1) = 1,

Lw2 = 0 on (c, b), lb(w2) = 0, l̃b(w2) = 1.
(3.6)

For s = (s1, s2) ∈ R2, let

u(s;x) =

{
v1(x) + s1w1(x), x ∈ [a, c],
v2(x) + s2w2(x), x ∈ [c, b],
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By requiring u(s, x) to satisfy equations (3.3), for i = 1, 2, we obtain

s1(c−i,0w
−
1 + c−i,1(w′1)−) + s2(c+i,0w

+
2 − c

+
i,1(w′2)+)

= γi − c−i,0(v−1 − c
−
i,1(v′1)− − c+i,0v

+
2 + c+i,1(v′2)+.

(3.7)

If (s1, s2) is a nontrivial solution of the corresponding homogeneous system

s1(c−i,0w
−
1 + c−i,1(w′1)−) + s2(c+i,0w

+
2 − c

+
i,1(w′2)+) = 0, i = 1, 2,

then, by (3.6), the function

w(x) =

{
s1w1(x), x ∈ [a, c],
s2w2(x), x ∈ [c, b],

is a nontrivial solution of the reduced system (3.5); this contradicts the previous
assumption. Therefore, the linear system (3.7) has a unique solution s∗ ∈ R2, which
is the unique solution of nonlinear system (3.3). By Lemma 3.1, û(s∗) = u(s∗; ·) is
the unique solution of IBVP (2.1). �

4. Existence and uniqueness

Let C and Ĉ = (ĉij) be the matrices defined in (2.2) and (2.4), respectively. The
following is the main result of this article.

Theorem 4.1. Assume that functions p and q belong to Q0 and q(x) > 0 for all
x ∈ [a, c] ∪ [c, b]. Assume that

a0a1 ≥ 0, a0 + a1 6= 0, (4.1a)

b0b1 ≥ 0, b0 + b1 6= 0, (4.1b)

and that

det(C+) 6= 0, (4.2a)

Ĉ ≤ 0 or Ĉ ≥ 0, (4.2b)

Ĉ 6= 0. (4.2c)

Also assume that at least one of the following assumptions holds:
(1) b0 6= 0 and ĉ11 + ĉ21 6= 0;
(2) b0 6= 0, ĉ11 + ĉ21 = 0, and a0 6= 0;
(3) b1 6= 0 and ĉ21 6= 0;
(4) b1 6= 0, ĉ22 6= 0, and a0 6= 0.

Then the homogeneous interface problem (3.5) has only the trivial solution.

Proof. Since a0 and a1 are not both zeros by assumption (4.1a), let reals d0 and d1

satisfy the identity
a1d0 − a0d1 = 1. (4.3)

For each s ∈ R, the interface IVP

la(w) = 0, d0w(a)− d1w
′(a) = s, (4.4a)

Lw(x) = 0, x ∈ (a, c), (4.4b)

C(w−, (w′)−, w+, (w′)+)T = 0, (4.4c)

Lw(x) = 0, x ∈ (c, b), (4.4d)
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has a unique solution w(s; ·) ∈ Q2. Indeed, by (4.3), IVP (4.4a), (4.4b) has a unique
solution w1(s; ·) ∈ C2[a, c]. Using assumption (4.2a), det(C+) 6= 0, let(

c1(s)
c0(s)

)
≡ Ĉ

(
w1(s; c)
w′1(s; c)

)
.

Function w2(s; ·) ∈ C2[c, b] is the unique solution of IVP with the differential equa-
tion (4.4d) subject to the initial conditions

w2(s; c) = c1(s), w′2(s; c) = c0(s).

Then then function

w(s;x) =

{
w1(s;x), x ∈ [a, c],
w2(s;x), x ∈ [c, b],

belongs to Q2, and it is the solution of problem (4.4). Note that diw/dxi(s;x),
i ≤ 2, continuously depends on parameter s at x = b.

Differentiating the equations in (4.4) with respect to s and using condition (4.3),
obtain the following variational interface IVP for the unknown function ξ(s;x) =
∂w(s;x)/∂s:

ξ(a) = a1, ξ
′(a) = a0, (4.5a)

Lξ(x) = 0, x ∈ (a, c), (4.5b)

C(ξ−, (ξ′)−, ξ+, (ξ′)+)T = 0,

Lξ(x) = 0, x ∈ (c, b).

Functions diξ/dxi, i ≤ 2 continuously depend on parameter s at x = b.
For the functional lb defined in (2.1b), let φ : R→ R be given by

φ(s) = lb(w(s; ·)), s ∈ R.

Since

φ′(s) = b0ξ(s; b) + b1
dξ

dx
(s; b), (4.6)

function φ is continuously differentiable. Since w1(0; ·) = 0 and w2(0; ·) = 0, it
follows that φ(0) = 0. Let us prove that s = 0 is the only solution of the equation
φ(s) = 0, s ∈ R, which then implies that IBVP (3.5) also has only the trivial
solution. To this end, we need to prove that the derivative φ′(s) is bounded away
from zero; that is, there is γ > 0 such that |φ′(s)| ≥ γ > 0 for all s ∈ R.

Let M = maxx∈[a,b] |p(x)| and

δ = min{1, (1− e−M min{c−a,b−c})/M} > 0. (4.7)

Let s ∈ R. By Lemma 2.2 applied on IVP (4.5a), (4.5b), and assumption (4.1a), it
follows that

ξ−(ξ′)− > 0, (4.8a)

|ξ−| > |a1|+ |a0|(1− e−M(c−a))/M ≥ δ|a0 + a1| > 0, (4.8b)

|(ξ′)−| > |a0|e−M(c−a) ≥ 0. (4.8c)

Since det(C+) 6= 0, matrix Ĉ = −(C+)−1C− exists. Let(
c′1
c′0

)
≡ Ĉ

(
ξ−

(ξ′)−

)
. (4.9)
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By (4.2b), (4.2c), and (4.8a), it follows that

c′0c
′
1 ≥ 0, |c′0|+ |c′1| 6= 0. (4.10)

Function ξ|[c,b] is the unique solution of the IVP

ξ′′ = pξ′ + qξ on (c, b), ξ(c) = c′1, ξ
′(c) = c′0.

Applying Lemma 2.2 on the interval (c, b) with ai replaced by c′i and using (4.7)
and (4.10), conclude that

ξ(b)ξ′(b) > 0, (4.11a)

|ξ(b)| > |c′1|+ |c′0|(1− e−M(b−c))/M ≥ δ|c′0 + c′1| > 0, (4.11b)

|ξ′(b)| > |c′0|e−M(b−c) ≥ 0. (4.11c)

By (4.6), (4.1b), and (4.11a), we obtain

|φ′(s)| = |b0ξ(b) + b1ξ
′(b)| = |b0ξ(b)|+ |b1ξ′(b)|. (4.12)

The last identity and (4.11b) imply

|φ′(s)| ≥ |b0ξ(b)| ≥ δ|b0(c′0 + c′1)|. (4.13)

First, let b0 6= 0 and ĉ11 + ĉ21 6= 0 (Assumption 1). Using (4.9), (4.8a), (4.2b), and
(4.8b), we obtain

|c′0 + c′1| ≥ |(ĉ11 + ĉ21)ξ−| > δ|(ĉ11 + ĉ21)(a0 + a1)|,
which, along with (4.13), (4.7), and (4.1a), gives

|φ′(s)| > δ2|b0(ĉ11 + ĉ21)(a0 + a1)| > 0.

Now suppose that b0 6= 0, ĉ11 + ĉ21 = 0 and a0 6= 0 (Assumption 2). Using
(4.2b), and (4.2c), we obtain

|ĉ12 + ĉ22| > 0. (4.14)
By (4.9) and (4.8c), we obtain

|c′0 + c′1| = |(ĉ12 + ĉ22)(ξ′)−| > |(ĉ12 + ĉ22)a0|e−M(c−a).

Therefore, by (4.13), the last bound, (4.7), and (4.14), get

|φ′(s)| ≥ δ|b0||c′0 + c′1| > δ|(ĉ12 + ĉ22)a0b0|e−M(c−a) > 0.

Using (4.12), (4.11c), (4.9), (4.2b), and (4.8), we obtain

|φ′(s)| ≥ |b1ξ′(b)| ≥ |b1|e−M(b−c)|c′0|

= |b1|e−M(b−c)|ĉ21ξ− + ĉ22(ξ′)−|

≥ |b1|e−M(b−c)
(
δ|ĉ21(a0 + a1)|+ |ĉ22a0|e−M(c−a)

)
.

(4.15)

If b1 6= 0 and ĉ21 6= 0 (Assumption 3), then, from (4.15), by (4.7) and (4.1a), we
get

|φ′(s)| ≥ δe−M(b−c) |ĉ21b1(a0 + a1)| > 0.
If b1 6= 0, ĉ22 6= 0, and a0 6= 0 (Assumption 4), then, from (4.15), we obtain

|φ′(s)| ≥ e−M(b−a) |ĉ22a0b1| > 0.

Thus, under each of Assumptions 1–4 in the statement of the theorem, function φ′

is bounded away from zero. By Lemma 2.3, function φ(s) is a homeomorphism on
R. In particular, s = 0 is the only solution of the equation φ(s) = 0, which implies
that problem (3.5) has only the trivial solution. �
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Applying Theorem 3.2, obtain the following statement.

Corollary 4.2. If the assumptions of Theorem 4.1 hold, then IBVP (2.1) has a
unique solution.

Let us apply Theorem 4.1 to the model problem (2.3) with interface conditions
given in Table 1. For all three types of interface conditions, assumptions in (4.2),
ĉ11 + ĉ21 6= 0, and ĉ22 6= 0 are satisfied. For both the perfect contact and the
radiation conditions, ĉ21 = 0. Therefore, using the assumptions 1 and 4 in The-
orem 4.1, obtain that the corresponding interface BVPs have unique solutions for
all a0, a1, b0, and b1 that satisfy (4.1a), (4.1b), and the condition |a0| + |b0| 6= 0.
This result is similar to that given in Theorem 2.1 for the two-point BVP. For the
flux jump interface condition, we have ĉ21 6= 0. Assumptions 1 and 3 imply that
the corresponding IBVP has a unique solution for all a0, a1, b0, and b1 that satisfy
(4.1a) and (4.1b), even if the condition |a0| + |b0| 6= 0 is not satisfied. This differs
from the conclusion in Theorem 2.1. For example, the IBVP with the flux jump
interface condition has a unique solution for the Neumann boundary conditions.

By changing variable x to −x in the homogeneous interface BVP (3.5), we obtain
an equivalent problem:

−w′′ − p(−x)w′ + q(−x)w = 0, x ∈ (−b,−c) ∪ (−c,−a),

b0w(−b)− b1w′(−b) = β, a0w(−a) + a1w
′(−a) = α,

c+i0w(−c−) + c+i1w
′(−c−) + c−i0w(−c+)− c−i1w

′(−c+) = 0, i = 1, 2,

with the matrix

C̃ =
(
c−10 −c−11
c−20 −c−21

)−1(
c+10 c+11
c+20 c+21

)
playing the role of matrix Ĉ for IBVP (3.5). Thus we also have the following
counterpart uniqueness and existence result.

Theorem 4.3. Assume that functions p and q belong to Q0 and q(x) > 0 for
x ∈ [a, c) ∪ (c, b]. Assume that

a0a1 ≥ 0, a0 + a1 6= 0, b0b1 ≥ 0, b0 + b1 6= 0.

Assume that matrix C̃ exists, and

C̃ ≤ 0 or C̃ ≥ 0, and C̃ 6= 0.

Assume that at least one of the following assumptions hold:

(1) a0 6= 0 and c̃11 + c̃21 6= 0;
(2) a0 6= 0, c̃11 + c̃21 = 0, and b0 6= 0;
(3) a1 6= 0 and c̃21 6= 0;
(4) a1 6= 0, c̃22 6= 0, and b0 6= 0.

Then the interface problem (3.5) has only the trivial solution.

Applying Theorem 4.3 to each interface condition in Table 1, obtain matrix C̃
equal to the corresponding matrix Ĉ with k1 and k2 interchanged, which yields
identical conditions for existence and uniqueness.
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5. Green’s function

To define the Green’s function of IBVP (2.1), consider first the homogeneous
differential equation subject to the homogeneous interface conditions only:

Lw = 0 on (a, c) ∪ (c, b), l1(w) = l2(w) = 0. (5.1)

Since rank(C) = 2 and matrix C has four columns, nullity(C) = 2. Let {b1, b2} ⊂
R4 be a basis for the nullspace of C, and define subvectors b±i ∈ R2 by

bi =
(
b−i
b+

i

)
, i = 1, 2.

Let w−i (x) and w+
i (x) be the solutions of the corresponding initial value problems

with the initial data b−i and b+
i , respectively; that is,

Lw±i = 0, (w±i (c), (w±i )′(c))T = b±i , i = 1, 2,

where the domains of the problems are the intervals (a, c) and (c, b) for the su-
perscripts − and +, respectively. Assume that both sets {b−1 ,b

−
2 } and {b+

1 ,b
+
2 }

are linearly independent. Then {w−1 , w
−
2 } and {w+

1 , w
+
2 } are fundamental solution

sets of the differential operator L on the intervals (a, c) and (c, b), respectively. For
i = 1, 2, let

wi =

{
w−i , x ∈ [a, c],
w+

i , x ∈ [c, b].

Functions w1 and w2 are double valued at x = c. For every C1, C2 ∈ R, let

wC = C1w1 + C2w2. (5.2)

Obviously, function wC satisfies the homogeneous interface conditions. Let us
impose on wC the homogeneous boundary conditions

la(wC) = 0, lb(wC) = 0.

The system can be written in the form

C1la(w−1 ) + C2la(w−2 ) = 0, (5.3a)

C1lb(w+
1 ) + C2lb(w+

2 ) = 0, (5.3b)

A necessary and sufficient condition for a unique trivial solution of this system is

det
(
la(w−1 ) la(w−2 )
lb(w−1 ) lb(w−2 )

)
6= 0, (5.4)

(this is an analog of the condition det(H(X)) 6= 0 in [11, p. 6]). According to
Theorem 3.2, inequality (5.4) is also a necessary and sufficient condition for solution
existence and uniqueness of the non-homogeneous IBVP (2.1).

Let us define the Green’s function of IBVP (2.1). Let wa be function wC

in (5.2) that satisfies condition (5.3a). Similarly, let wb satisfy (5.3b). Then
la(wa) = lb(wb) = 0 and both wa and wb satisfy the homogeneous interface condi-
tions li(wa) = li(wb) = 0, i = 1, 2. Let W be the Wronskian of wa and wb. Then,
for (x, s) ∈ [a, b]2,

G(x, s) =
1

W (s)

{
wa(s)wb(x), s ≤ x,
wa(x)wb(s), x ≤ s,

(5.5)

is the Green’s function of problem (2.1).
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By definition (5.5), it follows that function G is continuous in [a, b]2 everywhere
except the lines x = c and s = c, where it may have finite discontinuities. For a fixed
s ∈ [a, b], G(x, s) satisfies the homogeneous equations in (3.5) almost everywhere
on (a, b). The derivative ∂G/∂x has, in addition, the jump discontinuity across the
line x = s. The domain of the Green’s function is shown in Figure 1.

-
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Figure 1. The domain of the Green’s function (one interface point)

As shown in Figure 1, the lines x = c, s = c, and x = s divide the square [a, b]2

into 4 triangular and 2 rectangular closed regions. Let D be the set consisting of
these 6 regions. For each integer k ≥ 0, function G is in Ck+2 on every region in D
provided that the coefficients p and q of the differential operator L are in Qk.

Conclusions. Uniqueness and existence of piecewise smooth solutions of the lin-
ear two-point BVP with general interface conditions can be established by verifying
simple sufficient conditions that only involve coefficients of the boundary and in-
terface conditions and the differential equation. IBVPs with perfect contact or
radiation type interface conditions have unique solutions under assumptions on the
coefficients of boundary conditions identical to those for the corresponding two-
point BVP. IBVP with the flux jump interface condition has a unique solution
under weaker assumptions. The interface problem has the Green’s function with
regularity properties similar to those of the standard two-point BVP.
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